
USING THE

BBC MICRO
IN EDUCATION

Don Thorpe

USING THE BBC MICRO
IN EDUCATION

Don Thorpe

IHTERRKE f
PUBLICATIONS -

Interface Publications, London and Melbourne

First published in the UK by:
Interface Publications,
9-11 Kensington High Street,
London W8 5NP

Copyright © Don Thorpe, 1984

ISBN 0 907563 87 2

The programs in this book have been included for their instructional value.
They have been tested with care, but are not guaranteed for any particular
purpose. Whilst every care has been taken, the publishers cannot be held
responsible for any running mistakes which may occur.

ALL RIGHTS RESERVED

No use whatsoever may be made of the contents of this volume - programs
and/or text - except for private study by the purchaser of this volume, with­
out the prior written permission of the copyright holder.

Reproduction in any form or for any purpose is forbidden.

Books published by Interface Publications are distributed in the UK by WHS
Distributors, St John's House, East Street, Leicester LE1 6NE (0533 551196)
and in Australia and New Zealand by PITMAN PUBLISHING. Any queries
regarding the contents of this volume should be directed by mail to Interface
Publications, 9-11 Kensington High Street, London W8 5NP.

1st Printing - May 1984

Printed by J. W. Dunn (Printers) Ltd., Sutton, Surrey.

Iv

CONTENTS
SECTION I - FIRST STEPS IN A NEW LAND
Teaching aids old and new....................................1
Simulations.............................. ... 2
Simulations in science teaching..4
Interaction................................ ... 5
Storing data.. 6
Interfacing........... ...6
Handling numbers... 7
When is a program inappropriate?..7
Efficiency and readability.. 8
Chauvinism.. 8
The computer room............... ... 9
SECTION II - RUNNING A FIRST COURSE
Management of a computing class.................11
Choosing groups and places...12
Organisation of equipment..................... 12
The licence course, rules...13
Helping stragglers, occupying the precocious................... 14
Equipment failures... 14
What about playing games?.. 15
Building BBC BASIC on a firm foundation..................... 16
Teaching BBC BASIC...19
PRINTing...21
TAB... 24
The keyboard buffer... 26
The ESCAPE and BREAK keys.. 26
Using a “prompr with INPUT.. 28
Single key INPUT... 29
GET and GETS..30
ASCII codes, modes 0 to 6...31
INKEY.. 32

Other spurious inputs.. * . 33
Negative INKEY34
INPUT LINE 37
Procedures 38
Subroutines . 42
Functions .'..............................45
INT 45
TIME 46
RND 49
LEN50
VAL. ... 51
STR .53
Cutting a string 54
User functions 55
ON. 57
ELSE 58
REPEAT- UNTIL , 60
VDU codes: An overview. 63
Colour67
The sound of music? 80
Logical operators 83
AND 83
OR 84
EOR 85
NOT ...86
Operator precedence 87
Program failures 89
STOP and TRACE 94
Student projects 95
SECTION Ifl - DESIGNING AN EDUCATIONAL

PROGRAM
General considerations99
Giving clear instructions 102
Menu design 104
Suppressing the cursor 105

vi

A HELP! key..106
Using the red keys... 108
Colour and sound... 108
Special effects library...112
Class demonstration programs.. 120
Educational goals... 126
Remedial and extension programs....................................130
User testing.. 132
SECTION IV - DESIGNING A CUSTOM PROGRAM

FOR A NON-COMPUTING COLLEAGUE
Realistic expectations...147
Crystallize aims... 150
Aids to management... 152

vii

viii

1

INTRODUCTION
This book will help you in four ways, whatever your
experience with computers in schools.

You can develop richer, more innovative and versatile
educational programs.

You will be better able to help students face the exciting
challenges of computing.

You will be able to help other teachers appreciate the power
and importance of computers for their subject areas.

You will have more skills to apply to administration in
school and classroom.

The book is divided into four clear sections which consider
die following aspects of computing in schools.

What are the strengths and weaknesses of computers? What
can be expected of educational computer programs? Why is
the creative use of computers in education so important?

BBC BASIC is the “Rolls Royce” of the BASICS available to
students. This book outlines how a solid foundation can be
built even when there are wide variations in student experience;
How can you teach students the facts about Keywords whilst
capturing their imagination? Be aware of and know how to
prevent commonly experienced difficulties. Helpful, innovative
tables, charts and projects are provided.

Consider the factors of program design which will help you
achieve educationally sound results. How do these vary for

ix

group and individual learning situations? How can the very
able students be extended and the strugglers assisted?

How do you cooperate with colleagues who know nothing
about programming, to produce imaginative and effective
programs? How can you produce programs to alleviate the
boredom of routine school tasks?

I have written over sixty instructive programs especially for
the BBC computer. Each listing has been reproduced
directly from a working .program. I have included four
substantial programs, two for administration and two for the
classroom. I have written material to which all students can
relate with interest

The world of computing in education is new and expanding
rapidly. Amazing things are happening. We are fortunate to
have the opportunity to join in.

Don Thorpe

SECTION I -

FIRST STEPS IN A NEW
LAND

Teachers already have many aids to use in the classroom.
Still the most important are the teacher's personality and
voice. Next comes the traditional blackboard, a marvellously
versatile and economic aid. After that, we have charts, audio
tapes, slides, the overhead projector, film, videotape, and the
physical paraphernalia peculiar to particular subjects.

What does the microcomputer have to offer the teacher? To
some, a computer is a powerful de-humanising agent which
is devilishly quick with figures. For most however, there is a
recognition that a very powerful teaching aid has arrived.

A drawback with the traditional blackboard is that its
contents cannot be saved until next week or next year. The
effort must be duplicated each time. Many a teacher has
been proud of a piece of blackboard work and has reluctantly
erased it to make way for the oncoming tide of new material.
A computerised “electronic blackboard” can be saved,
stored away compactly, updated easily and reproduced any
number of times. At present however, the screen is far
smaller than a blackboard.

Younger children in particular find simple, bright and
colourful animation very engrossing. This is reflected by the
ratings success of the generally worthless offerings of cartoon
television.

A teacher receives a film or videotape as a completed
product A computer program however can be cheaply
adapted and improved practically without limit

A computer program can offer the brightness and colour of
the overhead or slide projector, although not as yet the
image size. But the computer can offer sophisticated animation
and sound effects.

There are ways in which the computer can make a unique
contribution to teaching. Firstly, a major educational use of
the computer is simulations.

SIMULATIONS
A computer can produce with great realism and accuracy, a
simulation of a very complex situation. Of course it would be
silly to simulate something which could be done simply,
quickly and cheaply in reality. There are many occasions
where an activity can’t be carried out except in simulation.

Sometimes the situation is too dangerous. For example,
students may wish to investigate how the control and fuel
rods work in a simple nuclear reactor.

Sometimes the exercise would be too costly to carry out in
reality. One group of students was working on the buoyancy
characteristics of various designs of concrete boat They
quickly found out by simulation what NOT to build!

Sometimes the computer can portray happenings which will
always be invisible, although the laws governing them are
reasonably well understood. For example, the movement of
electrons through a gas. Or the way a volcano proceeds
towards an eruption.

2

Another type of simulation is the “what if..” type. Here, the
user is able to choose various parameters in a situation and
see what the effects are. Computer simulations can produce
un-dreamt of predictions. Bypassing human pre-conceptions,
a program can prompt our intelligence and imagination.

A computer can handle a large number of repetitions
quickly. For example, in a probability lesson we may want to
discuss outcomes with dice. The computer can “throw”
thousands of dice during a lesson, and produce results for
discussion. It's not that a person could not do it, but the time
is not available.

Using a computer simulation, it is often possible to change
the time-scale of events. This is similar to projecting a film at
a faster or slower rate than that at which it was taken. Much
can be learnt in this way. The “evolution” of an animal
species under various conditions can be simulated so that
hundreds of thousands of years pass in moments. Conversely,
an incident which is over in a flash, can be stretched out to
last minutes in simulation.

Randomness can be built into a simulation, to mirror the
chance-events we find in life. Sometimes even the programmer
is amazed at what turns up. This is particularly true with
historical simulations. For example, if a military or political
figure is killed, or perhaps a crucial supply ship hits a reef,
the whole course and outcome can change. It is fascinating
to construct these “alternate histories” - we see how frail the
paths of our lives really are.

The complexity of computer operations enables an “holistic”
experience to be produced. Thus a pilot can “experience”
flying a 747, with hundreds of interrelated factors operating
in simulation at the same time. This includes rare events

3

which the pilot needs to be prepared for. Of course, if this
was the only type of training a pilot received, we would be
worried, because a computer simulation is usually an
approximation.

Two recent movies illustrate this. In “The China Syndrome”,
computer simulation of the possible hazards in a nuclear
plant proved inadequate. Insufficient allowance had been
made for human greed. The film “Capricorn 1” gives an
entertaining portrayal of the ultimate simulation of our era.
but in the end, being an approximation it had to fail.

Simulations in Science teaching.

One aspect of simulations must be watched carefully. We
must stress that we are not watching “nature”. I saw a group
of students studying printouts of simulated collisions between
objects. They were impressed, and clearly regarded the
figures as “proof’ of the physics laws involved. However, the
programmer based his work on those laws, so the success of
the simulation merely “proved” his competence as a pro­
grammer. He could have “proved” F=ma2 if he had wished.
Simulations can illustrate aspects of the physical world in
very interesting ways. But we must not let students think they
are “proving” anything.

Rene Descartes, a contemporary of Galileo, was revered as
the greatest scientist of the age. However, he wrote that a
person need not interact with the physical world to study it
Most of his philosophical speculations about the real world
were later proved preposterous when tested against nature.
In his “ivory tower”, Descartes attempted to discover truths
by mathematical analysis, which can only be discovered by
experiment

We must not allow the computer to become our electronic
“ivoiy tower”. We need to bear in mind what Professor Karl
Popper says about “scientific” conclusions. They must not
only be verifiable by repeated experiments, but they must
be falsifiable. A computer simulation, by itself, is not
falsifiable in this sense. If we program a computer to handle
facts in a certain way, the validity of our conclusions will
reflect our wisdom in programming. Teachers must always
stress the need for accurate observation and encourage
students to be critical and curious, and want to test propositions
in the laboratory.

In fact, a computer is more suited to disproving a law, since it
can search for the necessary single exception, without tiring
or losing patience.

A computer can be used to construct a model of a situation.
This model can be refined and improved repeatedly, by
continual referral back to nature. The computer can even
suggest what the next direction might be. Thus the computer
is an indefatigable assistant to the scientist, not his replacement

Interaction
Another unique feature of the computer as a teaching aid
its interactive ability. The user can be offered choices, help,
direction, even criticism. Hence a computer program is
much more adaptable to the needs of individual learners,
than any other type of teaching aid. In a foreign language
course for example, a student may be able to choose the level
of difficulty, the type of work (vocabulary, grammar etc)
which is appropriate. The program can be designed to
correct errors and offer suggestions in keeping with the
student’s progress. A textbook cannot tell how well the

5

reader is doing. The rate and direction of progress through
the language course can change continually, just as a good
coach would do for a student The flexibility is there to allow
the bright student to skip ahead. The slow learner has in a
computer, a “teacher” with endless patience and no pre­
conceived ideas or prejudices. This “teacher” can also be
programmed to always encourage and never abuse.

STORING DATA

The computed s ability to store vast amounts of information
in a readily accessible form, can also be useful to the teacher.
This applies not only to records, marks and reports, but to
actual teaching. For example, subjects in which there is a lot
of classification could make much use of a database. In
biology and geology particularly, students could access sets
of information of their own choosing, very quickly. Com­
mercially available file-management programs would allow
teachers with almost no computer experience to design
extremely useful databases to suit themselves. Thus the
computer can act as a marvellous subject resource, particularly
if a disc system is available. Also it is very cheap and easy to
add to, delete from, or alter records. Such a resource could be
shared with other teachers around the country or across the
world, with ease. Databases created by local people every­
where could be exchanged to everyone’s benefit

Interfacing

The BBC computer is ideal for interfacing to other equipment
This has opened up many possibilities, particularly in the
scientific areas of education.

6

Handling numbers

The microcomputer can be useful to the teacher in many
ways. We haven’t yet mentioned that a computer knows a lot
about “Maths” too. A secondary school student thumbing
through the BBC User’s Guide see many functions known
from Maths courses. Logarithms, trigonometry, exponents,
all these things one finds on a calculator. Yet a computer is
far more powerful than a nomal calculator. A computer can
be very useful to the Mathematics teacher.

And of course the computer can be programmed to help
teach computing.

Although there are already so many uses for computers in
Education, the future promises many more wonderful things.

When is the use of a computer
program inappropriate?

If a lot of text needs to be presented, the bright video screen is
not the place for it Even with low glare green or amber
screens, students generally resist reading a lot of material. At
present there is a certain psychological urgency associated
with the screen. Also, students using computers are often on
restricted time and feel under pressure. Perhaps the next
generation of students, growing up in ever closer relationship
to video screens will not have this problem.

Sometimes a computer program needs a longer time frame
than the student can realistically spend at the computer. The
considerable thought provoked by some programs makes
them unsuited for use in a classroom situation. There are

ways around this problem, like the production of a hard
copy. Another technique is that used in “Adventure” games,
where data can be saved on cassette or disc, and the program
resumed at a later date from the same point

A computer program is unsuitable for teaching when a
simpler, easier aid does a better job. Related to this is the use
of a computer to present a boring treatment of a topic. In
other words, when the computer is only used for novelty
value. This does harm to the use of computers in education.

Efficiency and Readability.

The more one explores the habits of the BBC microcomputer,
the more short cuts one finds. In syntax for example, quotes
and brackets may sometimes be omitted. VDU statements
can be strung together. THEN can often be omitted from IF-
THEN structures. Commas can be used in place of a series of
NEXT statements. There are many other abbreviated methods,
some very pretty and sophisticated. Many lead to a greater
execution speed, and offer a valuable saving in memory
usage. Sometimes a call to a resident machine language
routine produces far, far better results than BASIC does.

As teachers we must resist the temptation to appear “clever”.
To the student it may simply be obscure. When a program is
displayed to students learning BASIC, readability is of the
greatest importance. Efficiency comes next

Chauvinism.

Let’s imagine that all existing knowledge about computing is
displayed in a meaningful sequence on a notice board one

8

metre high and many kilometres long. If we started at one
end and tried to assimilate everything as we moved along,
most of us would find our minds were “leaking”. To
maintain sanity, a person’s mind tends to reject information
it regards as less relevant to survival. For example, our eyes
receive vast amounts of information each day. If we were
aware of it all, we would quickly be swamped.

If we imagine the computing community standing at this
notice-board, what would we find? Some people will be very
familiar indeed with certain areas of it This may reflect a
particular interest or vocational need. Or it may simply
mean they have been reading the board for a long time.
There is a tendency for specialists in a small area to look
askance at those who are not Some Pascal exponents regard
BASIC users with disdain. For some, machine code pro­
gramming is the only “real” computing. These people have
tunnel vision. They are rooted to a spot in front of one
section of the “notice board”. I am not suggesting that we
should have a shallow encyclopaedic knowledge and master
nothing. But we must all be respectful of one another’s
knowledge, and have enough humility to leam from each
other. There is no place for derisive factions within the
educational computing community. One teacher who was
proficient with the Apple computer, waved away dismissively,
an enthusiastic group of hobbyists because the Sinclair
ZX81’s they had at home were “just toys”. Had he listened to
them he could have at least gained from their exuberance.
Instead, he taught them how to be chauvinist

The computer room.

The characteristics and disposition of a school computer
room are topical concerns.

The room should be painted in an unobtrusive colour, with
diffuse lighting to avoid reflections in the video screens.

For safety, there must be no trailing power cords.

To help control dust, the floor should be hard, rather than
carpeted and chairs preferably not covered in material. If
drapes cannot be avoided, they need to be washed regularly.
Chalk should be replaced by water based felt pens used on
an overhead projector or whiteboard. There should be no
tap in the room and no facilities for making tea and coffee,
since liquids are so hazardous to computers.

Concerning furniture, the benches should either be robust,
or secured to the floor so that equipment is not easily
dislodged. A display board is needed for notices, along with
plenty of lockable cupboards for storing equipment Consider
particularly the storage of and accountability for discs, tapes
and other small items which are attractive to the petty
pilferer. The chairs used by the students should be height
adjustable to allow a proper keyboard position for each
student

The computer room needs a lockable phone with a direct
outside line. The computer can then be conveniently used
with a modem to communicate with the outside world. This
is a very exciting aspect of school computing.

For security, the room should preferably be on an upper
floor, and have secure windows and doors. The room should
be protected against burglary by a movement detector or
other suitable alarm. Don’t forget to tell the cleaners about it

10

SECTION II

RUNNING A FIRST
COURSE IN BBC BASIC

Management of a Computing class

Scene:
A class is about to arrive at the computer room for the first
lesson of your course. Many will be very keen. Others will be
apprehensive: “Here's something else to fail at I'll look
stupid again."

There may be the usual few who are ill-suited to school.
Their life-problems will surface in this subject as they do in
all the others. However, some so-called “disruptive influences"
have the first real scholastic success of their lives with
computers and undergo a transformation.

The computing background of the students may vary
enormously. Expect a grading through from the student who
knows nothing, to the one who is contemptuous of your
“simple course". (Sometimes the latter turns out to be like the
former).

What will you say to these people? How can you communicate
the excitement of computing? How can you allow them
maximum individuality and help them best, while keeping
good group control?

11

Choosing groups and places

If groups are to be used, I prefer to let students choose their
own partners. However, emphasize that their choice should
be from those they can work well with, not necessarily their
buddies. They should understand that if there is undue
inattention or misbehaviour you will not hesitate to reallocate
them.

Nevertheless it may be necessary to exercise your discretion
and choose some combinations yourself. For example the
different ones often play safe by choosing partners like
themselves. Because of social conditioning, girls in a mixed
group tend to take the passive roles. They often make notes
and record values while the boys do the creative things and
make the decisions. This must be circumvented, even if it
means forming some all-girl groups.

Organisation of equipment

Make each student (or small group) responsible for the same
set of equipment throughout the course. Each work-station
should have a number which is indelibly written on each
item. The names of those using a work station in each
session should be kept in a book (not a wall chart).

Every group’s first task each session is to see that all the
equipment is present and in good condition. Any discrepancies,
damage or malfunction must be reported immediately.
Make it plain that otherwise they will be held responsible.
Follow up any problems with the previous users of that
work-station, and take the necessary corrective measures.
Do not allow faults with a particular workstation to drag on.

12

The licence course

This course is detailed a little later. It sets out not only a base
of computer knowledge but also ground-rules for behaviour.
All students should acknowledge a set of standards for the
little community which uses the computer room.

Infractions of rules

Enforcement of rules is particularly necessaiy in a computer
room because of the fragility and expensiveness of the
equipment One common infringement occurs at lunchtimes,
when students, particularly hangers-on, are tempted to bring
food and drink into the room. They will say
“But I’m just watching.” or
“The rules only apply to lessons, not to lunchtimes.”

Point out that the rules are those of the Computing Room
Community, and that if they are not observed, you will have
to lock the room. Use of the room outside of lesson times is a
privilege.

Should a charge be made for
damage?

Clearly this depends on the school, and the affluence of the
students. But it is at least a worthwhile bluff which makes a
good point It does seem to reduce the hammering of
keyboards and careless treatment of cassettes and discs.

13

Helping stragglers, occupying the
precocious

One handicap with the present state of computing as a
subject, is that only the lucky few will have access to a
computer after hours. The release of the Electron, and
generally falling prices should help. Certainly those with a
BBC computer at home are unlikely to need help anyway.
The teacher will need to devise written material to help the
slow learners who are without computers. This is largely
unbroken ground. The language used in this material will
need to be free of unnecessary jargon and straightforward in
style. The quick student can be given access to books or
magazines, to research a particular area (eg. the uses of
GC0L1 to GC0L4.)

There is a list of student projects at the end of this section,
which could be used. They might learn how to use the printer
or disc drive. There are filing, word processing and accounting
packages which can be purchased at reasonable prices. A
good student could be let loose on one of these. There are
speech synthesisers and word recognition devices. There are
other languages like Forth and Assembly language which
can be studied. Fortunately there are many fascinating
things for the able student interested in computers.

Equipment failures

Symbiosis should allow the school to have a good relationship
with a dealer. Preferably, the peripheral products should
also come from the same supplier. Then if a puzzling
breakdown should occur in the school's computer system,

the dealer cannot shuffle off responsibility by blaming a
component which he did not supply. The dealer should be
able and willing to give occasional advice over the phone.
He should be situated close to the school and be willing to
lend equipment in place of that which he is repairing.

If possible, have one working spare for each of the workstation
items. In case one or more of the work stations is disabled,
have some computer-related activities which people can go
on with.

What about playing games?

The use of microcomputers as vehicles for “Arcade” games
like Pacman has muddied the waters for computing teachers.
A common impression held by non-computing students and
teachers alike, is that a computer is something one “plays
with”. Indeed, it is even common parlance among computing
teachers. This arises because computing can be a tiring and
frustrating struggle, but for most of us it is also very
stimulating and enjoyable. Hence to begin with, even a
serious course in Basic may have a frivolous image.

Students should not be playing prepared game software in a
computing course. It may be acceptable as a leisure-activity
but it should not be termed a “Computer Club”. One group I
know of, meets after school to play “Adventure” games. They
are known as the “Adventurers”, and they have a marvellous
time. But not at any stage are they doing any computing. The
same applies to users of dedicated word processors, laser
discs etc. Let’s keep the concept of “computing” separate
from the multifarious uses of microprocessors generally.

16

Building BBC BASIC on a firm
foundation
When beginning a course, the teacher needs to know how
much the students already understand.

I expect all students to first pass a “licence” test This test is in
three parts: Behaviour, Practical and Theory.

The Behaviour part of the test involves a knowledge of and a
commitment to the following rules. (The Oxford dictionary
defines a commitment as an engagement that restricts
freedom of action).
a) No food, drink or chalk in the computer room.

(Explain the damage which liquids and small particles
can cause to tape drives, discs and keyboards).

b)No unruly behaviour jostling, loud noises etc.
c) Generally show a sensible concern for the people sharing

tire room, and for the equipment

The Practical part of the test involves the following:

a) Know how to tun the equipment on and off.
b) Know how to correctly handle, insert and store cassettes

and/or discs.
c) Treat the keyboard gently.

(Many people’s only keyboard experience is with a
manual typewriter, where each character is impacted onto
tiie paper through a ribbon. The force of the fingers is
transmitted via levers. Point out to students and teachers,
that a computer keyboard is an array of sensitive switches.
Also, avoid the word “Punch” as in the “Punch in the
information**. Use of this word dates back to the days
when holes were punched in cards or paper tape to input
information. But “punch” has the wrong connotation for

16

a modem keyboard).
d) Have a fair knowledge of where the keys are. Keyboard

proficiency is not demanded, but some students scan the
whole keyboard systematically every time. It should not
take 15 seconds to find N and then 15 seconds to find M.

e) Know how to make simple adjustments to the video
equipment

f) Some teachers would include elementary printer operations
too.

The theory material for the test is outlined below. It consists
of fundamental material common to almost all micro­
computers, for which there are many good teaching books
available.

A computer program is a numbered or named set of logical
instructions. These are performed in a sequence determined
by the program. Unless instructed otherwise, the computer
follows the line numbers in ascending order, unconcerned
by gaps. The order in which the lines were typed is irrelevant

The commands LIST, RUN, NEW, LOAD and SAVE are
introduced, together with the statements RETURN, LET,
PRINT, GOTO, FOR-NEXT-STEP, IF-THEN, INPUT,
DIM, DATA READ, RESTORE and REM An introduction
to numeric and string variables is given. The four simple
arithmetic operators are taught along with AND.

As well as things peculiar to the BBC micro, other material is
not presumed at this stage. This includes TAB, ON, STOP,
GET, INKEY, ELSE, REPEAT-UNTIL, exponentiation,
AND, NOT, RND all the other numerical and and string
functions, and GOSUB. I hope they don’t hear about
GOSUB until I have taught PROCEDURES.

17

A good way of teaching the licence material is to use a system
of carefully graded cards which are used individually on a
hands-on basis by half the class. The other half of the class
receives direct instruction The two halves alternate between
the card system and the class group until the course is
finished. This will only work if the cards are carefully written
so that the group using them is self-sufficient A set of
extension cards on a topic like Animation should be
included for those who finish the course early. The advantage of
this system is that the expected large variation in the
knowledge of the students is to some extent allowed for.
Some will have a computer at home and be keen hobbyists.
Others may have an emotional resistance to learning anything
about computers at all The card system allows some degree
of individual progression. At the end of the Licence course an
on-lesson exam, partly written and partly practical is an
excellent idea. Once we have a class of graduates, we can
assume a certain body of knoweldge on which to build our
BASIC course.

Here are some typical Licence Test questions:

1. Write a program using a FOR-NEXT loop which prints
the famous visual oddity:
PARIS IN THE
THE SPRING
six times on the screen, with a blank line between each. Save
it and have it ready to LOAD and RUN for the Tester.
2. Have in the computer's memory ready to RUN, a program
which prints the letter Q when that key is pressed, and
ignores any other key (except ESCAPE and BREAK). Be
able to LIST it Include REM statements explaining what
the program does.
3. Without using the computer, design a program on paper
which prompts the user to supply two numbers, adds them
and prints their average.

18

4. Why are gaps left in program line numbers?
5. What happens if NEW is not used before typing a new
program into the computer?
6. Why do we avoid using the letters IO U and V as variable
names?
7. Study the following program. What value of N is needed?
What does the program do?

10 FOR J=1 TO N
20 READ NAME*
30 READ AGE
40 PRINT NAME*,AGE
50 NEXTJ
60 DATA FRANK,15,JILL,16,TOM,14,SUE, 15,

RICARDO,16
What would happen if we added this line, and ran the
program again?
70 GOTO 10
8. Why shouldn't we GOTO a line which is a REM
statement? 200

TEACHING BBC BASIC

You might like to start by providing your students with this
User-defined-keys program called “R” (for Red keys). It’s
justifiable to use UR” (or something similar) without any
explanation at this stage, because more of value can be
achieved in the limited time available.

19

For your convenience, the program is reproduced below.
The methods used to define the red keys are discussed in
Section in.

10 REM RED KEYS DEFINED FOR STUDENT USE
20*KEY0 IV7LIST5M
3O*KEY1 RUN IM
33*KEY2 SAVE”
37*KEY3 PRINT
40*KEY4 INPUT
45*KEY5 PROC
50*KEY6 DEFPROC
60*KEY7 ENDPROC
65«KEY8 LOAD”
70*KEY9 CHAIN"
80 *FX138,0,78
90 *FX138,0,69

100 *FX138,0,87
110 *FX138,0,13

A paper strip bearing the key labels can be inserted under
the plastic plate. Some teachers prefer to put Scotch “Post it”
or a similar product over the plate, because label strips can
then be changed easily.

ffl fl G fl fl f5 16 f7 18 (9
LIST RUN SAVE" PRINT INPUT PROC DEFPROC ENDPROC LOAD' CHAIN"

There are five command keys, two of which include RETURN.
Key 0 is the most appreciated by students. It clears the
screen, changes to MODE 7 and LISTs the program which
the student has in the memory.

20

Keys 2, 8 and 9 are SAVE”, LOAD” and CHAIN”. The
program name, second ” and RETURN are provided by the
student Students would usually use CHAIN rather than
LOAD, but there are occasions when the teacher wishes to
discuss a program before it is RUN. Indeed, some programs
cannot be LISTed after they are RUN. (Like this R program
for instance.) Keys 3 to 7 print statements on the screen to
allow more time for thinking rather than typing. The first
thing your students could do each session is to CHAIN UR”.
It deletes itself from memory but the keys stay defined even if
BREAK is used. (CONTROL & BREAK will remove the key
definitions). Nothing in this section relies on the USER
KEYS, so the choice is yours.

PRINTing

First let’s deal with the neat formatting of text Whatever
follows the keyword PRINT in a program, is called the “print
list”. The first character in the print list is important for
formatting, even if it happens to be a space.

To prevent text wrapping from one displayed line to the next,
students should enter the words using the MODE in which
the text will be displayed. It is then obvious by vertical
alignment with the first character, when a line to be
displayed cannot take more text Also, no space is left
between words if it happens beneath the first character.

Here is an example which illustrates these points.

If a student wants to display some text in MODE5, which has
20 columns, it should be entered using MODES noting the
column where the “first character7* is. In this example, it is in
column 10, the columns being labelled from 0 to 19.

21

210 PRINTNapoleon t
hen saw that the a
pproachingwinter was
a danger!”.

Two extra spaces are left after “saw” so that the second
displayed line starts below the “first character”. Also, no
space is left before the word “winter”, since it begins the third
line of the display. Note the significance of the space before
“a” in the last line. Some teachers like to distribute “text
planning” grids to help students format text

If two separate PRINT statements are being used, and the
first completely fills a display line, the BBC will leave a
blank line before printing further. To avoid this a; character
is used to tell the computer to follow on immediately with the
next word.

Here is an example, using MODES. The print list in line
3000 has exactly twenty characters.

3000 PRINT"THE CAMPAIGN IS OVER"

3010 IF D « -1 THEN 2160

3020 PRINT"AHD YOUR ARMY HAS BEEN
DEFEATED"

To prevent the blank line, a; is inserted at the end of line
3000.

22

Sometimes the opposite effect is required: we may want to
force a new line. This is done with the apostrophe. Here is an
example.

10 PRINT "Two blank lines will now be
left""

20 PRINT "before continuing"

On occasions, you will need to leave a space at the end so
that words will not be run together. Example:

10 INPUT"Nhat is your favourite colour"t
COLOUR*

20 CLS

30 PRINT'"I see that you really like
"iCOLOUR*;"!".

Note the space left after the word “like”.

When formatting numbers, BBC BASIC divides the screen
into zones 10 characters wide. Zone 1 runs from screen
column 0 to column 9. A comma can be used to tell the
computer to print any numbers which follow, in the next
zone and as far to the right in that zone as possible. So
PRINT457 will cause457 to be printed in columns 7 8 and 9.
This is useful for aligning the units when printing numbers
in columns on the screen - it won’t matter how many digits
in the numbers.

23

10 FOR item=l TO 7
20 READ number
30 PRINT number
40 NEXT
50 DATA 23,78,7,8,143,44,5567

If column 0 is the desired start, a semicolon must precede the
number, eg PRINT ;1073

Students need to realise also, that BBC BASIC provides a
minus sign for a negative number but omits the + sign when
printing a positive number.

When a printing text, the comma causes the computer to
print what follows, at the beginning of the next zone.

10 REM COMMAS IN TEXT PRINTING
20 M0DE7:REM This clears the screen too
40 FOR -Field = 1 TO 4
50 FOR -Fieldcol = O TO 9
60 PRINT;-Fieldcol;
70 NEXT -Fieldcol
80 NEXT -Field
90 PRINT"THIS STARTS AT COLUMN O"
100 PRINT" V, "THIS STARTS AT COLUMN 10"

The TAB function
The actual screen position will depend on the mode. In
M0DE5 with 20 columns and 32 rows, PRINT TAB(9.15)”*”

24

will print in the middle of the screen. In MODE6 with 40
columns but only 25 rows, the star will appear nearer the
lower left comer. The following program shows this:

10 MODES
20 PRINTTAB(9,15)
30 FOR T=1 TO 5000:NEXT
40 M0DE6
50 PRINTTAB(9,15)
60 PRINT” “Same coordinates. Different

place.“

Later when learning about graphics, students discover that a
more precise coordinate system can be used with the PRINT
statement, via VDU5.

TAB can also operate with only one number in the bracket,
referring to the column at which printing is to start TAB(0)
is at the left edge of the screen (or “text window” - see Section
III). Point out that there is no specification of row position
when using the simple one number TAB and so scrolling
will occur as normal. Here is a program showing these
effects.

10 M0DE7
20 FOR columh=0 TO 40
30 PRINTTAB (column) “STEPS'1
40 NEXT

25

ENTERING INFORMATION FROM
THE KEYBOARD

The keyboard buffer

There are usually places in a program where a key (or a series
of keys) need pressing to enter information or instructions.
The BBC computer has a keyboard “buffer” which stores up
to ten characters. This is a problem if an earlier keypress, not
relevant now, is next in the queue. The keyboard buffer can
be flushed clear by entering *FX21,0. This calls a machine
language routine, which is stored permanently in the
computer. If the students type in and RUN the following
program, you can show them that characters entered during
the delay loop are taken as INPUT when line 20 is revisited,
before the question-mark prompt even appears. Then delete
the word REM from line 10 so that *FX21,0 will take effect
when the program is RUN again. Now only entries typed
after the prompt, are accepted.

10 REM *FX21,0
20 INPUTAS
30 PRINTA*
40 FOR del ay =1 TO 5000: NEXT
50 G0T010

The ESCAPE and BREAK keys

Another difficulty arises if the user presses the ESCAPE key
wrongly, stopping the program. Entering *FX229,1 will
disable the escape key. When the input process is over,
♦FX229.0 will enable it again. Here is a program to demon-

26

strate the point (Some details of this program are new but
need not be explained at this point).

IO REM NOT AVAILABLE BEFORE ISSUE 1.0
20 M0DE7
30 VDU23;8202;O;O;O;:REM Erase Cursor
40 *FX229,1
50 FOR count=l TO 300
60 PRINTTAB CO,5)"*FX229,1 DISABLES THE

ESCAPE KEY."
70 PRINTTAB(O,10)"TRY IT!"
80 PRINT TAB(O,15)"WHEN 300 IS REACHED,

IT WILL BE ENABLED"
90 PRINT TAB(0,20)count

100 NEXT count
110 PRINT’"ESCAPE KEY NOW ENABLED"
120 *FX229;0

For issue 0.1 ?&226=&01 can be used to disable the BREAK
key. It can be reenabled with ?&226=&00.

The BREAK key cannot be disabled but it can be redefined.
Entering *KEY10 OLD ;M RUN :M does it The ; can be
explained as “CONTROL”. CONTROL M when used in a
program, enables the computer to press its own RETURN
key. Point out that the program will be stopped and
immediately re-RUN. So if a student is entering (say) a long
list of numbers and accidentally presses BREAK, bad luck!
If the user wants to override this redefinition of the BREAK
key, entering *KEY10 will restore its function. It is important
that these disabling mechanisms be reversed within the
program, once they are no longer useful. In the demonstration
program which follows, this has deliberately not been done.

27

10 M0DE7
20 ON ERROR GOTO 40
30 *KEY10 OLD JM RUN !M
40 PRINT’"YOU CAN’T STOP ME UNLESS YOU

TURN THE COMPUTER OFF."
50 FOR delay=l TO 10000: NEXT
60 PRINT’"SEE? YOU ARE QUITE HELPLESS."
70 FOR delay=l TO 10000:NEXT
80 PRINT’"AS I TOLD YOU ":G0T040

Holding the CONTROL key down while pressing BREAK
will undefine all the user-keys. Before telling the students
that they can use CONTROL and BREAK to get free, warn
them to then type OLD and press RETURN, if they want to
keep the program. You could also point out that line 20
shows another way to disable the ESCAPE key, though it
fails in some circumstances (eg if delay=INKEY(5000)) is
used as a delay method. Also, using ON ERROR like this
may have unforseen effects, and sometimes real errors are
trapped. So *FX229 is better.

Using a "prompt ’ with the INPUT
statement

Students will know the simple use of INPUT from their
“Licence” course. Here we first consider the extension of the
INPUT statement by the inclusion of a “prompt”. This,
together with the use of “Menus” form the basis of a “user-
friendly” or “humanised” program.

After the word INPUT, the prompt is typed within quotes.
This will be printed on the screen. It is followed by the name
of a numeric or string variable.

28

If the “prompt” is in the form of a statement, like “ENTER A
NUMBER FROM 0 to 100 AND PRESS RETURN”, no
question mark is required. If the “prompt” is in the form of a
query, like “How old are you” a comma can be inserted
before the variable. Then the computer will insert two spaces
and the question mark Of course, the user could insert
spaces and the question mark within the quote marks
instead.

If the INPUT statement expects a string and you enter a
number, the computer accepts it as a string consisting of a
number. You can use the normal string operations on it, but
not do any maths with it What if the INPUT statement
expects a number and you supply a string? It interprets that
by entering no number, you have entered zero. Many
computers instead reject the string and stop the program
with a ‘TYPE MISMATCH” error message. Teachers of
computing argue about this. It is true that stopping the
program can be unnecessarily brutal But should we give
students the idea that “nothing” is the same as “zero”? After
all, an empty set is different from the set which contains the
number zero as its only member.

Single key INPUT

The INPUT statement takes no notice of the keyboard until
the RETURN key is pressed. Students need to realise that the
computer works on a completely foreign time-scale to ours.
It performs at least a million operations a second. The time it
takes a human to press a key, is a very long time in the
computer’s time-frame. This is well presented in the film
“TRON”. In some situations, particularly real-time games, a
single-key input is needed so that the effect will be immediate.
The BBC computer provides two single-keypress entry
methods, each with a numeric and a string variation.

29

First we consider GET and GET$

These statements cause the computer to wait indefinitely for
you to press a key. Each statement needs a variable, for
example
200 A = GET

Just before the GET statement is reached, the keyboard
queue should be flushed using *FX21,0. Then the keyboard
buffer will be empty and the computer will be scanning the
keyboard waiting for you to enter a number. It gives to the
variable A, the ASCII code value of the key pressed. Here is a
program which generates ASCII values, together with a
printout of the results.

10 MODES
20 FOR asci inumber “ 32 TO 126
25 PRINT’ asci inumber;11;
30 VDU asciinumber
40 NEXT
50 PRINT

At this stage, the VDU statement in line 30 can be interpreted
to students as an instruction which sends the symbol whose
ASCII code number is n, to the Video Display Unit ie the
screen. For students familiar with other Basics, this use of
VDU can be described as a BBC BASIC abbreviation of
PRINT CHRS(n).

30

ASCII CODES FOR MODES 0 to 6.

(There are minor differences for MODE 7. See page 486 of
the 1982 User Guide).

32 space 57 9 82 R
33 ■ 58 • 83 S
34 ■i 59 J 84 T
35 * 60 < 85 U
36 61 ss 86 V
37 X 62 > 87 w
38 Sc 63 7 88 X
39 9 64 @ 89 Y
40 (65 A 90 z
41) 66 B 91 £
42 * 67 C 92 \
43 4- 68 D 93 3
44 9 69 E 94
45 70 F 95
46 * 71 6 96 c

47 / 72 H 97 a
48 0 73 I 98 b
49 1 74 J 99 c
50 2 75 K 100 d
51 3 76 |_ 101 e
52 4 77 M 102 ■f
53 5 78 N 103 g
54 6 79 0 104 h
55 7 80 P 105 i
56 8 81 Q 106 J

107 k
108 1
109 m
no n
111 o
112 P
113 q
114 r~
115 s
116 t
117 u
118 V
119 w
120 X
121 y
122 z
123 <
124 I
125
126 •V

31

GETS needs a string variable assigned to it For example,
500 AS = GETS

If the keyboard buffer is empty, the computer scans the
keyboard waiting for you to enter something.

As soon as you press a key, the computer takes this as the
variable value, and the program proceeds.

With both GET and GETS, the program waits indefinitely
for a keypress. (This is not the case with some other BASICs.)

INKEY

The other single-press entry is the INKEY statement It too
has string and numeric forms but differs from GET in that it
waits for a time interval, which you specify. If the keyboard
buffer is empty and no key is pressed within that time, the
program proceeds without it The time is entered in brackets,
in. hundredths of a second. Here are examples.
A=INKEY(200)

The program waits up to 2 seconds for you to type a number.
If you type a letter, it interprets that you pressed the zero key.

It can be used as a delay mechanism.
eg delay=INKEY(100)
makes the program pause for 1 second. The keyboard queue
should be cleared by *FX21,0 first
A$=INKEY$(50)

If the buffer is empty, the program waits up to half a second
for you to enter something.

32

Other spurious inputs.
We have discussed spurious inputs from the ESCAPE and
BREAK keys. Let's now consider what else could go wrong.

Suppose an INPUT routine is to be used which prompts for
an integer from 0 to 99 inclusive.

eg 100 INPUT4 ENTER A WHOLE NUMBER FROMOTO
99”num0to99
Here, num0to99 is the name of the numeric variable.

What if the user enters 112? Or -3? Or enters a non-integer eg
65.2. Or enters a letter eg a W instead of a 2. The following
program is useful to illustrate the trapping of such errors.

10 M0DE7
100 INPUT’"ENTER A WHOLE NUMBER FROM O

TO 99"’num0to99
110 IF num0to99 <0 OR num0to99 >99 THEN

PRINT’“NO, PLEASE":G0T0100
120 IF numOto99 <> INTCnum0to99) THEN

PRINT’"NO, AN INTEGER":GOTO100
200 PRINTnum0to99
210 GOTO1OO

In line 110, the range of the variable is restricted. Line 120
rejects a non-integer INPUT by means of INT. This function
produces the integer which is just less than or equal to the
number entered. If instead we wanted the nearest whole
number to be used, INT(num0to99+.5) would provide it, as
discussed later.

33

Here is a program which illustrates the rej ection of unsuitable
input when GET and GET$ are used. The symbol <> can
be interpreted to students as “is different from”.

10 REM REJECTING SPURIOUS INPUT
20 CLS
30 PRINT’"Press C to continue."
40 key$=GET$
50 IF key$O"C" AND key«O"c" THEN 40
60 PRINT’ “Press one of the keys 0 to 9"
70 key=GET
80 IF key<48 OR key>57 THEN 70
90 PRINT"You pressed ";key-4B
100 GOTO 30

Point out that both upper and lower case are tested because
the CAPS LOCK key may have been inadvertently pressed.
Other ways around this problem are discussed in Section III.
Other input protection routines are available which use
more structured statements like REPEAT-UNTIL. These
are discussed later. The discussion of menus in Section III is
relevant to this work, particularly the use of ON-GOTO-
ELSE.

Negative INKEY

Another means of communication with the BBC computer
via the keyboard is “negative INKEY”.

When the computer meets a negative INKEY statement in a
program, it scans the keyboard to see if any keys are being
held down at that time.

34

Negative INKEY differs from GET and positive INKEY in
many ways. Since it is concerned only with the present not
the past, emptying the keyboard queue is not needed. It
also differs in that negative INKEY can detect multiple
keypresses. This means that a combination of keys can be
pressed to send a complicated message to the computer
while it is running.

The negative INKEY statement number refers not to a wait
time but to a unique number allotted to a key. For example
INKEY(-1) detects either of the SHIFT keys. Here is a list
Note that some keys (eg £, * <>) are not mentioned. As you
can see, the numbers used are quite different from the ASCII
numbers.

Key Number Key Number

f0 -33 1 -49
fl -114 2 -50
£2 -115 3 -18
£3 -116 4 -19
f4 -21 5 —20
f5 -117 6 -53
f6 -118 7 -37
f7 -23 8 -22
f8 -119 9 -39
f9 -120 0 -40
A -66 — -24
B -101 * -25
C -83 \ -121
D -51 @ -72
E -35 [-57
F -68 -41
G -84 “ • 9 -88
H -85 —73

35

I
J
K
L
M
N
0
P
Q
R
S
T
U
V
W
X
Y
Z

-38
-70
-71
-87

-102
-86
-55
-56
-17
-52
-82
-36
-54

-100
-34
-67
-69
-98

ESCAPE
EEEJ
ICAPSLOCK

returnI

SH I FT
SH I FT
SPACE
DELETE

-89
-103
-104
-105
-113
-97
-65
-2

-81
-1

-99
-90

-106
-74
-58
-42
-26

-122

Unlike the other statements which check for keyboard input,
negative INKEY works even for those without ASCII numbers.
Keys like CAPS LOCK, CONTROL, DELETE and 10 to 19
can thus be detected. The following program detects any
combination of three keys, none of which have ASCII
numbers.

10 REM NEGATIVE INKEY DEMO
20 M0DE7
50 VDU23; 8202; o; o; o; : REM Erase the cu

rsor so the display looks better
40 IF INKEY (-65) THEN PRINT TAB(0,5)"
CAPS LOCK IS BEING PRESSED ** ELSE PR
INT TAB(0,5) "CAPS LOCK IS NOT BEING PRES
SED"

36

50 IF INKEY(-1) THEN PRINT TAB(0,10)"
SHIFT IS BEING PRESSED " ELSE PRINT
TAB(0,10)"SHIFT IS NOT BEING PRESSED"
60 IF INKEY(-118) THEN PRINT TAB(0,15
) "-F6 IS BEING PRESSED " ELSE PRINT T
AB <0, 15) "-F6 IS NOT BEING PRESSED"
70 GOTO4O

INPUT LINE
Finally in our discussion of inputs from the keyboard, we
come to the INPUT LINE statement

The comma has a special meaning and cannot be used in a
normal INPUT string. INPUT LINE allows the entering of a
string up to 255 characters long, which can contain anything,
including leading spaces and commas. Here is a program to
illustrate these points.

10 CLS
20 PRINT” "INPUT A STRING CONSISTING
OF 5 LEADING SPACES, A WORD, A COMMA TH
EN ANOTHER WORD"”
30 INPUTstring#
40 PRINTstring#
50 PRINT’’"SEE HOW THE LEADING SPACES

WERE OMITTED AND NOTHING AFTER THE COMM
A WAS TAKEN"”
60 PRINT’’"TRY THE SAME STRING AGAIN"’’
70 INPUTLINEstring#
80 PRINTstring#

37

Procedures

A procedure is a self-contained section of a program which
is invoked by name. The procedure can be fed certain values
which you want it to use.

The section of a program which defines a procedure is never
run into but always called from afar. Hence procedures
are commonly placed at the end of a program after an END
statement However, from a teaching point of view it is
sometimes better to display and explain the procedures
of a program at the start In this case, a GOTO can be used, as
shown in the following program. We will return to examine
this program shortly.

5 REM PROCEDURES DEMONSTRATION PROBRAM
10 G0TD1000 8 REM JUMP OVER PROCEDURES
20 DEF PROCprintnuffibers(A,B,C)
30 LOCAL J,K,L
40 FOR = 1 TO A
50 PRINTA : NEXT
55 PRINT"Local variable J =’*;J
60 FOR K = 1 TO B
70 PRINTS : NEXT
80 FOR L = 1 TO C
90 PRINTC 8 NEXT
100 ENDPROC
200 REM»*****START HERE**»******
1000 A=3sB=6sC=2s J=17
1010 PR0Cprintnumbers(A,B,C)
1020 PRINT”0riginal J =”5 J

38

Students need to note that certain special-use characters (eg
the operators * / + and -) are not allowed in procedure
names. The use of lower case letters is often advised for
naming procedures to avoid conflict with certain BBC
BASIC keywords. To the operating system, upper and lower
case are quite different letters. For example, the BBC micro
regards RUN and run as quite distinct things. However,
some teachers prefer students to keep the CAPS LOCK on,
at least to begin with. Its so easy to forget to return to capitals,
and the clumsiness of the BBC editor makes correction
tedious, once RETURN has been pressed.

Spaces are also not allowed in PROCEDURE names.
Students can use the underline character (on the £ key) to
separate words. The name of a procedure should be
concise but informative.

If we have a program with a procedure in it, we call it
when we want to as in the following example.
1010 PROCPrintnumbers (3,5,2)
The Procedure then takes the particular variable values
(parameters) we provide, deals with them as we want, then
returns to the next line of the program, which could be
another procedure.

Now let's look at the demonstration program more closely.
The section defining the procedure must start with DEF
PROC (with or without the space) to tell the computer we are
defining a procedure. It must end with ENDPROC, typed
without spaces since both END and PROC are keywords.
The use of LOCAL is not obligatory in every case, but is a
highly desirable practice. It declares that the variables J K
and L, no matter how they have been used already in the
program, are “bom again”. At the end of the* procedure
they have their original values (if any) restored to them, eg
line 1020 will show 1=17. In the meantime, these variables

39

are just used locally within the procedure. It's common
for a student to accidentally use a variable name more than
once. This can foul up a program in a very puzzling way. Its
so helpful to declare variables as LOCAL. Some teachers
insist that students type a line containing the words LOCAL
DUMMY immediately after every DEF PROC statement,
even if the names of the variables have not been finalised.
This will remind students to declare them.

Hie advantages of using
PROCEDURES.

Some programs one sees consist of many lines of code, with
no procedures or subroutines. Often they have no
demystifying REM statements either. Such a program may
work very well, so why use procedures, which take time
to set up? Without them, long programs are usually very
difficult to read and understand. If there is a problem, it can
be almost impossible to fix.*
The use of procedures can be justified by their “abilities?

READABILITY
A helpful name can reveal the intention of a procedure.
Also, a sequence of procedures renders the actions of a
program more obvious.

UNDERSTANDABILITY

A long programming task can be broken into palatable
pieces. These can even be shared among members of a “task
force”. The “dreaded GOTO” can be more easily avoided.

40

WORKABILITY

It is easier to check, refine and debug individual procedures.

COMPACTABILITY

It is often necessary to conserve memory, especially with the
greedier BBC modes. The repetition of bunches of code can
often be replaced by repeated calls to a procedure. If
tape is being used, loading time is usefully reduced by
compacting a program.

PORTABILITY

A library of useful procedures can be built upandused
in different programs, saving a great deal of time and effort
“re-inventing the wheel”. There are books of useful subroutines
published, but procedures are even better because
variables can be localised. They won't clash with global
variables in the host program which happen to have the
same name.

The disadvantages of PROCEDURES.

It’s not possible to change MODE with a procedure,
because of a stack problem. Compared with GOSUB and
GOTO, a PROC takes more memory, more listing space, is
“fiddly” to set up (PROC, DEFPROC, ENDPROC) and is
usually a little slower. Also, the use of procedures can
be overdone (the new toy syndrome). Some programmers

41

become obsessed with “structure” to the point where they
would never use a GOTO.

GOTO and GOSUB certainly have a place, particularly in
conjunction with the ON statement In fact, the last dis­
advantage of PROC is that it can’t be used directly after
ON..GOTO and ON..GOSUB.

Finally it should be pointed out that the BBC Basic
RENUMBER disguises one of the main evils of GOSUB
and GOTO and makes procedures look fussy.

SUBROUTINES

A subroutine is an earlier, more primitive form of procedure,
and is also usually parked near the beginning or end of a
program. It is called using its line number, not by name as a
procedure is. Unless REM statements are used, a subroutine
is not as readable.

Another less sophisticated aspect of subroutines is that
variables cannot be declared LOCAL. Indeed, from a BBC
programming point of view, subroutines should not be
emphasized. But students will meet GOSUB in the computing
literature, and may want to convert a program written for the
BBC machine, to a computer with a less sophisticated BASIC
(eg Commodore 64). Most popularly-priced computers do

’ not at present have procedures.

A subroutine put near the start of a program, might look like
this:

42

reaches the RETURN at line 50, it resumes at line 510 by
printing “WHAT NOW?”.

It should also be pointed out that parameters cannot be
passed to a subroutine.

The BBC computer can perform “computed” GOSUBs and
GOTOs. That is, GOSUB can be followed by an expression
which is evaluated to yield the destination line number.
Generally however, students should not use these since they
cannot be renumbered easily. The following program
has curiosity value only. It illustrates the lack of portability
of a computed GOSUB. If the BBC RENUMBER statement
is used (say RENUMBER 10,10) the expression following
GOSUB is left stranded, and the program falls over.

O X=1 s CLS SG0T030
1 PRINT TAB(5,5)"ONE "sRETURN
4 PRINT TAB(5,5)"TWO "sRETURN
9 PRINT TAB(5,5)"THREE"sRETURN

16 PRINT TAB(5,5)"FOUR "sRETURN
25 PRINT TAB(5,5)"FIVE "sRETURN
30 GOSUB X*X
40 X = RND(5)
50 delay=INKEY(20)
60 G0T030
100 REM @@@@@@@ COMPUTED GOSUB DEMO,

TROUBLE WITH RENUMBER

44

10 G0T01000:REM JUMP OVER SUBROUTINES
19 REM **SUBROUTINE TO REPORT ON

PRESENT SITUATION**
20 CLS: PRINT” "YOU ARE NOW AT

POSITION "?P»
30 PRINT;L" LITRES OF FUEL LEFT.”
40 PRINT;T" MINUTES REMAIN BEFORE

DOOMSDAY. "
50 RETURN
999 REM****START HERE*****
1000 P$=" (2,4) "sL=1.6:T=17
2000 T=17:GDSUB20:PRINT’"WHAT NOW?"’”

Note that a subroutine simply begins: there is no equivalent
of DEF PROC. A REM statement explaining the purpose of
the subroutine is often placed at a line number one less than
the line which begins the subroutine. For an example of
REM used like this, see the NAMES program at the end of
Section IV. Itis bad practice to use a REM as the first line of a #
subroutine, as people entering listings often remove REMS*
from programs to conserve time and memory. Indeed,
programs called “REM strippers” are sold, which do just
this. The GOSUB, unless altered, will then have nowhere to
go. The RENUMBER statement of BBC BASIC will auto­
matically correct GOSUB (and GOTO) statements to suit
the new numbers, but cannot insert missing lines.

RETURN is the equivalent of ENDPROC. The program
goes back to the next statement after the GOSUB call, even
within a multistatement line.

Point out that in line 2000, after setting T=17, the program
performs the subroutine beginning at line 20. When it

43

FUNCTIONS
BBC BASIC has so many functions available that for this
course we must choose those of most general interest
Certain functions are left for “Computing in Maths’* courses.
These include the trig and log functions and their inverses,
and ABS DIV and MOD.

We suggest teaching INT TIME RND and VAL, and its
inverse STRS. Of the many functions used to manipulate
strings, LEN, LEFTS RIGHTS and MID$ are included, but
not INSTR or STRINGS. The priorities and interests of a
particular group may extend a course in various directions. I
have included the most necessary functions here.

INT

The INT function was mentioned earlier as a method of
rejecting input which was not an integer. Let’s consider it
further.

Most students are familiar with the real-number line.

-3 -2 -1 0 +1 +2 +3

Every dot on the line has a “1-1 correspondence” with a real
number.

45

In BBC BASIC, INT (number) gives the integer which is
equal to the number, or just left of it on the line.
So INT (-l.l)=-2
INT(6.9)=6
INT(18)=18
INT(-7)=-7
That is, the INT function “rounds down”.

To round to the nearest integer, INT(number + .5) can be
used, as shown in these examples:

5.6 INT(5.6 + .5)= INT(6.1)=6
4.3 .. INT(4.3 + .5)=INT(4.8)=4

-11.6 INT(-11.6+ .5)=INT(-11.1)=-12
-111 INT(-112 + .5)= INT(-10.8)= -11

TIME

Internally, a computer is a slave to time. All processes are
strictly in sequence and governed always by cycles of an
internal clock, regulated by the naturally constant periods of
vibrating atoms. TIME is a computer-controlled function,
updated every hundredth of a second. Here are three
common uses which students find interesting.
1. As a delay mechanism.

10 M0DE7: then=TIME
20 PRINT’"Time -flies like an arrow. "
30 PRINT’“Fruit -Flies1*;
40 now=TIME
50 IF now-then=500 THEN PRINT** like a

banana."sEND
60 G0T040

46

2. To measure how long a process takes. In this example we
compare the time for 1000 procedure calls with the time
for 1000 GOSUB calls.

10 M0DE7: VDU23; 8202; O; O; O; : G0T070
20 DEF PROCtest
30 PRINT TAB<0,5)loopnumber
40 ENDPROC
50 PRINTTAB (O, 15) loopnumber:RETURN
60 REM ****START HERE****
70 PRINT’ ’ "Here are 1000 PROCEDURE

calls. 11
80 TIME=O
90 FORIoopnumber = 1 TO 1000
100 PROCtest
110 NEXT
120 PROCresult
130 PRINT’ ’ ’ "NOW LETS USE 1000 GOSUBs

INSTEAD"
140 TIME=O
150 FORIoopnumber = 1 TO 1000
160 G0SUB50
170 NEXT
180 PROCresult.: END
190 DEF PROCresult
200 time=TIME: PRINT” "TIME ELAPSED IS

";time;" CENTISECONDS"
210 ENDPROC

3. To set a time limit on an activity.

47

10 M0DE7:VDU23;8202;0;0;0;
20 PRINT’"There are 5 levels of diffi

culty. Press a number from 1 -to 5."
30 PRINT’ "1 is easy and 5 is almost

impossible."
40 *FX21,0
50 choice=GET: level=choice—48s IF level

<1 OR level>5 THEN 50
60 1imit=10000—1evel*1000
70 topofrange=20*level—1
80 secret=RND(topofrange)
90 PRINT” “GUESS THE COMBINATION WHICH

WILL DEFUSE THE GALACTIC BOMB. ”
100 PRINT’“IT IS A NUMBER FROM 1 TO "J

topofrange
110 TIME=0
120 PRINT’ "Enter your guess and press

RETURN"’
130 PRINT’"You have "; INT(limit/1OO) 5 "

seconds."
140 INPUTguess
150 IF guess=secret THEN 180
160 IF TIME<limit THEN VDU11 :PRINT"
"sVDUll, 11, 11:PRINT;guess; " is WRONG
":PRINT"You have "; INT(limit/100)-INT
(TIME/100) ; " seconds left .":GOTO14O

170 CLS: PRINT” "THE GALAXY IS DESTROYED
•tEND

180 CLS: PRINT” ’"BOMB DEFUSED. THANKS
TO YOU THE GALAXY IS SAFE."

48

RND

On the BBC computer, the RND function has two forms
useful in schools.

If RND is followed by a 1 in brackets, the function produces
a “random” decimal number from 0 up (but not including) 1.
This produces a load of untidy looking decimal places, and
is unpopular with students. The INT function is necessary to
reduce them to a useful number.

If the brackets contain a larger integer N eg RND(12), a
random positive integer from 1 to N inclusive is produced.
This is simpler than the RND function of many other
computers, but note that no space must be left between RND
and the bracket

A truly “random” number has a value which is completely
unpredictable. It is produced by no rule and is unrelated to
any previous numbers. Since everything that happens within a
computer is determined by natural laws, it is argued that a
computer can never produce truly random numbers. Indeed,
most computers produce “pseudo-random” numbers. These
numbers are on a very long list, often generated by squaring
the previous number and re-arranging the digits. This list is
eventually repeated. Unless steps are taken, each time a
program is run the next numbers on the list will appear.
Suppose I switch on my BBC computer and run the
following program.

20 FOR J-l TO 6
30 PRINT RND(6)
40 NEXT

49

These are the numbers produced by the first three runs:
442133,424616,243 124.
If I switch off, re-load the program and repeat, the same
numbers appear again.
But if I add the following line:
10 seed = RND(-TIME)
the numbers will be taken from different parts of the list
Some programs would otherwise be spoilt Suppose a
student runs a program designed to help with simple
arithmetic. If the student wishes to try again tomorrow it’s
probably not very valuable if the program serves up the
identical questions again.

How long is a piece of string?

LEN is a function which gives the length of a string.
eg LEN(“whale”)=5 LEN(“whale”)=6
A$=“120” LEN(A$)=3
LEN is often used to search for a string, or to pad a string out
to a standard length, for formatting.

In English, the word “add” has several meanings. It can
mean “append” (join onto) as happens when “ing” is added
to “sing” to form “singing”.

This can happen with digits too. If you lived in a suburb with
a phone prefix 235 and were allotted the 716th phone, your
number would be formed by “adding” to give 235 0716 as
your phone number. Here, we are adding two strings. This is
called “concatenation” In BBC BASIC, two strings can be
concatenated to form a new string.
eg result$= stringlS + string2$
(Note that the plus sign is used, although the & sign is closer
in meaning to the word concatenation). “Add” can mean

so

arithmetic addition too, as in 235 add 0716 equals 951. So
sometimes we wish to handle a sequence of digits as a string
and sometimes as a numerical value.

VAL

The common use of the VAL function is to change a string
consisting of digits, into a number with those digits.
eg VALfTO.7”) = 10.7
Students usually want to know why a number was not used
to begin with. The point is that there are powerful functions
available to manipulate strings. Strings can be “added”
(concatenated) and printed in a way in which numbers can't
The disadvantage is that the arithmetic operators do not
work with strings. Here is an example:

Suppose a student is compiling a list of noteworthy people
who were bom between 800 and 1800.
eg Aphra Benn (1640-1689), English Playwright

It is convenient to enter all these pieces of information as
strings (eg nameS, birth$, deaths, comments) because of the
power of the string functions. Information in string form can
be easily sorted, supplemented and extracted.

VAL can be used to extract the number value of a string
when required, eg VAL(birth$)= 1640. Then arithmetical
facts like life span and how long ago they were bom, can be
calculated. This next program uses VAL in this way but for
simplicity, comments has been omitted.

51

10 DIMentryS(100)
20 DIMnamet(100)
30 DIMbirthS(100)
40 DIMdeathS(100)
50 DIMspan(lOO)
60 M0DE7
70 PRINT"PLEASE ENTER THE CURRENT YEAR

eg 1984"
80 INPUTnow:IFnow<1983 OR now>1993 THEN

PRINT"Don’t you know what year this
is?“:G0T080

90 CLS
100 FOR K = 1 TO 100
110 PRINT"

120 PRINT"ENTER NAME " ;Kj" , SURNAME
FIRST"

130 PRINT’"When the whole name is
finished,press RETURN.
Enter @ instead i-F you have
finished all the names."’

140 INPUTname*(K)
150 IF name$(K) = ""THEN 140
160 IF name$(K) = THEN K=K-1: GOTO

250
170 INPUT’"ENTER YEAR OF BIRTH

"birthS(K)
180 IF birthS(K) = "" OR VAL(birthS(K)

X800 OR VAL (bi rthS (K)) M800THEN
PRINT"BETWEEN 800 AND 1800":GOTO 170

190 INPUT’"FINALLY, ENTER YEAR OF DEATH
"deaths(K)

200 span(K)= VAL(deaths(K)) — VAL(birth
S(K))

52

210

290 YEARS

300 PRINT"

330

310
320

250
260
270

NEXT
INPUT’"WANT TD ENTER MORE NAMES
(Y or N)", ANS*
IF ANS*= "Y" OR ANS*="y" THEN K=K+ 1
sGOTOllO

IF span(K)<0 OR span(K)>110 THEN
PRINT"PARDON??" :GOTO190
IF death*(K) = "" THEN190
entry*(K) = name*(K) + " " + birth
(K) + " to " + death(K)
NEXT
CLS
FOR J = 1 TO K
PRINTentry*(J)
PRINT"BORN ";now—VAL(birth*(J));"
YEARS AGO."
PRINT"LIVED FOR ":span(J)

This program could be expanded to include a “sort” routine
to enable the printing of entries in alphabetical order,
chronological order or life-span. See the “NAMES" program at
the end of section IV for an example of a fast sorting routine.

STR

The STR function in BBC BASIC is the opposite of VAL. It
converts a sequence of digits from being a number into being
a string.
eg STR$(5.078) = “5.078”.

53

We can’t use our newborn string in any calculations,
because it is not a number in the maths sense. But we can
now use the powerful string functions of BBC BASIC on it

Cutting a string.

The most versatile function which removes a piece from a
string is MID$(string$, start, length)
eg If we have a string
mouthfuls = “antidisestablishmentarianism”
then MID$(mouthful$,9,4) would be “stab” and
MID$(mouthful$,20,3) would be “tar”.

However, this may not always be the most convenient string
extractor, nor the fastest

LEFT$(string$, length) assumes you are beginning with the
first character of the string.

RIGHT$(string$,length) assumes that you are removing the
last part of the string

In the popular Psycho-analysis game “Eliza”, a routine is
used to remove apostrophes from words which the “patient”
utters. This helps the program in its search for certain words
to which it can respond. The following program does this,
and illustrates the string function concepts we have been
discussing

10 REM REMOVE APOSTROPHES
20 INPUT word*
30 FOR L = 1 TO LENCword*)
40 IF MID* (word*, L, 1) = THEN word

♦ - LEFT*(word*,L—l) + RIGHT*
54

(word* , LEN(word*)—L):G0T040
60 NEXTL
70 PRINTword*
80 S0T020

USER FUNCTIONS.
If a lengthy function is needed at several places in a
program, (or in a number of different programs) both typing
time and memory can be saved by defining the function.
This can be done anywhere, even after an END statement
That is, the computer does not need to come across the
definition before it can be used.

On the BBC computer a function can involve more than one
variable. Variables can be string or numeric, and the
definition of a function can extend over several program
lines if required. Many versions of basic only allow a single
numeric variable to be used, defined on a single line. These
are indeed powerful aspects of the BBC machine.

Teacher user-defined functions should begin simply, with a
single numeric variable. Most students will be familiar with
simple functions of one variable.

As an example, let’s define a function which gives the area of
a circle in terms of the radius.

10 MODE7
20 INPUT"ENTER A VALUE FOR THE RADIUS

AND PRESS RETURN "radius
30 DEF FNA(radius) = PI*radius*radius
40 CLS

55

50 PRINT’"THE AREA OF A CIRCLE OF
RADIUS ";radius;’"IS ";FNA(radius)

60 PRINT’"A SPHERE OF THIS RADIUS HAS
A SURFACE AREA OF ";4*FNA(radius)

70 PRINT’"THE VOLUME OF A CYLINDER OF
THIS RADIUS AND ONE UNIT HIGH IS ";
FNA(radius) ; ’ ’

80 PRINT” "***#*****#**##*#*##*#**#*#
***********"
90 G0T020

There is no need to use the same symbol in the INPUT
statement as in the definition. We could rewrite line 40:

DEF FNA(custard)= custard*custard*PI

If there are many variables, we have to be careful to feed our
function the right number and type. For example, don’t give
it a string if it expects a number. Here is an example of a
multiple-variable function.

Suppose a professional photographer wishes to give quotes,
do accounts and forward planning for the sale of photo­
graphic prints. There are four variables involved in the
scheme.

basic The charge in dollars or pounds or whatever (eg
1.75) made for one standard size print

number The number of photos involved.
size Enlargements from 2X to 10X of the standard

format are offered. Since print cost relates to the
area of the paper used, these numbers must be
squared.

col bw Colour costs a certain factor (eg 2.5) times as
much as black and white. This factor can vary.

Also, a discount is offered which increases gradually to 70%
for large orders. A function might be defined as follows:

DEF FNcharge(number,col bw, basic,size)= number*(.3 +
,7/n)*col bw*basic*(sizel2)

As a project, students could write a program using this
function. You will need to describe how a user-function is
called from within a normal BASIC statement

eg PRINT FNprofit(cost sell,tax)

Some further statements

ON

These are three forms of the ON statement ON ERROR is
used to investigate errors (the dreaded “bugs”) which occur
in programs, and also has a few special uses.

The other two uses of ON are ON GOTO and ON GOSUB.
Each of these involves a variable whose value is decided by
the program. To be useful, the values of the variable have to
be positive whole numbers. Here is an example.

10 REM ONGOTO DEMO
1OO CLS
110 INPUT’"ENTER 1, 2, 3 or 4 AND PRESS

67

RETURN 11 number 123or 4
120 ON number 123or4 GOTO 500,200.700,600
200 PRINT"TW0"!G0T0110
500 PRINT"ONEGOTO110
600 PRINT^FOUR”:G0T0110
700 PRINT"THREE,,:GDTD110

Students should note that the line numbers after GOTO can
appear in any order. The full range of numbers from 0 to •
32767 may be used. ON GOSUB works similarly, and
returns to the statement following the ON GOSUB call

Unfortunately, ON cannot lead directly to a procedure, but
GOTO can be used to direct the program to the line number
where the procedure is.

If the variable gets a value which is not one of the program’s
line numbers, an error will result Students can try values
like -1,4.5,20 or 32768 and see that they get the error. ON
RANGE at line 120.

ELSE

To avoid the program stopping with an error, the ELSE
statement is sometimes appropriate. Suppose we add to line
120: ELSE 100

Now an unsuitable input will be rejected.
ELSE can be used with ON GOSUB in a similar way.

The third use of ELSE is with IF-THEN. It is a clear and neat
way of handling program branching, envied by users of
many other BASICs. However in BBC BASIC, IF-THEN-

68

ELSE can only be used within a single program line. Here is
an example of the use of IF-THEN-ELSE. Mathematics
teachers in particular may find this program useful because
it tests numbers to see if they are “prime”.

10 M0DE7
20 PRINT’“This program tests to see

whether or notthe whole number you
enter is PRIME."

30 PRINT’"A PRIME number is a whole
number which has exactly two
different -Factors: itself and 1."

40 PRINT’"The number 1 is therefore not
prime."

50 PRINT’"All other whole numbers have
other factors as well. If you
enter one of these, the program
will tell you its smallest factor."

60 GOTD11O
70 IF number>0 AND number<4 THEN PRINT’

"««*« "^numbers" is PRIME.":GOTO11O .
BO 1=0:divisor=2
90 IF number MOD divisor =O THEN PRINT’

’"The smallest factor of "jnumber;"
is ";divisor:GOTDHO ELSE 1=1+1:
L=divisor #divisor

100 IF L>number THEN PRINT’"**** "J
number;" is PRIME.":GOTO110 ELSE
divisor= 2*1+1:G0T090

110 PRINT’"--

120 PRINT"Enter a number and press
RETURN. If you wish to stop, enter
zero."*

59

130 INPUT number
140 IF number=0 THEN END ELSE 70

REPEAT-UNTIL

REPEAT (a set of operations) UNTIL (a condition becomes
true).

Students find REPEAT-UNTIL easy to understand. Teachers
often use it on them, as in “Carry on with the exercises (until
I tell you to stop)”. This is frequently coupled with an IF-
THEN-ELSE. ‘if you behave yourself then I will be satisfied
with you, ELSE you will be in trouble!”

(Repetition conjoined with threats of punishment seems a
rather sour summary of teaching. Yet students seem to be so
familiar with these concepts).

Let’s begin with the simplest use of REPEAT-UNTIL, to
produce an endless loop. The same task performed by a
GOTO is presented for comparison.

10 REM USING REPEAT UNTIL
20 N=1
30 REPEAT
40 PRINT*’NONBNDNB ";N
50 N=N+1
60 delay=INKEY(50)
70 UNTIL FALSE

60

10 REM USING GOTO
20 N=1
30 PRINT"NONGNONG ";N
40 N=N+1
50 delay=INKEY (50)
60 G0T030

The structured form is easier to follow, especially if the lines
to be repeated are inset The bunch of operations between
REPEAT and UNTIL FALSE is performed over and over
indefinitely, because FALSE is never true. Only the ESCAPE
or BREAK key will stop the loop.

(Although UNTIL 0 is equivalent to UNTIL FALSE, it is not
as comprehensible to students).

This next program illustrates that REPEAT-UNTTL terminates
on the achievement of a specific condition, compared with*
FOR-NEXT, which specifies a certain number of loops. •—>

10 M0DE7
19 REM DISABLE ESCAPE KEY
20 *FX229,1
29 REM REDEFINE BREAK KEY TO RUN AGAIN
30 *KEY10 OLD!M RUN'M
40 REPEAT
50 PRINT"I WILL KEEP RUNNING UNTIL

YOU TELL ME OTHERWISE"
60 INPUTmessaged

70 UNTIL messaged" OTHERWISE" OR
message$=”otherwise"

89 REM RE-ENABLE ESCAPE KEY
90 *FX229,0

61

99 REM RE-ENABLE BREAK KEY
100 *KEY10
110 PRINT"PHEW!!"

BBC BASIC allows a maximum of 20 REPEATS without
reaching an UNTIL. This is plenty of course, except when
UNTIL is skipped a lot The following program will show
students what happens then.

10 MODES
20 CLS:num=0
30 *FX21,0
40 PRINT’“If you press THE SPACE bar 20

times you will see the error occur."
50 REPEAT
60 key=GET
70 IF key=32 THEN 90
80 UNTIL FALSE
90 num=num+l: PRINT TAB (2, 10) "You pressed

SPACE "jnumj" times."
100 G0T050

Here is a program which many students find interesting.
This sort of program structure can easily go wrong and stop
with the TOO MANY REPEATS error, so care is needed. All
it takes is 20 jumps out of the loop to occur.

10 M0DE4
20 CLS: ri ght=0: guesses=0
30 PRINT’"THIS PROGRAM TESTS TO SEE IF

YOU HAVE PSYCHIC POWERS. TRY TO
GUESS THE NUMBER FROM 1 TO 9 WHICH
I AM THINKING OF."

62

40 PRINT”"If only chance is operating,
your ’performance factor’ will
be close to 11“

50 PRINT’’"If you have made over 1OO
guesses and your factor is
consistently over 20, you are
truly psychi c!"

60 REPEAT
70 guesses=guesses+l
80 compnum=RND(9)
90 PRINT’’"**************************
***********"
100 PRINT’"GUESS NUMBER ";guesses
110 PRINT’"PRESS ONE OF THE KEYS 1 TO 9"
120 yournum=GET—48
130 IF yournum<l OR yournum>9 THEN 120

140 PRINT’"I see you picked yournum
150 IF compnum<>yournum THEN PRINT’"No

, I thought of "5 compnum ELSE PRINT’
"You picked it!":right=right+l

160 PRINT"That’s "JrightJ" out of "5
guesses;" guesses."

170 PRINT’"Your performance factor is
"; INT(100*right/guesses)

180 UNTIL FALSE

VDU codes:
An overview for students

This is a good time to introduce the most versatile statement-

83

in BBC BASIC. The BBC micro controls the Video Display
Unit and the printer by means of VDU followed by a code
number from 1 to 255. Many of the codes are followed by yet
more numbers. These extra numbers are separated by either
commas or semicolons depending on whether the numbers
are part of a 0-255 set, or a 0-65535 set (That is, whether the
number can be sent quickly as one byte or two bytes are
necessary.)

The VDU code system evolved a little haphazardly into its
present form, and so the numbering system is not completely
logical I have grouped the codes as far as possible according
to function.

Control of the Printer

1. Only the printer is to accept the next character. VDU1
does not let the BBC micro operating system see the
next number, because its code numbers and the printer’s
code numbers signify different things.

Z The printer is now “listening”.
3. The printer is not “listening”. This is sometimes necessary.

eg we may want to clear the screen with CLS or VDU12.
To the printer however, this could be an instruction to
“form-feed” ie roll the paper through one page length.

The Screen display
4. Print text at the text cursor.
5. Print text at the graphics cursor.
14. List the program a screen-full at a time. There is a slight

overlap between screens. The SHIFT key is used to
move on. ESCAPE is pressed to enable editing to
happen, and the screen scrolls a little. A few dummy
REMs are needed at the start of a listing to gain access

64

to the first few lines of a program.
15. Undoes VDU14. This, or CONTROL© is needed when

using the printer. Otherwise if in page mode, the printer
too will stop every page.

Enabling the computer to "press its own keys"

8
9 /
10. c
11-)

The text cursor can be
controlled from within
a program. TEXT

CURS

10

13. Moves the cursor to the left end of the text line.
30. Moves the cursor to the top left of the text area.
31. Acts like PRINT TAB, being followed in the same way

by the coordinates of the desired print position.
127. Backspaces like VDU8 but deletes as well, ie like the

DELETE key. This is very useful in some GCOL
operations with VDU5.

32-136. Represents all the letters and numbers on the keyboard.
See the ASCII chart earlier in this section for a full list

Codes equivalent to text and
graphics keywords

12 16 17 18 22 25
CLS CLG COLOUR GCOL MODE PLOT

65

Some BASIC programmers prefer to use these VDU code
equivalents because they can be strung together compactly.
This saves typing time and memory. However, some people
have trouble with the commas and semicolons involved.

Emitting a beep
7. Used to alert the user that a particular stage in the

program has been completed.

Changing the palette
19. Choosing new subsets of colours from the 16 in the

BBC micro repertoire.

20 Returns to the “default” colours, ie those provided
when the machine is switched on.

The remaining codes are not part of this first course in BASIC
for students, but are included here for completeness.

User-defined characters
23. Used in conjunction with 244-255 (and others)

Windows
Rectangular subsets of the text and graphics screens can be
defined. At first, both text and graphics screens occupy the
whole of the available screen area.

24. Set graphics windows. Semicolons are used because the
numbers which have to be sent are part of a two-byte
system, ie many graphics coordinates exceed 255.

28. Set text windows. Only one byte is needed so commas
are used.

68

26. Reset the graphics and text windows to whole-of-
screen.

Moving the graphics origin
29. Semicolons are used Because the numbers are part of a

two-byte system.

Teaching the use of colour.

So much could be said on this topic. Some restriction is
needed to retain proportion in the BBC BASIC course. In
many schools, only Model A machines are available. In
others, monochrome video is used. So when considering the
scope of this BBC BASIC course for students, it was decided
to deal only with MODES in detail MODE5 is available on the
unexpanded model, and colours can be chosen which can
also be distinguished in monochrome. The flashing effects
are worthwhile too.

Here are the eight colours and eight flashing effects in the
repertoire of the BBC computer. They are referred to by the
numbers shown.

The list of sixteen
0 black 8 flashing black-white
1 red 9 flashing red-cyan
2 green 10 flashing green-magenta
3 yellow 11 flashing yellow-blue
4 blue 12 flashing blue-yellow
5 magenta (blue-red) 13 flashing magenta-green
6 cyan (blue-green) 14 flashing cyan-red
7 white 15 flashing white-black

67

MODE 5
This mode has 32 rows and 20 columns of text A maximum
of four different colours can be used at one time. (These can
be mixed together. See the QUILT Program in the Little
Library, section III). Medium resolution is possible on the
graphics screen, there being 160 Pixels (lightable areas)
across the screen and 256 down. User defined characters are
also available in this mode. When the computer is switched
on and put into MODES the text and graphics “screens”
overlap completely. At this stage* the four colours in use are:
0 black, used as background
1 red
2 yellow
3 white, used as the foreground colour for both text and
graphics screens.

Any subset of four can be chosen from the list of sixteen
using VDU19 as discussed shortly.

Altering foreground and background
colours on the text screen

The COLOUR statement is used to choose new text foreground
or background colours from the four presently available.
COLOUR is followed by one of the numbers 0,1,2,3, for the
foreground and 128, 129, 130 and 131 for the background.
The CLS statement clears the text screen to whichever
background colour is the current choice. Here is a program
which students can use to investigate the points made so far.

10 MODES
20 COLOUR1: C0LOUR13O

68

30 CLS
40 PRINT’"The MODE statement in line 10

makes thescreen BLACK."
50 PRINT’"COLOUR! makes the -Foreground

RED.That is, the text is printed
in RED."

60 PRINT’’"COLOUR130 gives eachtext
character (even the spaces) a
yel1ow bac kground."

70 PRINT’"However, the screen will still
be BLACK unless CLS is used to make
it YELLOW all over."

80 PRINT’’"Remove line 30 to see this
e-F-Fect. "

Changing the set of four colours.

The default set of four is changed by VDU19 followed by five
numbers separated by commas. The last three are always
zero, and allow for possible expansion of the system by
Acorn. Even though they are always zero, they must be
included. Beginners often omit them.

The first number after the 19 is 0,1,2 or 3. These are called the
“logical” colour numbers. The second number is always
taken from the list of 16 which we have just seen. Whichever
number we choose from the list replaces one of the “gang of
four” presently in use.

For example VDU19,0,4,0,0,0 changes the background colour
from black(O) to blue(4). The “gang of four” logical colours is
now blue, red, yellow and white. This is the new “palette”.

69

Let’s summarise this with a diagram:

VDU19 , ____ , ____ | , to , o , o
the logical / \ must be included
number of the the number of the replacement
colour to be colour as it appears on the
replaced "List of 16".

A note on other inodes
This table shows the logical colour numbers which are used
as foreground and background in each mode.

MODE Background Foreground Others
available

0,3,4,6
5,1
2

0 1 nil
0 3 1,2
0 7 1,3,4,5,6

We have found however that students should stick to
MODE5 until they understand the ideas. This is particularly
true when learning about the graphics colours.

Here is a program to illustrate the changing of the palette in
MODE5.

10 M0DE5
20 PRINT’"MODE 5 IS A FOUR COLOUR

MODE AND NORMALLY THE COLOURS. ARE: "

70

30 PRINT’"0 BLACK",“1 RED"
40 PRINT’"2 YELLOW","3 WHITE"
50 PRINT’"Always, COLOURO is the

background colour. At present it is
black but we are about to change it
to yellow.“

60 PRINT’"Always, C0L0UR3 is the text
colour. At the moment it is white
but we are about to change it to
green.“

70 PROCanykey
80 PROCchangepalette
90 CLSsPRINT’"The palette is nows"
1OO PRINT’"0 YELLOW","1 RED"
110 PRINT’"2 BLUE ","3 GREEN"
120 PRINT’"NOTEsAlways, COLOUROIS THE

BACKGROUND COLOUR"
130 PRINT’"NOTES Always, COLOUR 3 IS THE

TEXT COLOUR."
140 PRINT’"Now let’s change the text

colour to blue and the background
to cyan using this palette."

150 PRINT’"Look at the listing to see
how this is done."

160 PROCanykey
170 COLOUR1
180 C0L0UR130
190 REM
200 PRINT’"Now the writing is in red

on a blue background."
210 PRINT’"The screen colour is still

yellow at this stage."
220 COLOUROsCOLOUR129
230 PRINT’"Now it’s yellow on a red

background."
71

240 PRINT’“Change line 190 to CLS and
re-run the program. What will
happen now?"

250 END
260 DEF PROCchangepal ette
270 VDU19,0,3,0,0,0
280 REM** WE ARE LEAVING COLOUR 1 AS RED
290 VDU19,2,4,0, 0, O
300 VDU19,3,2, O, 0, O
310 ENDPROC
320 DEF PROCanykey
330 PRINT’ "PRESS ANY KEY TO SEE THIS

EFFECT"
340 *FX15,1
350 key$=GETS
360 ENDPROC

GCOL and PLOT

Producing graphics with PLOT

The PLOT statement can be used in MODES 0,12,4 and 5 to
draw points, lines and shaded figures.

The full graphics screen is slightly wider than it is high, and
divided into imaginary tiles or “pixels” which are all alike.
That is, the graphics screen is sliced into zones by horizontal
and vertical lines. But ulike the graph paper which students
are used to, the horizontal line spacing need not be the same
as for the vertical lines. On the graphics screen a zone is
rectangular rather than square, and varies in proportion
from MODE to MODE. Also of course the lines on the
screen are not visible like the ones on graph paper. For each

72

graphics mode we can choose the colour of each pixel, from
the colours in the palette being used. Consistent with earlier
work, we will discuss only Mode 5 in detail.

1023

There are 40960 Pixels in mode 5: 256 rows of 160 little
rectangles, as shown below. The number of Pixels used to
cover the graphics screen varies with the mode used. Hence
the PLOT statement uses a system of coordinates which
allows graphics designs to transfer between modes (although
proportions do alter). The graphics origin is normally at the
lower left, but can be changed. (See the Spiral program in the
Little Library, Section III.)

The graphics axes

1279

73

160

In MODE5, each little pixel is thus four points high and
eight points wide. A MODES pixel will respond if any of its
32 points are addressed. Here is a program which illustrates
these ideas:

10 MDDE5
20 PRINT’"The moral of this story is

that any Point in a pixel can act
as a switch."

30 PRINT’” "The -Flashing pixel is the
fifth across from the origin and the
sixth one up."

40 PRINT” "Try changing the 69 in line
50 to a 65, and the 71 in line 70 to
a 67. What do you expect to see?"

50 PL0T69, 31+RND (B) , 19+RND (4) : REM Turn
me on.

74

60 FOR delay=l TO 3000:NEXT:REM Gimme
a break willya?

70 PL0T71,31+RND(8),19+RNDC4):REM Turn
me o-f.

80 FOR delay-1 TO 3000:NEXT:REM Gimme
a break willya?

90 G0T050

Your students will more easily follow the meanings of the
PLOT numbers in this section if they have a copy of this
PLOT CHART.

I--------- T 1 "f I- I 1------- 1
foreground inverse background foreground inverse background

colour colour colour colour colour colour

Coordinate! relative lo PRESENT POINT Coordinate! relative to acreen onpn

0

16

Go to
(M)

64

10

1 2 3

draw line to (iky)

4

(Same as
MOVE)

20

Go to
(xjr)

68

14

5 6 7

(Same as
DRAW)
draw line to (x.y)

17 It 19

draw dotted line to (Jky)

21 22 23

draw dotted line lo (xjr)

65 66 67

plot point at(xj)

69 70 71

plot point al (xjr)

11 32 13

register third point (xj)
and fill triangle

15 16 17

register third point (xjf)
and fill triangle

75

Having plotted points, let’s move on to the drawing of lines.
We start with PLOT4 (or VDU25.4 or MOVE) which simply
registers the first pair of coordinates in memoiy. Then
PLOT5 is used to provide the other pair of coordinates and
draw the line in the current foreground colour.

Point out to students that the right hand side of the PLOT
chart deals with coordinates relative to the screen origin. We
recommend they stick to these at first

Here is a program which shows two equivalent methods of
drawing a line. If using VDU25, students must remember to
use semicolons after numbers which belong to a two-byte
system ie in which a number greater than 255 may be
involved. Graphics coordinates are in this category.

10 REM LINES
20 MODES : REM or VDU22,5
30 PL0T4,1000,1000 :REM or M0VE1000,

1000
40 PLOTS,100,100
50 PROCdelay
60 CLG
70 PROCdelay
75 REM THIS NEXT LINE DOES THE SAME JOB
80 VDU25,4, 1000; 1000; 25,5, 100; 100;
90 PROCdelay
100 VDU16 : REM EQUIVALENT TO CLG
110 PROCdelay
120 G0T030
130 DEF PROCdelay
140 FOR delay=l TO 3000:NEXT:ENDPROC

76

Drawing lines is much faster with PLOT5 than using a loop
to light up individual pixels. Similarly, PLOT85 very quickly
fills in an area, as the next program illustrates.

10 MODES
20 limit=1000
30 PL0T4,400,10:PL0T4,10,200:PL0T85,

10,400
40 FOR delays 1 TO limit :NEXT:REM

See what happens
50 PL0T4, 400, 600: PL0T85,*800,400
60 FOR delay= 1 TO limit :NEXT:REM

See what happens
70 PL0T4,800,200:PL0T85,400,10
80 PRINT’"Try changing the limit to

O instead o-F 1000."
90 PRINT’"How could you -Fill the

centre in?"

Students are usually veiy interested in experimenting With
graphics. They will enjoy the novelties to be discovered in the
PLOT CHART.

Altering foreground and background
colours on the graphics screen.

The statement used here is GCOLO.n where n is 0 to 3 for
foreground colours and 128 more than these forbackground
colours. This is similar to the COLOUR statement used for
text

77

Alternatively, some teachers prefer VDU18,0,n (or VDU18;n).
This is equivalent to GCOLO.n but is more compact, since
VDU statements can be strung together.

CLG is the statement used to clear the graphics screen.
VDU16 is the equivalent of CLG.

Some teachers prefer their students to use VDU for everything
However, commas and semicolons and missing zeros can
cause problems. It could also make the program less
readable to others.

Here is a program which illustrates the use of GCOLO and
VDU19 (to change palettes). It is most effective on a large
colour TV in a darkened room. Some people have un­
comfortable reactions to strobe effects. Ascertain if there are
problems before using any program which has flashing
lights.

10 M0DE7
20 PRINT’’"Warning. Do not expose any

one sensitive to strobe effects to
this* program."

30 PRINT’’’"To adjust the flash rate
of the DISCO CUBE to suit your
music, press F for faster or
S for slower."

40 *FX21,0
50 PRINT’* "Press any key to start.":

anykey$=GET$
60 limit=500
70 MODES
BO K=1.6:REM ALTER THIS VALUE TO CHANGE

CUBE SIZE
78

90 VDU23;820250;0505sREM SUPPRESSES
CURSOR

100 REM PAINT THE LEFT SIDE IN LOGICAL
COLOUR 3 AS SET BY LINE 140

110 M0VEK*250,K*100s M0VEK*100,K*285:PLOT
85,K*1OO,K*550:M0VEK*250,K*400s
PL0T85,K*250,K*100

120 REM PAINT THE RIGHT SIDE IN LOGICAL
COLOUR 1

130 GCOLO,ls PL0T85,K*500,K*250:M0VEK*
500,K*510:PL0T85,K*250,K*400

140 REM PAINT THE TOP SIDE IN LOGICAL
COLOUR 2

150 GCOLO,2: PL0T85,K*100,K*550:M0VEK*
340,K*620:PL0T85,K*500,K*510

160 REM CHOOSE A NEW PALETTE AT RANDOM
170 VDU19,1,RND(8)-1,19,2,RND(8)-1,19,

3,RND(8)—1sFORdelay=l TO limitsNEXT
180 IF INKEY(-68) THEN limit=limit-10:

IF limit<0 THEN limit=0
190 IF INKEY(—82) THEN 1 imit=limit+10:

IF limit>10000 THEN limit=10000
200 GOTO170

The other forms of GCOL are beyond the scope of a first
course for students.

79

The Sound of Music?

Can the BBC micro be used to teach music? The ROM
software dealing with sound is very comprehensive. However,
the hardware is not good enough to take full advantage of it
The tiny speaker is inadequate in clarity and frequency
response. The maximum loudness available is insufficient,
and cannot be manually controlled. The computer emits a
lot of electronic “noise”. For the computer to be useful in the
teaching of Music as a subject the sound output needs to be
interfaced to a hi-fi system which should include headphone
sets. Even then, many Music teachers would be dissatisfied
with the performance of the BBC computer sound chips.

The rather random experiments with the SOUND and
ENVELOPE statements which computing students usually
do, have curiosity value only. Concepts like “attack” “sustain”
etc are best taught using sound and animated colour
graphics together. Professional software is available which
plays and graphically illustrates the more sophisticated
aspects of the SOUND and ENVELOPE statements. For
these reasons our BBC BASIC course omits ENVELOPE and
discusses the SOUND statement only in its “simple” form.
The synchronisation of notes to form chords is demonstrated
by the “Organ” program in the Little Library, Section III.
The SOUND statement is followed by four numbers. The
first (called C) specifies one of the four available sound
“channels”.
Channels 1,2 and 3 are identical in function, each producing
single notes.

The second parameter (A) controls the loundess. When the
SOUND statement is used in its simple form, A ranges from
-15 (loudest) to 0 (silent).

80

The next parameter (P) is the “pitch”, or position on the
musical scale. It ranges from 0 to 255. Every increase of 48
raises the note one octave. A pitch of 53 is “middle C”. The
next program allows variable control over both pitch and
loudness while displaying the values being used.

10 M0DE7
20 VDU23;82O2;o$o;o;
30 PRINT’"Hold down P to vary pitch

with the UP & DOWN cursor controls.”
40 PRINT’"Hold down L to vary loudness

with the UP& DOWN cursor controls. 11
50 PRINTTAB(2, 10) "The pitch value isnow"
60 PRINTTAB(2,15)"The loudness value

is now"
70 loud=—6:pitch=150
80 IF INKEY(-58) AND INKEY(-56) THEN

pitch=pitch+1sIF pitch>255 THEN
pitch=255

90 IF INKEY(-42) AND INKEY(-56) THEN
pitch=pitch—1:IF pitch<0 THEN
pitch—O

100 IF INKEY(-58) AND INKEY(-87) THEN
loud=loud—.5:IF loud<-15 THEN loud
=-15

110 IF INKEY(-42) AND INKEY(-87) THEN
1oud=laud+.5:IF loud>0 THEN loud=0

120 SOUND1,loud,pitch,1
130 PRINT TAB(24,10)pitch
140 PRINTTAB(24,15)loud
150 60TD 80

81

The last parameter (D) is the duration or time interval of the
sound. D=20 means the note lasts for one second. Students
should experiment with these parameters for themselves.
The most frequent mistake is to use a positive.

Channel 0 is used for special effects, which are decidedly
unmusical. For many students, this is the “best” channel,
and they are keen to investigate its properties.

The Parameters A and D are the same as for the other
channels. But P is quite different and takes the values 0 to 7.
To keep the course in proportion, the values 3 and 7, used in
conjunction with Channel 1, have been omitted.

The effects of the other P values are described in the table
below, and illustrated by the following program.

10 CLS : READ P
20 IF P = -1 THEN PRINT TAB (5,10) “END

OF TEST'1 s END
30 PRINT TAB(5,5) "THE VALUE OF P IS"!P
40 SOUND 0,-15,P,50
50 X = INKEY(500)
60 G0T010
70 DATA 0, 1,2,4, 5, 6,-1

Table of P values Channel 0
Low Medium High pitch

Buzzer effect 0 1 2
Static effect 4 5 6

As an exercise, students could use P=4 and vary the
loudness using a FOR-NEXT loop to create the sound of
breaking glass.

82

AND, OR, EOR and NOT as logical
operators

In this student course, only the “logical” sense of these
operators needs to be taught Their “bit-wise” use is necessary
for GCOL3 etc which can be seen in the “Train” program,
Section III.

AND

Here is an example for students.

Suppose Freddie is waiting for a train to arrive. The train
may be carrying his friend Janie, who may have a pet frog
with her. In order for Freddie to see the frog, Janie must be
on the train AND she must have the frog with her. Both must
be true. Now if the train arrives but Janie is not on it, we do
not need to know if she has the frog. We know Freddie does
not see it But BBC BASIC tests both conditions anyway. The
following program illustrates the situation. It makes use of
FALSE=O and TRUE=-1.

10 M0DE7
20 seed=RND(—TIME):A=RND(10)8B=RND(10)
30 PRINT’ ’ "For success, the Janie -Factor

must be less than 5 AND the -Frog
-Factor must be less than B. On
this occasion:"

40 PRINT’"The Janie -Factor= ";A;" The
•Frog -Factor= ";B

50 IF A<5 THEN Janieontrain=-1 ELSE
Jani eontrai n=0

83

60 IF B<8 THEN hasfrog=—1 ELSE has-frog
=0

70 IF Janieontrain AND hasfrog THEN
PRINT’’"Freddie sees the ■frog," ELSE
PRINT” "Bad luck Freddie."

BO IF A>4 THEN PRINT”Janie was not on
the train."

90 IF B>7 THEN PRINT”Janie did not have
the -Frog with her. "

100 *FX21,0
110 PRINT” "To see what happens next

week, • press any key. " s key$=GET$:
B0T010

A series of conditions can be used, all of which must be true
for the whole chain to be true.

eg IF cost<20 AND funcs>=cost AND colour=green AND
wheels=2 THEN Purchase=-1.

OR

This logical operator means that if X is true or Y is true, or
both are true then (X OR Y) is true. It is known as an
“inclusive” use of the word “of’. As an example suppose
Alice chooses a number from 1 to 20 from a hat If the
number is odd or greater than 15 she wins a prize. The
number 17 satisfies both conditions but only one is necessary,
so 3 and 16 are winners too.

84

EOR

The word “or” can also be used in an “exclusive” sense. (A
exclusive or B) is true when A is true or B is true but not both.

Suppose a restaurant offers a set-price menu which offers for
main course, a meat dish, or fish, or poultry. We would
assume that the word “or” here is meant “exclusively”. EOR
is used much less than OR, and then usually to manipulate
bits (see Section III for its use in GCOL3). Most BASICS do
not even provide EOR Here is a program which illustrates
OR and EOR

10 CLS
20 PRINT TAB(0,2)"Two numbers are chosen

independently -From the set 1,2,3."
30 PRINT’’"The conditions being tested

are: "
40 PRINT’"The -First number is less than

the second"
50 PRINT"The -First number = 2"
60 PRINT"---
--- II
70 -Firstnum=RND (3) : PRINT* * "First number

= "jfirstnum
80 secnum=RND(3):PRINT"Second number

= "5 secnum;’
90 IF -Firstnum<secnum OR -Firstnum=2

THEN PRINT"The OR condition is
satisfied "

100 IF firstnunKsecnum EOR -firstnum=2
THEN PRINT"The EDR condition is
satisfied."

85

110 IF firstnum=s2 AND secnum=3 THEN
PRINT’ "Note that OR accepts the
number pair (2,3) but EOR does not."

120 PRINT” * "PRESS ANY KEY FOR MORE.”
130 *FX21,0
140 key$=GET$:GOTO1O

Sometimes the word “of* is ambiguous. For example, a
parent may say to a student who is learning for important
exams:

“Until the exams are over, you may go out on Friday or
Saturday night only.”

The parent might well mean “one night a week” but it could
interpreted as two. Because the English word “or” is subject
to interpretation, BBC BASIC uses the invented word EOR.

NOT

This is also rarely used. The ELSE statement and <> are
more common ways of negating a simple condition. The
structure
...IF AO5 THEN...
or ...IF A=5 THEN (event 1 happens) ELSE (event 2
happens).. is more usual than
...IF N0T(A=5) THEN...

Sometimes however, the testable condition is quite complex,
and NOT is needed to negate the condition. For example,
suppose a certain product is being safety tested by measuring
various parameters. Then a complicated function called

SB

FNsafe is defined. It may be necessary to use a line like
IF NOT FNsafe THEN PROCremedy

Precedence among operators
A full list is given on page 144 of the User Guide (1982 Ed).
NOT is stronger than AND. OR and EOR are the weakest of
all the operators. Whichever of these comes first in a
program line, gains precedence. To change this pre-ordained
order of supremacy, brackets can be used.

Example
People are assembled for a club meeting, but Sue (President),
Ann (Secretary) and Tim (Treasurer) have not yet arrived.
Suppose the Club Constitution requires the following: IF
Sue arrives OR Ann arrives AND Tim arrives THEN the
meeting can start The next program sets out this situation
and the students can choose various combinations of
arrivals. In lines 80 to 100, -1 can be omitted. Also THEN can
be omitted wherever it appears. These things allow the OR
and EOR logic to be more easily seen.

10 REM OPERATOR PRECEDENCE
20 CLS s *FX21,0
30 Suearri ves=0: Annarri ves=O: Ti mar r i ves

=0 : Sue$="" 8 AnnS="" : Tim$=""
40 PRINT’"Do you want Sue to arrive?

(Y or N)"s Sue$=GET« 3 IF Sue«="Y" OR
Sue$="y" THEN Suearrives=-1

50 PRINT’"Do you want Ann to arrive?
(Y or N)“: Ann$=GET$ i IF Ann$="Y”

87

OR Ann$="y" THEN Annarri ves=-l
60 PRINT’"Do you want Tim to arrive?

(Y or N)"s Tim$=GET$: IF Tim$="Y"
OR Tim$="y" THEN Timarri ves=-l

70 CLS : IF (Suearrives+Annarrives+Tim
arrives)=0 THEN PRINT’"None o-F them
arrive. What a -Fizzer!"

80 IF Suearrives--! THEN PRINT’"Sue
arrives."

90 IF Annarri ves=—1 THEN PRINT’ "#Ann
arrives."

100 IF Timarrives=—1 THEN PRINT’"Tim
arrives."

110 REM The next line is the point o-F
the exercise.

120 IF Suearrives OR Annarrives AND Tim
arrives THEN PRINT’"The meeting
starts" :END

130 PRINT’"The meeting cannot start."

The AND is more powerful than the OR. Hence if only Sue
arrives the meeting can start If only the other two arrive it
can start All three arriving is O.K.

But suppose brackets are inserted thus:

IF (Sue arrives OR Ann arrives) AND Tim arrives THEN...
Ask the students to change line 120 and RUN the program
again. Now they will find that Tim must be present So must
at least one of Ann or Sue, before the meeting can begin.

88

PROGRAM FAILURES

Six ways in which a computer program can fail to do as you
want

I - Typographical errors

When typing program lines, the user must be exact Here are
some common typos.

The letter O instead of the number 0. Beginners often type
things like 30 instead of 30 for a line number. In BBC MODE
7 the zero does not have a slash. Discourage students from
using this mode for typing-in, if they have trouble dis­
criminating between the appearance of O and 0. (0 is more
diamond-shaped.)

I and 1 are often confused when a learner copies in a
program without any understanding of meanings. Discourage
the use of I as a variable name. It’s not helpful to use single
letters for variables anyway. O is out too, as are U and V
because they are too similar.

Learners sometimes do not appreciate the crucial pro­
gramming difference between the : and; symbols.

Improper spelling of a keyword. The computer has no idea
what a PRIMT is.

2 - Not pressing RETURN

Failure to press RETURN at the end of the each program

89

line causes lines to run together. This will produce a syntax
error, or may deprive the program of a line it needs to GOTO
orGOSUB.

3 - The RENUMBER statement

RENUMBER is a very useful aid to programming. However,
students should avoid “computed” GOTOs and GOSUBs as
RENUMBER cannot adjust them.

4 - Programming errors

Sometimes the operations you prescribe are impossible
because of some unforseen circumstance. For example, you
may be expecting the computer to divide x by y, even though
y may sometimes be zero. Range errors, overlapping loops
and type mismatch fall into this categoiy.

5 - Syntax errors

These usually occur when a wrong combination of letters
and symbols is used in a BASIC statement To us, what
seems a trivial infraction of the rules of spelling or punctuation
is totally unacceptable to the BASIC Interpreter of the BBC
computer. Spaces can cause syntax problems. For example,
if a space is left before the bracket in PRINT TABO a “no
such variable” error will appear.

10 CLS
20 PRINT TAB (2,2) "LEAVE NO SPACE BETWEEN

TAB AND ("30 PRINT TAB (2,4) "THIS WILL NOT BEPRINTED"
90

Taping keywords in lower case causes syntax errors. Most
Beeb users have typed in run instead of RUN and been
greeted by “MISTAKE”. It would be possible to design for
the computer a “Basic Interpreter” which was not as fussy,
but it would be slower. The BBC microcomputer is renowned
for its processing speed.

Another common student error is the omission of the final
quote mark in a PRINT statement

6 - Conceptual errors

The program runs without crashing, but it is not doing what
the student intended. Back to the drawing-board (and the
Manual). It could even be that another bug has been
unearthed in BBC BASIC.

Give encouragement

Sometimes a student works with great dedication writing a
program. It crashes, producing clouds of disappointment
and frustration. Students sometimes criticise themselves
very harshly. Be sympathetic. Programming can be a very
lonely activity. The student needs to be aware that everyone
makes mistakes and that progress is rarely possible without
them. The fascinating thing about programming is that at
any level of expertise, one rarely leaves a session at the
keyboard without learning something new. And designing a
successful program can be extremely satisfying.

01

The computer reacts to a faulty
program In three ways.

Firstly, the computer can "crash”.

This happens when the program has interfered with the
operating system. Emphasize to students that nothing they
type can possibly damage the computer. A program which
crashes does not damage the hardware. After a crash,
possibly only the BREAK key will work. Advise the student
to then type OLD and press RETURN. It may still be
possible to list the program. If not, simply LOAD the
program again. (A student who does not SAVE a finished
program before trying to RUN it, will soon learn). When
examining the listing for the error(s), look for misuse of
operating system codes. Here is a sample of a program which
will “crash”.

10 PRINT"I WON’T CRASH, YOU CAN’T MAKE
ME"

20 VDU21,22
30 PRINT"SEE, I DIDN’T CRASH!"

Secondly, the computer may
stop and produce an error message

The computer states the number of the last complete line it
was able to execute. You might even get a helpful message,
like
MISSING ” or
Type mismatch.

92

See page 474 of the User Guide (1982) for a full list of error
messages. While the computer is stopped in mid-stream,
there are two things the student can do. Firstly, list the lines
in the vicinity of the stopping point The problem is
sometimes quite remote from this point however, and a hard
copy of the listing is often helpful.

Then use the direct mode to print the values the variables
had when the crash came. Look for strange values. You may
find that a variable has a negative or fractional value, or a
very large value, which it is not supposed to have. Or a string
variable may be unexpectedly null because an input routine
somewhere was wrongly skipped. Since the BBC computer
has no DUMP routine which prints out the values of all
variables, the user has to print them all out individually.
Hence a list of variables and their expected ranges should
always be kept as a student develops a program.

The third way a computer reacts to a problem is by
“hanging”. It is off in never-never land, gathering daisies.
There can be no complaint of course, since the computer is
following the programmer’s instructions. Usually the students
have unwittingly asked the computer to perform a task it can
never complete, or at least not in their lifetimes. The main
culprits when student programs hang; are IF-THEN,
REPEAT-UNTIL, FOR-NEXT-STEP, and overlapping
loops. As an example, see “Spiral” in the Little Library,
Section III.

Programs like this are faulty from the user’s point of view,
but do not grind to a halt The computer may not respond to
the normal keys. Sometimes the screen is blank. It will seem
as if the computer has gone out to lunch for an indefinite
period. The student should stop proceedings using ESCAPE.
The line number just completed will appear, and should be
written down. There will of course be no error message

93

because there was no error. Examine the listing and print the
variables as before. They can be altered by using LET, if one
wishes to experiment The program can be resumed with
these variable values by using a GOTO to the line which the
program is to execute next, not necessarily the next number
in the listing (Some computers have a CONTINUE statement,
which is easier to use.) If RUN is used instead of GOTO XX,
the variable values will be cleared. BBC BASIC does not
have the RUN XX ability so, RUN must always start at the
first line of a program.

Handling conceptual errors with
STOP and TRACE

STOP is a BASIC statement often described as an “introduced
bug". STOPs can be inserted at strategic places in a program.
The user can discover what the computer is actually doing
which can be quite different from what they had in mind.
When the computer comes across a STOP statement it
ceases running and prints the line number it was executing
Then the processes of LISTing and PRINTing or altering
variables can be done before using GOTO (line number) to
resume the program. Students sometimes forget to remove
all the STOPS, and unfortunately BBC BASIC lacks a FIND
statement So students are advised to write down the locations
of all the STOPS they insert The TRACE statement can be
useful to students but only to embrace a few lines at a time.
TRACE ON can be inserted, and a few lines later, TRACE
OFF. Students usually find the general application of
TRACE bewildering Everything happens so fast, and on the
BBC computer the printing of line numbers is not “windowed".
This means that the effects being examined (moving graphics,
say) are obliterated by the tool being used

94

How much help should a teacher
give?

Suppose a student has designed a program and is having
problems. Giving help can be very time-consuming, and
sensible limits need to be set for the teacher’s sake. The
teacher will be more disposed to help, and more able to help
if the student has documented the program properly.

Encourage the following:

1. A list of the variables used. These should have meaning­
ful names, like mass not M, and child? not C$.

2. Procedures rather than GOSUBs, and usefully named.
3. REM statements where useful, sometimes simply

followed by a line of asterisks to visually break the
listing up into blocks.

4. A hard copy of the program if possible.

The usual criterion used before giving help to students
applies in computing too. They must have made reasonable
efforts to help themselves. A student who has not bothered to
properly learn the meaning of the simple BASIC statements,
should first be directed toward that task. The teacher in a
computer room can be very easily overwhelmed by demanding
students.

Student projects

A deeper understanding of BASIC programs is gained by
writing them. I use two types of projects, single-concept and
Multi-level.

95

Single-concept projects.

The student is required to research and develop a program
around one of the “reserved words” of BBC BASIC. The
words not dealt with in the BASIC course (like “ENVELOPE”)
can be included but should only be done when the others haave
been satisfactorily handled. Each teacher will devise projects
best suited to their class, but here are some examples.

1. Use the RND function to simulate two dice being
thrown together. Calculate the sum of the numbers
showing. Do this for 10000 rolls. How many times does
a sum of seven occur? It should happen about 10000/6
times.

2. Use the SOUND statement and a FOR-NEXT loop to
produce effects for the “Train” program. Make the
sound muffled while the train is in tunnels.

3. Use a single-key input statement in a simple game for
two players. Allot each player a key to use. Arrange for
something to appear on the screen. The first player to
react correctly wins a point (A variation my students
have designed is for a word to appear. Only if the word
is a noun should the player press their key. If it is a verb
as well, like “plan” or“track” or“dance” the key is notto
be pressed.)

4. Look at the DISCO CUBE program. Draw a tetrahedron
(triangular based pyramid) and make each visible side
a different colour.

5. Research the use of “windows”. Write a program which
creates text and graphics window (they may overlap).
Write text in both windows.

96

6. Make the letter 0 move around the screen, bouncing off
all the edges.

Multilevel projects

Each project begins simply and becomes more demanding
by stages. A student can stop at any level past the first, as
interest and ability dictate. Some students produce very
clever programs, of considerable sophistication.

1. Use the graphics screen to design the floor plan of a
house to scale. The total length of the outside walls is 80
metres, and all passages are 1 metre wide.

Find the shape which will give the maximum area for
the 80m perimeter. Make the area of passageway as
small as possible.

Design furniture using special characters and put the
pieces in place.

Produce copies of your designs on the printer. (The
teacher can provide a screen-dump routine).

Show all the lines for electricity, water etc into the
building.

2. Illustrate in the mode of your choice, the intersection of
a pair of two-lane roads as seen from a point high
above. Represent symbolically, traffic lights which
alternate between red and green (or equivalent shades
of grey) at regular intervals.

Use a letter or special character to represent a car and
animate it on your road system. It need not turn

07

comers, but it must obey the traffic lights.

Develop a two car system, without traffic lights. One car
is to move north-south or south-north at random. The
other moves at right angles. Include a give-way routine
so that the cars obey the traffic rules.

Extend the system to multiple vehicles, without allowing
collisions to occur.

Include the ability of the vehicles to turn at the
intersection.

Design a program with the computer in charge of one
car and a person in charge of the other. Make the
program teach the traffic rules which apply at inter­
sections. Use graphics to illustrate collisions, and use
SOUND to provide the student’s car with a horn. Use of
the horn must affect the computer’s car when appropriate.

Students sometimes propose projects of their own. This is
fine, but check that it is not too ambitious, and is reasonably
worthwhile. Aprojectcan also be used in a competition, with
the best entry attracting an “official certificate” and a small
prize eg a blank cassette.

98

SECTION III -

DESIGNING AN
EDUCATIONAL PROGRAM
General Considerations
As a programming aid, the red keys can be defined and
labelled as follows: LIST, RUN, *CAT, CHAIN, PRINTER,
PROC, DEPROC, PAGE MODES, SAVE”, PAGE MODE7.
Here is the program.

10 REM RED KEYS DEFINED FOR TEACHER
USE IN PROGRAMMING

2O*KEYO JV7LISTJM
3O*KEY1 RUN!M
33*KEY2 !V7*.JM
37*KEY3 CHAIN"
40*KEY4 WIDTH7O JM VDU2,1,15,1,27,1,4

8 JM LIST JM !C WIDTHO JM ’
45*KEY5 PROC
50*KEY6 DEFPROC
6O*KEY7 JV5JN LISTJM
65*KEY8 SAVE”
70*KEY9 JV7JN LISTJM
80 *FX138,O,78
90 *FX138,0,69
1OO *FX138,0,87
110 *FX138,O,13

99

Explanation of the program.
The shifted back-slash key produces 11 in mode 7 and 1 in
other modes. It stands for CONTROL. M is the code for the
RETURN key.
Let’s now go through each of the keys in turn.
KEYO Produces MODE 7 (clearing the screenO, LIST and
RETURN.
KEY1 RUN and RETURN
KEY2 Displays the disc catalogue in MODE 7.
KEY3 Prints CHAIN and the first quote mark on the
screen, to be completed by the user.
KEY4 This causes a condensed listing 70 columns wide to
be produced on the EPSON MX100 printer. (*FX6,0 may
also be needed if the simple modification has not been made to
arrange for carriage return.) This will need to be modified to
suit other printers.
KEYS 5 and 6 print words on the screen to save typing time.
KEY7 As for key 9 but in MODE5 for formatting.
KEY8 prints SAVE” to be completed by the User.
KEY9 displays the listing on the screen piece by piece, with
a slight overlap. It is most important that SHIFT must be
used to move to the next part Otherwise people will
repeatedly press KEY 9. N is being used to set “page mode”.
The last four lines insert the letters N E and W and
RETURN into the keyboard buffer so that the program will
delete itself from memory.
A program like this should be on every disc used for
programming. Then you type CHAIN U (for User keys)
before doing anything else. If you are using cassettes instead,
SAVE the program many times on a cassette and CHAIN it
first every time you turn on the computer. The keys will stay
defined even though the BREAK key is used. However,
using CONTROL & BREAK removes them. Some teachers
find other statements and commands more useful. For
example, RENUMBER10,10 LOAD“ *DRIVE *WIPE*

100

Also, it is possible to specially define more of the keys.
♦ FX4,2 redefines the COPY and cursor keys. (See program 2
in the Little Libraiy later in this section.) *FX219,12 redefines
the TAB key to clear the screen. (Reset, with 219,9) *FX220,0
redefines the shifted @ as a less vulnerable ESCAPE key.
Reset with 220,27.
Some find that the screen display on their TV always needs
an initial downward adjustment The U and R programs can
begin with *TV255 to accomplish this. The versatility of the
BBC computer is one of its most attractive features.

Abbreviation of keywords.
Although abbreviations for keywords have been avoided in
the previous section, the programmer can save much time
with them. Some are not worth the trouble, but most of the
single letter ones are useful. I tell student programmers to
remember ‘UNCLE DIG’:
U. for UNTIL
N. for NEXT
C for COLOUR
L. for LIST
E. for ENDPROC (a big saving.)

D. for DATA
L for INPUT
G. for GOTO

101

Here is an example of a good “first-screen” for an educational
program.

•*** SETTLEMENT ****
by Ann Newfield 1983

CHALKIESOFT

Imagine you are in charge of setting up a new community in
an area which has never been settled.
I wonder what things you would want to take with you?
(Axes, matches...?)
What sort of people would you require. (Meek and obedient?
Brave and resourceful?...)
What assortment of skills would you want them to have?
(Carpentry?.. Cooking?..)
What features would you consider when siting your village?
(OK permanent fresh water, but what about floods?...)
Will you and your party survive the first year?
Press any key to begin.

Note the five essential ingredients of a good first screen.

1. Tide.
2. Author and year.
3. Company name or contact address.
4. Brief, readable description of what the program is about,
or will do.
5. What to do next

Note that “PRESS” or “TYPE” implies that the RETURN
key is not needed. The program is probably using a version
of GET or INKEY. If the word “ENTER” is used, eg
“ENTER YOUR NAME”, you will need to add “AND
PRESS RETURN". Otherwise many people will sit and
stare at the screen wondering why nothing is happening.

102

Remember that some of the people you are writing for may
never have used a keyboard before.

For a program with many instructions, it’s helpful to offer
the choice of whether to see them or not This allows a person
who knows what is required, to skip ahead. The computer
could deal with the response as shown in the following
program.

10 M0DE7
500 PRINT"Do you want instructions (Y

or N).":*FX21,0
510 REPEAT
520 key«=GET«
530 UNTIL key«="Y" OR key$="y" OR key*

="N" OR key»="n“
540 IF key«="Y" OR key$="y" THEN 600

ELSE 1OOO
600 PRINT’"Instructions here."

1OOO PRINT’"Program here."

Note that allowance is made for the CAPS LOCK key to be
on or off. An alternative is to use *FX202,32 to turn CAPS
LOCK on from within the program. Then only upper case
INPUT need be checked. For example, turn CAPS LOCK
off and then RUN this program.

10 REPEAT
15 *FX2O2,32
20 key«=GET$
30 UNTIL key$="A"
40 PRINT"0.K"

Or, lower case can be converted as follows.

103

10 REM Change to UPPER CASE
20 PRINT’"PRESS Y OR N"
30 *FX21,0
40 key=BET AND &DF
50 IF key=7B PRINT"You pressed N or n."
60 IF key=89 PRINT"You pressed Y or y

.“ELSE 20
70 B0T020

Menu design
You can lead the user into your program comfortably by
offering a set of explicit choices at every stage. Here is an
example:
PRESS THE NUMBER OF YOUR CHOICE
1. FIRST LEVEL
2. CHALLENGING
3. EXPERT
4. SHOW ME THE INSTRUCTIONS AGAIN
Let’s look at one way a program could deal with the response
to a set of choices.

100 CLS
110 PRINT’"WILL YOU TYPE 1,2,3 OR 4

PLEASE?"
120 REPEAT
130 ascii = BET
140 UNTIL (ascii<53 AND ascii >48)
150 PRINT"TAR!"

Here ascii (lower case) is the numeric variable used.
The number 1 has an ASCII code of 49, through to 52 for the
number 4. In practice, line 200 might be something like: ON

104

ascii GOTO 200,300,400,500
If an alphabetical key is required, GETS could be used as
shown.

100 CLS
110 PRINT” "Will you type Y or y -For me?
120 REPEAT
130 key* = BETS
140 UNTIL (keyS = "Y" OR keyS - "y")
150 PRINT"Thanks -For typing Y or y"

Alternatively, the AND & DF method is good too.

These methods of dealing with Menus, discard irrelevant input
efficiently. But they do not protect against the User pressing
ESCAPE or BREAK inadvertently. Hence it may be
desirable to disable the ESCAPE key using *FX229,1 early
in the program, and re-enable it with *FX229,0 as part of a
“quit the program” procedure. It is possible to use
♦FX200 instead of *FX229. In passing I would mention
*FX200,2. This disables the OLD statement,-producing “Bad
program”. Some students are fascinated by this because with
♦FX229.1 and *FX200,2 they can run a “secret” program
which nobody can stop and list

Suppressing the flashing cursor

On some occasions the sight of the cursor flashing on the
screen during a program can be too distracting. In OS>0.1 it
is erased by VDU23;8202;0;0;0; and restored by a MODE
statement However this clears the screen, which could be

105

disastrous. In version 1, VDU23,l,0;0;0;0; erases the cursor
and VDU23,l,l,;0;0;0; replaces it The commas and semicolons
must be exactly right which can cause problems for students.
Warn students using the 1982 User Guide that the final
semicolon was accidentally omitted in the 8202 version, on
page 77. Because of the awkwardness of the process, a
cursor-off-on procedure could be defined whenever a
program needs a lot of cursor switching. Then it only has to
be correctly typed once. See the program called “SPIRAL”
for another method of cursor suppression or use this:
!&FE00=&10200A and !&FE00=&10670A to turn it on
again.

It is sometimes feasible to use VDU5 and print that way. The
flashing text cursor is automatically suppressed.

A HELP! key.

A HELP key is often valuable to the user of a complicated
program. A further key is used to recommence from the
point of interruption.

The HELP routine can be installed within the main working
loop (or loops) of the program. The GETS statement is not
suitable because the program will only stop if required.
However, *FX21,0 may be needed to regularly flush the
keyboard buffer. The best alternative is “negative INKEY",
since no keyboard flushing is required. The user simply
holds the key down until help arrives. Negative INKEY also
has’the advantage that even keys without ASCII values can
be detected.

106

Here is a sample HELP key routine

A message needs to appear on the MENU screen like:
Hold down the CTRL key if you need help.
In a suitable place (or places), put the line:
IF INKEY(-2) THEN PROChelp
Here is a possible form for the HELP PROCEDURE.

2800 DEF PROChelp

2010

details....

2100 PR I NT "Press the SPACE bar to
continue."- *FX21,0

2110 cont$=GET$ •’ IF cont$ O " "
THEN 2110

2120 BLS : cont$= "" : REM resets the
cont$ fla9 to null.

2130 ENDPROC

A problem arises when a screen display (eg graphics) would
be irreparably spoilt by the help messages. In these circum­
stances, a text window maybe created to hold any messages.
Alternatively, the advice could be sent to the printer if one is
available, leaving the screen display intact, by means of
VDU1.

107

Using the Red Keys.

The use of *KEY is illustrated by the R and U programs
discussed earlier. The Red keys can also be useful in that
they can be detected by the negative INKEY statement The
Red keys are invaluable, when practically all of the others
are in use, eg in a word-processing program.
Except in operating system 0.1 the copy and cursor keys can
also be redefined by *FX4,2 and restored to normal with
♦FX4,0 (See program 2 in the Little Library).

Using graphics and text
"windows”.

As mentioned in Section II, VDU24 sets the parameters
defining a graphics window. VDU28 is used to create a text
window. VDU26 brings both back to occupy the whole
screen. For examples of windowing, see the “MARKS” and
“Sheep Station” programs at the end of this section.

COLOUR AND SOUND

Colour is wonderful as an attention-getter, unless overused.
Also one should bear in mind that not all schools use colour
video equipment If you write a program for general use, it is
best to stick to colours which give reasonable visibility and
contrast in black-and-white or green and white too. Generally,
green and blue give faint effects on monochrome equipment
The following program shows the colours available in MODE
7 for test purposes.

1OB

10 M0DE7!code=129
20 !&FE00=&10200A
30 REPEAT
40 PRINTTAB(0,2)“WHITE”
50 READcolourS
60 FOR K = 1 TO 100
70 PRINT CHRS(code)colourtj
80 NEXT
90 wait=INKEY(200)
100 code=code+l:IF code=135 code=129:

RESTORE
110 UNTILO
120 DATARED ,GREEN ,YELLOW , BLUE

,MAGENTA,CYAN ,LAST
The main disadvantages of MODE7 are that you cannot
define your own characters and you cannot use MOVE or
DRAW or graphics windows. It is possible to define rather
crude shapes (see page 154 of the 1982 User Guide) but fine
graphic work is impossible in MODE7.
Sound is good for emphasis, although the tiny speaker fitted to
the BBC does not allows any dramatic effects. The envelope
commands are so time-consuming to master that most
teacher programmers will probably rely on the simple 4-
parameter SOUND statement However, notes can be easily
sychronised to form chords, as the following program
illustrates. It provides control over the pitch and loudness of
channels 1 2 and 3 independently, by means of “negative-
INKEY”. Moreover, these values are displayed on the screen
and the sound can be turned on or off without disturbing them.
When an interesting chord is found, the values can be jotted
down for future reference.
Pressing S, D or F raises the pitch of channels 1,2 and 3. In
conjunction with A, these same keys lower the pitch.
Similarly, J, K and L can be used in conjunction with H to
control the loudness.

109

10 REM ORGANS
20 M0DE7
30 !8cFEOO=&1O2OOA!REM erase cursor
40 REM initialise
50 Pl=101:P2=129: P3=153s Al=-10: A2=-10

: A3=-10sincP=0s incA=0
60 PROCdisplay
70 REPEAT
80 key$=INKEY$(0):IF key»="" THEN 80
90 *FX21,0
100 IF INKEY (-66) incP=-l ELSE incP=l
110 IF INKEY(-82) Pl=Pl+incP
120 IF INKEY(-51) P2=P2+incP
130 IF INKEY (-68) P3=P3+incP
140 PROCcheckP
150 IF INKEY(-85) incA=l ELSE incA=-ls

REM Decreasing A makes the note louder
160 IF INKEY (-70) Al=Al+incA
170 IF INKEY (-71) A2=A2+incA
180 IF INKEY(-87) A3=A3+incA
190 PROCcheckA
200 PROCchord (Al, A2, A3, Pl , P2, P3)
210 PROCupdate
220 IF INKEY(-17) THEN *FX21O,1
230 IF INKEY (-34) THEN *FX21O,O
240 UNTILO
250 DEFPROCchord (Al, A2, A3, Pl, P2, P3)
260 SDUND&0211, Al, Pl, 1OOO
270 S0UND&0212, A2, P2, 1000
280 S0UND&0213, A3,P3, 1000
290 ENDPROC
300 DEFPROCcheckP
310 IF PKl Pl=l
320 IF P2<1 P2=l
330 IF P3<1 P3=l

110

340 IF Pl>255 Pl=255
350 IF P2>255 P2=255
360 IF P3>255 P3=255
370 ENDPROC
380 DEFPROCcheckA
390 IF Al<-15 Al=-15
400 IF A2<—15 A2=—15
410 IF A3<—15 A3=-15
420 IF Al>0 A1=O
430 IF A2>0 A2=0
440 IF A3>0 A3=0
450 ENDPROC
460 DEFPROCdisplay
470 CLS
480 PRINT’"CHANNEL ONE"
490 PRINT*TAB(IO)"Pitch
500 PRINT’TAB(IO)"Amplitude= "
510 PRINT” "CHANNEL TWO"
520 PRINT’TAB(10)"Pitch
530 PRINT’TAB(10)"Amplitude= "
540 PRINT’’"CHANNEL THREE"
550 PRINT’TAB(10)"Pitch
560 PRINT’TAB(10)"Amplitude= "
570 PRINT’" Q:Sound OFF W:Sound ON
580 PRINT"A S D F * H J

K L"
590 PRINT"down pitch down
loudness"
600 ENDPROC
610 DEFPROCupdate
620 PRINTTAB(20,3)Pl 5"
630 PRINTTAB(20,5)Al;"
640 PRINTTAB(20,10)P25"
650 PRINTTAB(20,12)A2;"
660 PRINTTAB(20,17)P3;"

in

670 PRINTTAB (20, 19) A3J "
680 ENDPROC

While on the subject of sound, here is a discovery by Ian
Nicholls about the production of lower notes than those
discussed in the manual.

5 REM LOW NOTES Ian Nicholls
10 S0UND2,—15,1,1OO
20 FOR delay=l TO 5000:NEXT
30 P=188
40 SOUNDO,—15,3, 180
50 SOUND1,O,P,10
60 P=P—2
70 FOR delay=l TO 1OO:NEXT
80 G0T040

A little library of
special effects.

These can add interest and highlight the points being made.
They should not be allowed to obscure the teaching message
however.

1. Use of GC0L3 in animation.
112

This program illustrates the use of GCOL3 to make one
figure appear to pass behind another. An animated train
enters and emerges from tunnels.

10 REM TRAIN
20 REM De-fine special characters:train

1, train2 and tunnel.
30 VDUZ3,240,0,2,0,226,106,255,255, 115
40 VDU23,241,2,0,0,226,106,255,255,230
50 VDU23,242,255,255,255,255,255,255,

255,255
60 M0DE5:X=0:1=0
70 REM Change palette: 0=cyan l=red

2&3=white
80 VDU19,O,6JOJ19,1,IjO;19,Z,7;0; 19,3

,7?o;
90 REM Draw tunnels in white and print

at graphics cursor. Then draw tracks.
100 GC0L0,Z:VDU5
110 MOVE3OO,500:VDUZ4Z,242,Z4Z,32,32,32,

242, 242: MOVEO, 470: PL0T5, 1279, 470:
MOVEO , 500

120 REM Set up EOR.
130 BC0L3,1
140 M0VEX,500
150 REM Print train
160 VDU24O+I,8
170 FOR pause=l TO 40:NEXT
180 REM Erase train by backspacing and

EOR printing again.
190 VDU24O+I
200 REM Move on a bit.
210 X=X+8

113

220 REM Swap to other image erf train.
230 IF 1=1 1=0 ELSE 1=1
240 IF X>1200 X=0
250 60T0140

2. Using the cursor keys to move a
figure around the screen

This program illustrates the redefinition of the cursor and
COPY keys.

10 M0DE7
20PRINT’“Control the X with the cursor

keys. Make it vanish with the copy
key. Any other key ends the program. "

30PRINT” "Press any key to continue."
40 *FX21,0
50 key$=GET$: CLS: REM erase cursor
60 !8cFEOO=8tlO2OOA
70 P=20:Q=12:A=20:B=12
80 PROCPLACE
90 *FX4,1
100 *FX15,1
110 *FX229,1
120 X = SET
130 *FX229,0
140 ONERROR GDT0230
150 N = 140—X
160 IF N<1 OR N>5 170
170 ON N GOTO 220,210,200,190,180
180 CLSsGOTOlOO

114

190 P=P—1:PROCPLACE:GOTO100
200 P=P+1:PROCPLACE:G0T0100
210 Q=Q+1:PROCPLACE:GOTO100
220 Q=Q-1:PROCPLACE:60T0100
230 PRINT "A CURSOR KEY OR THE COPY KEY

WAS NOT PRESSED: END OF DEMO"
240 *FX4,0
250 FOR delay=l TO 5000:NEXT
260 M0DE7:END
270 DEF PROCPLACE
280 IFP<1 P=1
290 IFP>39 P=39
300 IFQ>22 Q=22
310 IFQ<1 Q=1
320 PRINT TAB(A,B)“ "
330 PRINT TAB(P,Q)"X"
340 A=P:B=Q
350 ENDPROC

3. Three dimensional display

This program shows the use of GC0L1 to produce a three
dimensional “shadow” effect It could be useful for titles, for
example.

10 REM 3—D LETTERING
20 MODES
30 VDU19,0,3,0,0,0,19,1,0,0,0,0
40 PRINTTAB (0,5) “ENTER A MESSAGE"
50 INPUTstring*
60 CLS
70 VDU5: M0VE58,504
80 PRINTstring*
90 GCOL1,1

115

100 M0VE50,500
1L0 PRINTstring*

4. Sideways scrolling

This program scrolls the screen left and right This could be
used to introduce text in a novel way. There are many other
possible applications.

10 REM SCROLL TO AND FRO
20 FOR A = 1 TO 100
30 PROCscroll
40 NEXT
50 FOR A = 100 TO 1 STEP -1
60 PROCscroll
70 NEXT
80 END
90 DEF PROCscroll
100 TIME = O : REPEAT UNTIL TIME = 20
110 PRINTTAB(5,20)A
120 VDU23;13,A;o;o;o;
130 ENDPROC

5. All the spectral colours in a four-
colour mode

This program and the next will interest teachers of Art and
Science.

5 REM SPECT5
10 VDU23,240, 170,85, 170,85, 170,85, 170,85

lie

20 VDU23, 241,85, 170,85, 170,85, 170,85,170
30 VDU23,242, 255, 255, 255,255, 255, 255,

255,255
40 MODES
50 VDU19,O,4;O; 19,3,2;0;16
60 VDU5
70 MOVE7O,990:PRINT"Mode 5 is a -Four
colour mode but here you see all
the colours o-f the spectrum."
80 PROCred
90 PROCorange
100 PROCyellow
110 PROCgreen
120 PROCviolet
130 END
140 DEFPROCred
150 MOVEO,78O
160 FOR X=1 TO 80
170 VDU18;1,242
180 NEXTX
190 ENDPROC
200 DEFPROCorange
210 M0VE0,650
220 FOR X=1 TO 80
230 VDU18;2,240,8,18;1,241,8
240 VDU18; 2, 241,8, 18; 1,240
250 NEXTX
260 ENDPROC
270 DEFPROCyel1ow
280 M0VE0,520
290 FOR X=1 TO 80
300 VDU18;2,242
310 NEXTX
320 ENDPROC
330 DEFPROCgreen

117

340 M0VE0,390
350 FOR X=1 TO 80
360 VDU18j3,242
370 NEXTX
380 ENDPROC
390 DEFPROCviolet
400 MOVEO,130
410 FOR X=1 TO 80
420 VDU18; 0,240, 8, 18; 1,241,8
430 VDU18;0,241,8,18;1,240
440 NEXTX
450 ENDPROC

6. A multi-coloured quilt based on
the mixing of four colours

This M0DE5 program also illustrates colour mixing, and
the changing of the set of four colours from which the
mixing is being done. Some very striking patterns result

10 REM QUILT
20 VDU23, 240, 170, 85, 170, 85, 170, 85, 170

,85
30 VDU23,241,85, 170,85, 170,85, 170,85,170
40 VDU23,242,255, 255, 255, 255, 255, 255,

255,255
50 MODES
60 VDU19,2,4;o;I9,o,3;o;I9,3,2;o; 16
70 VDU5
80 MOVE10,1023
90 PRINT"MODE 5 has 4 colours"

iia

100 MOVEO,97O
110 FOR square=l TO 520
120 PROCcolour
130 NEXT
140 M0VE130, 120: VDU18; 2: PRINT"NOW let’s

try different palettes."
150 VDU19, 2, RND (8) -1; O; 19,0,RND(8)-l;0

S 19, 3, RND (8)-1; Os 19, 1,RND(8)-ISO;
160 delays INKEY(500)
170 GOTO 150
180 END
190 DEFPROCcolour
200 C=RND(4)-1:D=RND(4)-1
210 VDU18S 0,240,8, 18; D, 241,8
220 VDU18;C,241,8,18;D,240
230 ENDPROC

7. Changing the graphics origin

This program draws an outward curling spiral. It is referred
to under “hanging programs” in Section II.

5 REM SPIRAL
10 angle=0:arm=10
20 MODE4
30 REM erase cursor
40 ?8cFE00=10: ?&FE01=32
50 REM change graphics origin
60 VDU29,500;500;
70 REPEAT
80 PLOT69, arm*COSangle,arm*SINangle
90 arm=arm+l. 6: angle=angle+. 1

ns

100 REM program "hangs" if condition is:
angle=10*PI

110 UNTILangle>10*PI
120 M0VE510,-5
130 DRAW10,0

Class demonstration programs

Scene:

A teacher has a class-group of students and is using the
computer to demonstrate a concept (eg in Geography). There
is a verbal introduction, and perhaps a commentary while
the program runs. However, the teacher is present as a
subject specialist, not a computing specialist This is similar
to a teacher showing a film-making. The teacher discusses
the subject of the program and answers questions, asks
questions, provides homework and follows up where appro­
priate. This section deals with the approach and skills
needed when designing programs of this type.

When a computer program might
not be very suitable for group-dems.

When a program involves a lot of thoughtful interaction, many
of the less interested or less capable group members become
bored Some of the others who are interested too often
choose a passive role in the group. There may be other
sociological reasons why the teacher may decide against
showing the program to a group rather than an individual or
pair basis. It is a matter of matching the program to the class.

120

The group-dem situation is not suitable for remedial work,
where the learner must be able to proceed at a suitable pace,
return to an earlier level or seek help without embarrassment
or pressure.

During some programs, values need to be chosen for certain
parameters. Much of the interest generated by such a
program consequences. The learning experience is often of
this trial-and-error nature. For example, in a program on
Emergency First Aid, the student may choose certain actions
in a simulated situation then see what happens to the
“patient”. It may be a biological or perhaps an historical
simulation where there are many variables to manipulate
which affect the outcome. Will the plantthrive? WillNapoleon
now win?

However, group interaction can make a learning experience
much more valuable. The sharing of insights, ideas and
opinions can be very worthwhile. Demonstration to a group
can certainly save time, and requires a minimum of equipment
Some schools use monochrome VDlTs in the computer
room. When a program comes along which makes important
use of colour, a colour TV will suffice for a group showing.

VISUAL REQUIREMENTS

There should be an absolute minimum of text in a group-
dem program. Tests of attention span within groups show
that concentration can quickly diminish after the first
twenty or so words, and less if unfamiliar terms are used. A
recovery cycle usually occurs if a diagram or other non-text
break can be arranged. When text is used, it must be large
enough for all to read. MODE5 on the BBC provides a screen
only 20 columns wide, with 160 x256 graphics spots. Even on

121

a small screen, the letters are large enough for people at the
back of a group to read. The medium resolution produces
dots small enough to be useful but large enough to be visible
from a distance. In the next program the text and effects can
be seen by all members of a group. Try altering the MODE to
MODE*.

10 M0DE5
20 PRINT”" PROJECTILE MOTION**
30 PRINT?"-- *’
40 PRINT” "A projectile is let -Fall from

rest. Thenothers are -Fired sideways."
50 PRINT*’"The sideways speed of each

projectile is constant as it
crosses the screen. *’

60 PRINT” "Horizontal lines aredrawn
to show that the vertical motion is
the same nomatterwhat the sideways
speed is."

70 PRINT” ’ "Press a key to begin **:*FX
21,0

80 key$=GET$:CLS
90 VDU 23;8202; 0;0j O; : REM erases cursor
100 elapsedtime=0:horizspeed=0
110 PRINTTAB(0,30) "Horizontal speed=0"
120 REPEAT
130 delay=INKEY (20-horizspeed) sPROCplot.

point(elapsedtime)
140 elapsedtimeselapsedtime+7: IF horiz

pos>1278 OR drop>880 THEN horizspeed
=horizspeed*1: el apsedti me=O: PRINT
TAB(0,30) "Horizontal speed=";
horizspeed

150 UNTIL horizspeed=99
122

160 END
170 DEF PROCplotpoint (T)
180' hori zpos=horizspeed*el apsedtime: drop

05*el apsedtime*elapsedtime
190 PLOT 69, hor izpos, 1023—drop
200 MOVE 0,1023—drop
210 DRAW horizpos—15, 1023—drop
220 ENDPROC

Another mode which has possibilities for group-dem work is
MODE7 using double-height characters. The next short
program shows this effect, coupled with flashing characters.

10 REM DOUBLE HEIGHT Sc FLASHING
20 ! ScFEOO=&10200As CLS
30 FOR I = O TO Is PRINTTAB(2,10+I)CHR$

136CHR$133CHRS141" HELLO POOR HUMAN!
"s NEXT

40 FOR I = O TO Is PRINTTAB<2,14+1)CHR«
136CHR$131CHR$141" DON’T YOU WISH":

• J NEXT
50 FOR I = O TO Is PRINTTAB 12,18+1)CHR$

136CHR$130CHR$141" YOU WERE AS SMART
"s NEXT

60 FOR I = O TO Is PRINTTAB(2,22+1)CHR$
136CHR$135CHR$141 “ AS MEE ???"sNEXT

Note that two identical PRINT lines are used and code 141 is
invoked. VDU140 turns off the effect The code to initiate
flashing (136), only effects the rest of that line, use VDU137.
However, control characters occupy one screen space, and
we have to overcome this. The main point about these MODE

123

7 control codes is that they never carry on from one screen
line to the next For more details see the 1982 Use Guide,
pages 152,153.

M0DE7 has useful features for group work. For example,
flashing graphics, up to 7 colours, and 64 different graphics
shapes. Also only IK of memory is used, which can be veiy
important when writing a long program that is to run on a
Model A. The double height characters can look rather
skinny, but if you want these other advantages, you may
prefer M0DE7 to MODE5.

Programs appear in magazines from time to time which
produce enlarged characters for any mode.

SOUND

The sound output from the internal speaker is not usually
loud enough for group demonstrations. If a proper interface
to an amplified sound system is not available, a small micro­
phone can be taped over the BBC micro speaker. The signal
from this can be amplified using a record player or tape
recorder. The results are usually reasonable, and manual
control over loudness becomes available.

DOCUMENTATION

What kind of documentation is needed for group-dem
material? Our fundamental assumption is that the teacher
using the program has no knowledge of computers or
programming. The documentation should be in three parts.

124

Installing and running
the program

Explain how to turn on the equipment beginning with the wall
switch. Then describe how to insert the cassette or disc. Now
which keys and buttons to press, not forgetting the ubiquitous
“and press RETURN” which is second nature to us. If the
instruction to CHAIN “name of program” is used, it should
be explained, including holding down the SHIFT key while
pressing the 2 key to get the quote marks. Once again add,
PRESS RETURN. Instruction may be needed on how to
quit the program, especially if the ESCAPE and BREAK
keys have been subverted. Ask also that the keys be tapped
gently. Teachers with a background in manual typewriters
can unwittingly set a poor example to students.

Some of this advice appears to insult the intelligence of the
user. But bear in mind that many people find computers
intimidating. Let's be clear without being condescending.

How to use the program

Explain without any computer jargon the features and
method of using the program. For example, if a joystick or
lightpen is involved, its use must be described. Here we are
talking about the actual mechanics of getting the most out of
the program - what it can do and what it can’t

125

Educational Goals.

These goals need to be clearly stated in such a way that their
achievement can be tested. Too often a programmer becomes
engrossed in mastering a difficult technical objective and
ends up with a very cunning and perhaps innovative piece of
programming which has practically no educational value. A
writer can spend hundreds of hours producing a listing
which from a programming point of view is tight, compact
and logical, only to find a teacher being derisive or even
contemptuous of it (and rightly) from the education viewpoint
This applies particularly to what has become known as
“bells and whistles”. An effect which is cute when seen for
the first time becomes very wearing when repeated often.
The sounds and colours and flashes must serve the edu­
cational ends, not get in their way.
If possible within available memory, it is a good idea to
include in the initial program menu, an option to produce a
hard-copy of the instructions. Sometimes printed material
supplied with a program is lost Other people are deterred by
a large slab of text on a video screen. They feel more at home
with a paper copy which they can peruse without the
insistency and urgency which they attach to the bright
screen. There is a difficulty here in that printers vary in the
codes needed. The program may need to be modified by a
programmer in the school, to adapt it to the needs of the
resident printer, in conjunction with the printer manual.
Every printer presents some problems. For example, with the
EPSON printer, a “form-feed” occurs if it comes across a
CLS statement (VDU12) in the wrong place.

126

Writing programs to be used
by individuals or small
groups.
Scene:

A teacher has a class-group sitting singly or in small groups
at BBC computers into which programs (not necessarily all
the same) have been loaded. The students may have been
given printed documentation or other preparation. They will
be working on the program at their own pace and should
need minimal advice on the actual running of the program.
The teacher’s main input will be to discuss teaching points
arising from the program. The teacher does not necessarily
know anything about computing. This section deals with the
approach and skills required when designing programs of
this type.

Identify a need.

There are many programs which drill maths tables, and
plenty of versions of “Hangman’.’Some programming ideas
have become cliches. Let’s try to develop a creative attitude
amongst educational programmers, unlike the notoriously
derivative approach in the “games” field. Another less
desirable type of educational program is the “shoot-em-
down” type, where aggression and violence are used as
motivators. Calling the targets “aliens” or “droids” is a
feeble ploy. Surely we don’t aim to teach this six-gun
approach as a mature way of dealing with problems.

127

As teachers we need to look at our student community. What
are their needs and aspirations? What problems do they
have which a computer program could best solve?

A computer is a marvellously adaptable teaching aid. We are
able to cater for students differing abilities and interest
levels. If forced to form small groups rather than teach
individuals, make the groups as homogeneous as possible.
Every member of the class should be able to work at their
own pace, and find this both stimulating and rewarding.

The time factor.
At the outset we must consider how long our “typical
student” will be able to, or wish to spend with the program.
This will very strongly affect our aims. Commonly a remedial
type of program will be designed to run for about half a
lesson. This can then be followed by something quite
different At the other end of the scale, a program may be so
engrossing that several lessons may be required to exhaust
its possibilities. A program of this type may need a mechanism
which saves the variables so that it can be resumed at the
same point in a later lesson. This facility is bound to become
very common. In this book there are two examples of
programs which can be used with individuals. One is a
remedial type program called “Directed Numbers” and the
other is an open-ended holistic simulation called “Sheep
Station”.

Whatever the length of the program we are designing, there
must be a few clearly defined aims. These need to be
expressed in ways which allow their achievement to be
judged reasonably objectively.

128

Reward and correction.

When writing an interactive program for an individual
student there may be moments when encouragement or
correction is called for. This happens particularly with
remedial programs. Here we must distinguish between
recognition of a good standard, and praise. Most commonly,
what happens in remedial computer programs is hypocrisy,
and recognised as such by students. The program usually
asks for the student’s name, stores it in a string (say names).
This string (bona fide or note) is then used in such
statements as “That is fantastic”; names; “you got”; score;
“out of ”; maximum;”!”

Of course the program has no way of knowing if the score
(say) 8 out of 10 is really “good” for that student or not For
one student 8/10 is a poor effort For another it may
represent a magnificent achievement (Or perhaps, with
some programs, magnificent luck.) The point is that a
program, being 100% objective, should only print out objective
remarks. Indeed, this is one of the great strengths of a
computer as a “teacher”. It does not prejudge the student nor
react subconsciously as people do. This does not mean that
an encouraging remark is not possible. For example, if
successive tries by “nameS” reveals an improving score, the
program can point out something like:
In the last five tries, your score has improved from53% to
78%, Jo.

Corrections should be objective and constructive. “Well you
did it again, Dummy!!!” and “Only a real TURKEY does that
!!!” hre typical of the negative superior remarks which have
no place in education. We have already seen the tragic result
when a depressed boy blundered during a game of “Dungeons

12S

and Dragons” program and could not cope with the conse­
quences to his “Game character”. The first line of our brief
as teachers, has to be “Don’t do harm.”

Most writers on the subject of correction, rightly point out
that a learning failure should not be “rewarded” by a
stunning sound and/or graphics display. One mathematics
program I saw, portrayed the student in a small boat If the
student scored less than 50%, a colourful battleship labelled
“GODFATHER” sailed onto the screen and firing a series of
noisy salvoes, sank it Whenever this was happening, students
came from all over the room to see it The lad was initially
highly embarrassed,.but was soon “failing” deliberately to
gain attention. By contrast, a successful student reached the
far shore and was rewarded by a silent line of print:

Well done Veronica, you have been promoted!

Remedial and Extension
programs.

Due to the size and non-homogeneous nature of most
classes, teachers are usually forced to teach to the middle­
ground of ability. The weakest students often do not grasp all
the ideas, or only partially understand them, these people
are notnecessarily weak intellectually. For some, the traditional
classroom is not a suitable learning environment. Others are
simply not “ready” to learn a particular concept or skill. For
others there are psychological barriers preventing progress.
Another group may have missed some schooling through
illness or a crisis in the family. There are many other
possible reasons for offering remedial work. This includes, it
must be said, the ineptitude of some teachers.

190

When writing a remedial program, decide whether you are
writing for an intellectually slow student, or one who fits into
another category. It is easy to insult the intelligence of the
person using the “remedial” program. The student may be
brighter than you are, but need help due to absence from
lessons because (say) the family was relocated in another
country. We need to widen our concept of “remedial”.

It is usually essential in a remedial program, to give control
of the rate of progress to the student We should be seeing
instructions like
“Press C to continue.”
“Do you want to try more examples of the type, or to move
on?”
“Do you want to skip the next section?”

In a remedial program, the privacy and dignity of the student
needs to be preserved. No “bell or whistle” should announce
to others in the room that the student is not coping too well.
We should make the usage of the program straight-forward,
and not an intelligence or perserverance test in itself
Otherwise many slower students will “turn off”.

The remedial program should afford the learner a feeling of
accomplishment, of progress toward an easily recognised
goal. Without that feeling of success there is little enjoyment,
and motivation drops away.

At the other end of the success scale are those students
equally ill-served by the “middle-ground” approach. These
people are often bored by their lessons, particularly if they
have to sit through repetitious explanations until the whole
class-group has “caught-on.” Often these students are a
behaviour problem. They are seeking a challenge out of
sheer desperation In any case, there is a great waste of

131

human potential The “individual” computer learning program
should be yet another resource to which the gifted student
can turn. Earlier we discussed giving control of the pace of a
remedial program to the learner. To extend the gifted
student it may be apropriate for the program to set the pace.
Pace can be a challenge, as seen in some of the world's most
popular arcade games. However the use of pace and
acceleration should be developing acuity and not simply
agility.

User testing and the handling of
suggestions.

When you have decided to stop refining or enhancing your
program, and you think it is free of bugs, it should be “user
tested”. This is the best way to find out if those input routines
you wrote are as robust as you think. You will also find out
just how “helpful” your instructions really are.

When choosing your “guinea pig” user, pick someone
without computer experience. Your computing colleagues
make poor guinea pigs because they will tend to unconsciously
draw on their computing background to make your program
work, over-riding any flaws. Also, the user should be a
typical “target student”. Otherwise they may not appreciate
the points you are trying to make. You will not be able to see
if the program is educationally effective.
When you have given the user the program, watch from a
distance. Do not offer any advice which you will not be
giving routinely every time the program is run. It is one thing
to manage a single user, but soon you may have a class full of
them. So ideally the documentation or instructions should
enable the program to be used without any intervention at
all.

132

A common fault with interactive programs is the use of a
mixture of INPUT statements and single-key inputs like
GET. Often the user will not know whether to press
RETURN or not If you do need to help, make careful note of
the areas which may need clarifying or correcting. If the
program crashes, note the line number and perhaps print
out the variables.

The most common cause of a crash during user testing is a
leaky input routine. When programming, one knows the
type of values necessary. The user may enter a number
outside the permitted range, or type a letter instead. A novice
at the keyboard is also more likely to accidentally drop into
lower case or touch ESCAPE instead of 1 or BREAK instead
of©.
Remedies for these were discussed earlier. Ask for criticisms
and suggestions in writing if possible, but don’t expect an
essay. You should be looking for frank but explicit comments.
“The program was stupid.” (or ’’terrific”) is not much help.
The most common request is for more versatility, more user
choices.

You need to be prepared to find that the program should be
scrapped. Keep your ego out of it, despite the many hours
you may have spent On the other hand, it is wonderful to
write a program which students are excited about, and
grateful for. That will soon be happening far more often than
not

133

10 REM Don Thorpe 1983
20M0DE5
30VDU23,240,126,0,0,0,0, 0, O, 0
40VDU23,241,0, 16,0, 124,0, 16,0,0
50PR0Cname
60 DEF PROCname
70 CLS: PRINTTAB (2, 5) 5 "DIRECTED NUMBERS"
80PRINT” ” "PLEASE ENTER YOUR NAME %

IF YOU WANT TO,"J
90PRINT"AND PRESS RETURN, OR JUST

PRESS RETURN"*
100N«=""
110INPUTN*
120N$=N$+"!":CLS
130PRINTTAB (0,5) 5 "HELLO "; NS
140 PRINT TAB (2,10) "PRESS A S M OR D
TO CHOOSE FROM s"
150PRINT’’"ADDITION”
160PRINT*"SUBTRACTION"
170PRINT”"MULTIPLICATION"
180PRINT’"DIVISION"
190B$=INKEYS (O) 8 IFBS=“ "THENR=RND <1)8 GOTO

190
200 IFB$=" A"ORBS="a"THENPROCaddi ti on
210 IF BS="S" DR BS="s" THENPROC

subtraction
220 I FB$="M"ORB$=" m" THENPROC

multiplication
230 IF BS="D"ORBS="d"THENPROCdivision

ELSE 140
240ENDPR0C
250 REM******************
260DEF PROCaddition
270R=0:N=0
280 X = 10—RNDC20) s IFX=O THEN 280

134

290 Z = 30—RND(60)
300 IF RND(l) <.5 THEN A=X : B=Z 3 GO

TO 320
310 B=X : A=Z
320 U*=STR$ CABS (A)) s V$=STR$(ABS(B))
330IFA<0THENA*=CHR$ (240) +U«s G0T0350

340A«=STR«(A)
350IFB<0THENB$=CHR$ (240) +V«s G0T0370
360B$=STR$(B)
3700$=A$+" + “+B$
380 PROCenter
390 Z=A+B:PROCcomment
400G0T0280
41OENDPROC
420 REM************
430DEF PRQCsubtraction
44OR=O:N=O
450 X = 10—RND(20) s IFX=O THEN 450
460 Z = 30—RND(60)
470 IF RND(l) <*5 THEN A=X s B=Z 3 GO

TO 490
480 B=X s A=Z
490 U«=STR$ (ABS(A)) s V»=STR« (ABS(B))
5OOIFA<OTHENA$=CHR« (240) +U»s 60T0520
510A$=STR$(A)
52OIFB<OTHENB$=CHR$ (240) +V*3 G0T0540
530B$=STR»(B)
5400$=AS+" - "+B$
550 PROCenter
560 Z=A—B:PROCcomment
570G0T0450
5B0ENDPR0C
590 REM**************
600DEF PROCmultiplication
61OR=O:N=O

135

620 X « 10-RNDC20)
630 Y = 10—RND(20)
640 IF RND(l) <.5 THEN A=X : B=Y s GO

TO 660
650 B=X : A=Y
660 U*=STR$(ABS(A)) : V»=STR$ CABS (B))

670IFA<0THENA$=CHR* (240) +U$: GOTO69O
6B0A$=STR$(A)
690IFB<0THENB$=CHR$ (240) +V$: G0T0710
700B$=STR$(B)
710Q$=A«+" X "+B<
720 PROCenter
730 Z=A*B: PROCccomment
740G0T0620
750ENDPR0C
760 REM***************
770DEF PRDCdivision
7B0R=0:N=0
790 A = 100—RND(200)
BOO B =10—RND(20) : IF B=0 THEN 800
810 IF A MOD BOO THEN A= A +l:G0T0810
B20 U«=STR$(ABS(A)) : V$=STR«(ABS(B))
830IFA<0THENA*=CHR$ (240) +US: GDTO85O
840A«=STR$(A)
B50IFB<0THENB«=CHR« (240) +V«:GOTO87O
860B«=STR$(B)
870Q«=A«+" "+CHR$(241)+" “+B»
8B0 PRDCenter
890 Z=A/B:PROCcomment
900G0T0790
910ENDPR0C
920 DEF PROCenter
930N=N+l: IFN=1 ITHENPROCmor estop
940CLS:PRINTTAB(4,5)"NUMBER ” ; N
950PRINT” Q», "="

136

960PRINT” "ENTER THE ANSWER ANDPRESS
RETURN"’

970INPUTCS
980IFC$=""THEN940
990C=VAL(C$)■C$=""
1000 ENDPROC
1010 DEF PROCcomment
1020 IF C <> Z THEN 1060
1030PRINT
1O4OSOUND1, -15, 23, 6: SOUND 1, -15,71,4
1050R=R+l: PRINT"CORRECT!" ’ 8 G0T01090
1060PRINT’"INCORRECT THIS TIME."
1070 PRINT’"THE ANSWER IS "JZ
1080 IF ABS (C) =ABS (Z) THEN PRINT’"ONLY

THE SIGN IS WRONG."
1090 PRINT’"SCORE ";R;" OUT OF ";N
1100IFN>9THENPR0Cmorestop
1110PRINT” "PRESS SPACE TO GO ON"
1120L$=GET$sIFL*< >" "THENl120
113OENDPROC
1140 DEF PROCmorestop
1150 PRINT’“FINISHED ";N$
1160 PRINT’"FOR ANOTHER GO PRESS Y"
1170 JS=GET«
1180IFJ*="Y"0RJ«="y" THEN 50
1190CLS: PRINTTAB CO, 4) "GOODBYE "; N*
1200PRINT’"! HOPE YOU HAVE MORE"
121OPRINT"SUCCESS WITH"
1220PRINT’"DIRECTED NUMBERS"
1230PRINT’"NOW!!!"” ’
1240 END
1250ENDPR0C

137

10 M0DE7
20 PRINT”'******** SHEEP STATION

»«««««"
30 PRINT’TAB (8,8) "By Don Thorpe"
40 PRINT” ’ "Do you want instructions?

(Y or N>"
50 *FX21,0
60 ins$=GET$: IF ins«="N" OR ins»="n"

THEN 200 ELSE PROCinstru
70 G0T0200
80 PRINT" JANUARY "s RETURN
90 PRINT" FEBRUARY "8RETURN
100 PRINT" MARCH ": RETURN
110 PRINT" APRIL ": RETURN
120 PRINT" MAY ": RETURN
130 PRINT" JUNE RETURN
140 PRINT" JULY "s RETURN
150 PRINT" AUGUST ":RETURN
160 PRINT" SEPTEMBER "sRETURN
170 PRINT" OCTOBER "sRETURN
180 PRINT" NOVEMBER "8 RETURN
190 PRINT" DECEMBER ": RETURN
200 M0DE5
210 REM Set up windows, redefine palet
te, suppress cursor, define special char
acters
220 REM 224 fox, 225 sheep, 226 rabbit,
227 deads, 228 deadf, 229 deadr
230 REM colours 0 green, 1 red, 2 yel

low, 3 white
240 VDU23,224,0,64, 132, 136, 140,254,72,
72, 23, 225, 0, 0,0, 60, 255, 127, 125,37,23, 226
, 0, 8, 8, 8, 28,48, 112, 56, 23, 227, O, O, O, 36,36
,124,255,63

138

250 VDU23, 228, 0,0, 0,0, 40, 40, 102,253,23
,229,0,0,0,0,4,2,59,255,19,0,2,0,0,0,23;
B202;0;0;Q;17,2
260 VDU28, O, 26, 19, O, 12,24, O; O? 1279; 170

;18,0,130,16
270 REM INITIALISE
280 year=1: month=0: sheep=l4000+RND (900
) : begi n=sheep:-Foxes=200+RND (50) :rabbits8
8000+RND(999) : pasture=sheep+RND (999) +150
0: weather=0: capi tai=100000: store=2000-RN
D (999): priceb=20: -Feed=0: reward=0: bales-F8
0
290 REM START OF MAIN LOOP************

300 IF sheep>pasture THEN sheep=pasture

+-F eed
310 feed=0
320 weather=weather—2+RND(3):IF weather

<-3THENweather=-3
330 IF weather>3 THEN weather=3
340 IF month<9 THEN season=nionth+4
350 IF month>8 THEN season=month-8
360 pricesheep=4+RND(6)+season*2
370 interest=INT (capital*. 01) :capital8

INT(capital*!.01)
380 pasture3 INT (20000* (l+weather/30)*
(1—rabbi ts/80000)): IF pasture<6000 THEN
pasture=6000+RND(500)
390 IF pasture>40000 THEN pasture=4000

0:weather8—2
400 n-Fer= f ox es*r abb its/ (rabbi ts+sheep
) : rabbits=INT((rabbits—10*nfer)*1.12) is
heep=INT (sheep—foxes+nf er) : IF rabbits<2
THEN rabbits=2+RND(20)

139

410 IF sheep<50 THEN PROCend
420 month=month+l s IF month=13 THEN m
onth=l : year=year+l: IF year=6 THEN PRO
Cend
430 PROCdisplay:PROCwindow
440 *FX21,0
450 REM Disable escape key with *FX229

,1 and re-enable with *FX229,O
460 option=GET : IF aption<48 OR option

>57 THEN 460
470 REM killr,kill-F,buys,sells,blank,

buy-F, NOact ion, blank, blank, resign
480 ON option-48 GOTO 490,500,510,520,

530,540, 300, 460, 460ELSE550
490 PROCki 11 r: PRO Cd i splay: G0T0440
500 PROCki 11 -F: PRDCdisplay: GOTO44O
510 PROCbuysheep : PROCd i sp 1 ay : G0T0440
520 PROCsel 1 sheep : PROCd i sp 1 ay: GOTO44O
530 PROC-Feeds:PROCdisplay:GOTD44O
540 PROCbuyf: PROCd i sp 1 ay : GOTO44O
550 C0L0UR1: PRINT TAB(0,22)"Do you re

ally want to resign? (Y or N) " •
560 resign$=GET$: IF resign<="Y" OR res
ign$="y" THEN CLS:CLG: END ELSE COLOURS:
VDU31,0,22:PRINT"

" : VDU11,11: COLOUR2:
GDT0440

570 REM END OF LOOP*******************
«*#*«

580 DEF PROCwindow
590 VDU5,25,4,0; 157; 18; 1: PRINT" 1 ";:VD
018;0:PRINT"Ki11 ";CHR$226;" ";:VDU18;1:
PRINT" 6 ";: VDU18;0:PRINT"Buy -Feed";:VDU
18;1:PRINT"2 ";:VDU18;0:PRINT"Kill ";CHR

140

$224; •• ";:VDU18;1:PRINT" 7 ";sVDU18;0sPR
INT"Inaction";
600 VDU18;1:PRINT"3 s VDU18;0sPRINT"B
uy ";CHR*225;" :VDU18; 1 :PRINT" 8 "?:V
DU18;O:PRINT" ";:VDU18;1:PRINT"4

: VDUlS;O:PRINT“Sell ";CHR*225;" ";sVDU
18; 1 sPRINT" 9 "; :VDU18;0:PRINT"
;
610 VDU18; 1:PRINT"5 ";sVDU18;0:PRINT"F
eed ";CHR*225;" "; :VDU18; 1 sPRINT" O ";:V
DU18;Os PRINT"Resign"
620 VDU4
630 ENDPROC
640 DEF PROCend
650 CLS
660 IF sheep<50 THEN VDU7s PRINT"The s
heep populationhas vanished and so shoul
d you!!"
670 IF sheep<2000 THEN PRINT"What grudge

have you against sheep?"
680’ IF capital<-100000 THEN P .’"You

don’t handle money too well."
690 IF sheep>begin THEN reward=INT(Csh

eep—begin) *10 + capital/15)
700 PRINT’"Your payment for five ye

ars of work ="
710 PRINT"*";reward
720 END
730 ENDPROC
740 DEF PROCdisplay
750 VDU12: PRINT" YEAR ";year;" ";
760 ON month GOSUB 80,90,100,110,120,

130, 140, 150, 160, 170, 180, 190

141

770 PRINT"--------------------------------------"
780 IF month=9 THEN VDU31,11,6:PRINT"!
Deluding": VDU31,12,7: PRINT'Toxcubs" : VDU3
1,12,8:PRINT"* Lambs":-Foxes=INT (-Foxes*!.
4) : sheep=INT(sheep* 1.75): G0T0830
790 -Fate=RND(60):IF -Fate>3 THEN 830 EL
SE VDU31,10,6: C0L0UR1 sPRINT" A disease":V
DU31,10,7:PRINT"broke out":VDU31,10,8:PR
INT"resulting":VDU31,10,9:PRINT"in ";
800 IF Fate=l THEN C0LDUR2: PRINTCHRS22
9:PRINT;:rabbits=RND (10) +INT (rabbits*(2+
RND(7))/10)
810 IF fate=2 THEN PRINTCHR$228: PRINT;

:-Foxes=RND (6) +INT (-Foxes* (4+RND (5)) /10)
820 IF -Fate=3 THEN C0L0UR3: PRINTCHR$22

7:sheep=INT (sheep*(7+RND (2)) /10)
830 C0L0UR2: PRINT TAB (0,3)" There are
now: ": C0L0UR3: PRINTTAB (1,5) CHR» (225) ; "
" ; : C0L0UR2: PRINT; sheep: COLOUR 1: PRINTTAB

(1,7) CHR$ (224) ; " "; : C0L0UR2: PRINT; -Foxes:
C0L0UR2:PRINTTAB (1,9) CHR$ (226) ; " " ; rabbi
ts
840 PRINT’"Pasture now supports";
850 PRINT;pasture; :C0L0UR3: PRINT" "CHR
«(225) ;:C0L0UR2:PRINT" So ";:IF sheep>pa
sture THEN PRINT; sheep—pasture ELSE PRIN
T"none"
860 PRINT"will starve without extra -Fe

ed."’
870 PRINT"Interest payment this mon

th= ♦";interest
880 C0L0JJR3: PRINT"Your present balanc

eis $";capitalSC0L0UR2
142

890 PR I NT11 Maxi mum allowable debt is
♦200,000"

900 ENDPROC
910 DEF PROCkillr
920 COLOUR!SPRINT TAB(0,22) "Hunters ch
arge S500 visiting -Fee plus Slbounty per

"CHRS229
930 C0L0UR3: INPUT "How many dead rabbits

do you need",deadr
940 IF deadr>rabbits OR deadr<0 THEN 9

30
950 rabbi ts=rabbi ts—deadr s capi tai scapi
tai—deadr—500: IF rabbits<2 THEN rabbits=
5+RNDC14)
960 ENDPROC
970 DEF PROCkill-F-
980 COLOUR! : PRINT TAB (0,22) "Hunters c
harge *500 visiting -Fee plus $20 bount
y per "CHRS228
990 C0L0UR3: INPUT “How many dead -Foxes
do you need",deadf
1OOO IF dead-F >-Foxes OR deadf<0 THEN 990
1010 foxes=Foxes-dead-F: capital =capitai—
dead-F—500: IF foxes<2 THEN f oxes=l+RND(4)
1020 ENDPROC
1030 DEF PROCbuysheep
1040 C0L0UR3: PRINTTAB (0,22) "At present
sheep areselling -For pricesheep
1050 INPUT“How many do you wantto buy?"
i ncsheep : cap i tai =capi tai —i ncsheep*pr i ces
heepsIF capitai<—200000 THEN PROCend
1060 sheep=sheep+incsheep

143

1070 ENDPROC
1080 DEF PROCsel1sheep
1090 C0L0UR3: PRINTTAB(O,22)"At present
sheep areselling -For ♦"5pricesheep
1100 PRINT "How many are you selling?"
1110 INPUTdecsheepsIF decsheep>sheep OR
decsheep<l THEN 1110
1120 sheep=sheep-decsheepscapital =capi t

al +decsheep*pr icesheep
1130 ENDPROC
1140 DEF PROCfeeds
1150 C0L0UR1:PRINT TAB (0,22) "At present
number of bales stored®";store
1160 PRINT"Hpw many will you -Feed your

sheep?"
1170 INPUTfeed
1180 IF feed>sheep—pasture THEN ,feed=sh

eep-pasture
1190 ENDPROC
1200 DEF PROCbuyf
1210 C0L0UR1 SPRINT TAB(0,22) "One bale 1
asts 1 "; : COLOUR3: PRINTCHRS225; : C0L0UR1:
PRINT" 1"5
1220 PRINT"month, cost=$";priceb
1230 PRINT"You are storing";store
1240 INPUT"How many wanted?“bales-F
1250 C0L0UR2'
1260 capital=capital-balesf*pricebs store

=stor e+bal es-F
1270 ENDPROC
1280 DEF PROCinstru
1290 CLS SPRINT ’"You are managing a shee
p station -For a
aim is to build
ation. You have

-Five year period. Your
up the wealth of the st
$100,000 in the bank, a

144

nd may overdraw the account up to $200,
000. "
1300 PRINT’"In time of severe weather o
r rabbit plague, you will need to bu
y extra feed.This can be stored too."
1310 PRINT’ "Sheep can be bought and sol
d. Market factors determine prices, w
hi ch usually rise as September (lambing)
approaches."

1320 PRINT’"You will receive monthly re
ports. If thefarm survives five years yo
u will be paid an amount which depend
s on the sizeof the flock, and the balan
ce in the bank. GOOD LUCK!"
1330 *FX21,O
1340 PRINT’’ "Press any key to continue.11
1350 FOR del ay =1 TO 9000:NEXT:key$=GET$

1360 CLS:PRINT’"The animals"
1370 PRINT"
1380 PRINT"The sheep breed once a year.
They compete with the rabbits for
the available pasture, which var
ies with the weather. Both species sh
are a common enemy, the fox.”
1390 PRINT’"Foxes have one litter a yea
r. However, the rabbits breed the whole
year round."

1400 PRINT’"Diseases can break out whic
h affect one or more of the species.Shee
p and rabbitscan both be affected by a p
lant disease.Rabbits and foxes can be

145

affected by diseases against which the
sheep have been innoculated."

1410 *FX21,0
,1420 PRINT’ ’ “Press any key to continue."
1430 FOR delay=l TO 9000:NEXT:key*=BET«

1440 CLS: PRINT’"Strategy"
1450 PRIh/T"_________ "’
1460 PRINT"There are various ways to ga
in wealth. Some prefer caution. Others
opt for big flocks and matching overdraf
ts. Some buy and sell sheep a lot."
1470 PRINT’"It is impossible to wipe ou
t the rabbit sand foxes completely. Some
are wily. Some develop immunities. Al
so, rabbits and foxes will enter from s
urrounding properties."
1480 PRINT’"If you remove too many rabb
its because they are eating the sheep’s
pasture, thefoxes will eat more sheep.

If you kill too many foxes because they
eat your sheep, the rabbit populatio

n will boom."
1490 #FX21,0
1500 PRINT” "Press any key to continue.

":key$=BET$
1510 ENDPROC

146

SECTION IV -

Designing a custom
program for a non­
computing colleague.
Scene:

A non-computing colleague with specialist knowledge of
subjects different from yours, asks for help to produce a
program on a certain topic. It might be for example “wave­
action” in Geology. This section examines ways of co­
operating to produce a program which is both educationally
sound and efficiently designed. Also, a need often arises
outside the areas of particular subjects: the handling of lists,
marks records etc. How should this be dealt with?

Establishing realistic
expectations
People unfamiliar with computers often have quite unreal
expectations of a school computer. Here are some that I have
come across.
A student wants to turn the computer on and type in a
request for information about a certain Test Cricket match
in 1980.

147

A teacher wants it to tell him the most likely winner in a
horse race.
A parent wants her child to have access to the computer at
lunch time to catch up on school work missed due to illness.
A teacher has morbid fears that the students will use the
BBC computer to find out the credit ratings of the teachers.
Amusic teacherwhohas never touched a computer sends a
child around to borrow one so that she can demonstrate
computer music to the class she is taking.

A gentle re-education

How can one explain to non-computerist people what a
computer is and is not? What is a “program”? There are
many excellent books written in a language suitable for
beginners which describe how a computer works. Here are a
few points useful for discussion with a non-computerist
colleague.

A computer is not an “electronic brain”. It has no intellect.

Typically, a microcomputer has two types of memory. One is
ROM, the “book of rules” set down by the designers, by
which the machine operates. It cannot be altered by the user.
The other type of memory is RAM, which is available to the
user. Information can enter RAM in many ways, including
the keyboard, tape, disc and modem RAM is cleared when
the machine is turned off.

Hence a BBC computer will not become “wiser” or more
knowledgable with use. Itis like the human brain however in
that it can only provide information which is a combination
of that which is in ROM (the “sub-conscious) and currently
in RAM (“conscious memory”)

148

How does one describe what
"BASIC’ is?

The computer is in part a number arrangement of locations
which have either a “high” voltage level or not This is a
“binary” situation like yes/no or on/off. Mathematically
such a system only needs two digits, 0 and 1. The computer
operates at this level, but for us to communicate with it using
zeros and ones, is slow and tedious. It is usually only done by
ROM designers, and only when they can’t avoid it A
language like English is too complex and irregular to be a
computer language. It is necessary to invent a highly
restricted version of English (or Russian or whatever) with
an utterly unambiguous syntax and a vocabulary of only a
few hundred words, known as “keywords”. Such a language
is called a “high-level” computer language, other examples
being forth and Pascal. BBC BASIC is quite “high” as
computer languages go, but still very much based in favour
of the machine. It is a meeting place for the human and the
machine.

Many non-computing people believe that programming in
BASIC is very mathematical. This frightens those who
struggled with mathematics as students. However there is
usually only a little simple arithmetic involved in BBC
BASIC (calculating a screen position for example). Of
course if a program is written on a mathematical topic, there
is a wide range of mathematical abilities in the machine, and
then one needs mathematical skills. Hence learning BASIC
is at first more like learning a tourist version of a foreign
language than embarking on a new branch of mathematics.
The main requirement when communicating with a computer
in BASIC, is to tell it exactly what you want done, in
language it understands.

149

Producing a program, in whatever language, is not like
cooking scrambled eggs, where mistakes cannot be undone.
A program can be repaired, improved and extended until it
is excellent This makes it a very appealing and rewarding
activity for many people.

Crystallize the aims of the program.

When conferring with a non-computing colleague over the
production of a program, the following can be used as a
guide.
1. What are the educational characteristics of a typical

“target student”? How long do you envisage them
spending with the program? What do you expect the
student to gain?

2. Is the program to be multi-level, or have no choice of
difficulty?

3. Do you want the program to present identically for
every run, or to be different each time?

4. Is it the type of program which the student is intended
to use once only, or repeatedly?

5. Is the program to be demonstrated by a teacher or used
by small groups or individuals?

6. Will you expect the program to “stand alone” or be
supported by a supervising teacher, printed matter or
other assistance?

7. Is the nature of the work to be covered remedial, course
work, or extension work?

8. Do you want the name of the student entered?
9. Do you want the program to keep some kind of score?
10. Will you need the program to interact with a printer?

150

Your colleague’s program may need
some special characters.
They may be meteorological symbols, or furnishing symbols
for a house design, little symbols for statistical graphs, or
perhaps dice which roll across the screen.

These characters can be designed by your colleague on an 8
x 8 grid, or combination of such grids. You can then encode
them and use VDU23, as shown in the “Sheep Station”
program.

There may be more involved than just designing the special
characters. For example, the characters of a foreign alphabet
may need to be printed on the screen vertically, beginning at
the bottom right

A graphic presentation of scientific apparatus can be built
up from special characters and then animated. For example,
a flask might be represented, with its contents gradually
boiling away. A bunsen flame beneath it could be represented
and graphically adjusted from inside the program, with a
corresponding change in the boiling action of the liquid.

Involve your colleague as much as possible at every stage
and see if you can “demystify” what you are doing as you go
along.

Testing the effectiveness of the
program.

Although this topic was discussed in the previous section,
there is a distinction to be made in the present context Since

151

we are assuming that the subject area of the program is
outside yourprovince, we need to divide effectiveness testing
into two parts:

1. The effectiveness of the program in translating your
colleague’s ideas into a good teaching aid.

2. The educational soundess of those ideas. Evaluation of the
second part is in the hands of your colleague. You will
need their frank opinions on the first part

The overall worth of the program will be decided by its
effects on the students and teachers who you hope will use it
It may or may not have Clever graphics, sound etc. It may or
may not make a significant educational statement It must
not be boring.

Aids to classroom and school
management

Computerist teachers will be asked more and more to write
programs useful in the area of general administration.
Heads and staff in schools are discovering the speed and
efficiency of programs which print names in alphabetical
order, or keep library, sporting or academic records, or
handle timetable and roster chores. People can be spared
many routine tasks and their creative energies used much
more beneficially in the school.

The documentation needed with programs of this type was
discussed in section III. It could be summed up as follows.
Take the risk of insulting the intelligence of the user, by
explaining every detail simply. When people first learn to
drive or solder or thread a needle or cook a meal, unfamiliarity

162

can make them feel awkward, confused even harassed, yet
quite dim and clumsy individuals often become proficient at
all these things. It may be appropriate to produce a “Beginner’s
Guide” to accompany your disc or tape.

Sometimes a program is available cheaply from commercial
sources. A filing system is a good example. It is poor
economics for a teacher to spend a hundred hours ‘re­
inventing the wheel”. The result often compares unfavourably
with the professional product It can even cause ill feeling on
a staff. In one instance a faulty filing program designed by a
teacher, destroyed a list of names and addresses of old
scholars. Foolishly, no other copy had been kept

In any case, your computing time as a teacher is much more
fruitfully spent in educational areas.

Here are two programs to help with the handling of marks
and names.

IO REM MARKS
20 REM Don Thorpe 1983
30 REM
40 REM INITIALIZE
50 DIMentry (50) : sum = 0 : del ay = 40

: marknum = 1 : loud = —6 : onpaper=0
60 PROCinsl
70 MODE 4
80 VDU23; 8202; O; O; 0?: REM Turn cursor off
90 REM Disable ESCAPE key.
100 REM Disable BREAK key.
110 PROCenter
120 PROCprintern
130 PROCanykey
200 DEF PROCinsl

153

210 CLS
770 PRINTTAB (0, 1) "********** TEACHER’S

FRIEND *********"
230 PRINT’" by Don Thorpe 1983"

240 PRINT"---

250 PRINT" This program adds and aver
ages marks, and arranges "them in descend
ing order."
260 PRINT’* Marks -From 0 to 100 can be
entered, including hal-F marks."
270 PRINT’" The RETURN key is only us
ed to correctentries. When entering a tw
□ digit number, do not pause unduly

between the digits. Hal-F marks are
added by typing a -Full—stop.”
280 PRINT’" For a relaxed rate o-F ent
ering marks, press R. For rapid entry, p
ress any other key."
290 *FX21,0
300 relax* = GET* s IF relax* = "R" THEN

delay = 200
310 ENDPROC
320 DEF PROCenter
330 VDU2B,0,31,39,7, 17, 1,17, 128,24,0; 8
oo; 1279; 1023; 18,0,0, 18,0, 129, 16,5, 18;0,2
5;4,5o;ioio;
340 PRINT"Press I i-F entry was incorre

ct. "
350 M0VE50,970 : PRINT“Press F when -Fi

nished.11
360 MOVE5O,93O s PRINT"_Press . to add

154

.5 to the last entry."
370 MOVE5O,89O : PRINT"Press •* to turn

sound on or off."
380 M0VE50,840 : PRINT"*** Or type in

the next mark. ***"
390 VDU4
400 PRINT’"Please enter mark number "5

marknum
410 *FX21,0
420 digitIS - GETS
430 IF digitIS >= "0" AND digitlS <= *

9" THEN 490
440 IF digitlS = "I" OR digitlS = "i"
THEN marknum = marknum —1 : VDU11,11,7 :

PRINT’" ** Let’s try again. ** "’s G
OTO 400
450 IF digitlS = "F" OR digitlS = "f"

THEN marknum = marknum —Is ENDPROC
460 IF digitlS = "." THEN marknum- mar
knum—1 : entry (marknum) =entry (marknum)+.
5 : VDU11 : VDU11 :GOTO 530

470 IF digitlS « "~" THEN loud = - lou
d : PRINT’ "Sound status changed as reque
sted."’
480 G0T0420
490 digit2S = INKEYS (delay) : IF digi

t2S = •••• THEN 510
500 IF digit2S < ’ "0" OR digit2S > "9"

THEN 490
510 entry* = di git IS * digit2S : entry

(marknum) = VAL(entryS)
520 S0UND&0201,loud,40,5 i S0UND&0202,

loud,68,5 : S0UND&203,loud,93,5

155

530 PRINT’sentry(marknum) $ " was entere
d for mark number "5 marknum : marknum =
marknum + 1

540 PRINT’"---
___ ___ II
550* GOTO 400
560 ENDPROC
600 DEF PROCprintern
610 VDU26,12: IFonpaper THEN onpaper=0

: VDU2
620 PRINT"Here are the marks: "
630 col=0 : row = 2 : sum — 0
660 FOR mark = 1 TO marknum
670 IF mark=26 THEN col =20.: row =2
680 VDL131, col, row : row = row + 1 :

PRINTmark;,entry(mark)
690 sum= sum + entry (mark)
700 NEXT
710 PRINT TAB(0,27) "Those "SmarknumS"

marks add up to "jsum
720 PRINT"Their average is "SO. 1*INT(1

0*sum/marknum)
730 VDU3
740 ENDPROC
780 DEF PROCmenu
790 CLS : PRINTTAB (0,1) "Press the number

of your choice."
800PRINT’’ " 1 ENTER EXTRA NUMBERS"
810 PRINT” "2 CHANGE ONE OF THE ENTRI

EG"
820 PRINT” “3 DISPLAY THOSE MARKS AGAIN

on the screen"
830 PRINT” "4 DISPLAY THOSE MARKS AGAIN

and print on paper too"

156

840 PRINT” "5 ARRANGE THE MARKS IN DE
SCEND I NG ORDER and print on the screen1'
850 PRINT” "6 ARRANGE THE MARKS IN DE
SCEND I NG ORDER and print on paper too"
860 PRINT” "7 ENTER A NEW SET OF MARKS"
870 PRINT” "8 QUIT THE PROGRAM"
880 choice = GET
890 IF choice < 49 OR choice > 56 THEN

880
900 ON choice-48 GOTO 910,920,120,1020

, 980,1020,1000,1270
910 marknum = marknum+1 : CLS: G0T0110
920 PROCprintern : VDU31,0,29
930 INPUT "ENTER THE NUMBER OF THE ENTR
Y YOU WANT TO CHANGE AND PRESS RETURN ”
changenum
940 INPUT"Enter the changed mark and p

ress RETURN "newmark
950 entry (changenum) =newmark
960 PROCprintern
970 PROCanykey
980 PROCarrangem
990 PROCanykey
1000 sum = O : marknum = 1 : CLS : GOTO

110
1010 REM
1020 PROCarrangem: onpaper=—1 : GOTO 120
1030 REM
1040DEF PROCarrangem
1050 N — marknum : S—1
1060 max=entry(S) : min = max : IM = S

: IX = S

157

1070 REM look through remaining entries
and pick smallest and largest ******
1080 FOR I = S TO N
1090 IF entry (I) < min THEN min = entry

(I) : IX = I
1100 IF entry(I)>max THEN max = entry (I)

: IM = I
1110 NEXT
1120 IF IM = N THEN IM = IX
1130 AA = entry (N) : entry(N) = entry (I

X) : entry(IX) = AA : N = N-l
1140 AA = entry(S) : entry(S) = entry (I

M)s entry(IM)= AA : S = S+l
1150 IF N>8 THEN 1060
1160 PROCprintern
1170 ENDPROC
1210 DEF PROCanykey
1220 VDU31,0,30 : PRINT"Press any key

when ready.”
1230 *FX21,0
1240 reply* = GET*
1250 PROCmenu
1260 ENDPROC
1270 REM Re-enable ESCAPE key.
1280 REM Re-enable BREAK key.
1290 CLS : PRINT””" Goodbye."

158

10 REM NAMES
20 MODE7
30 DIMnameS(200)
40 st ar tZ=0: num=— l:onpaper=0
50 PRINT’ ’ " **** NAME ARRANGER

♦*#*"
60 REPEAT
70 *FX202,32
80 PRINT’ * "Enter surname -First. Enter
@ to -Finish. Press RETURN a-Fter each en

try. "
90 num=num+l: PRINT’’ "Name number "Jn

um+1
100 INPUT’name$(num)
11O IF name$(num)=““ THEN 100
120 CLS
130 UNTIL name$(num)="@"
140 num=num—1
150 -FinishZ=num
160 PROCsort (startX,finishZ)
170 CLS: PRINT’“HOLD SHIFT KEY DOWN TO

SCROLL NAMES."’
180 FOR num=0 TO -FinishX
190 PRINTname$(num)
200 IF onpaper THEN 230
210 IF INKEY (-l)=0 THEN 210
220 delay=INKEY (5)
230 NEXT
240 onpaper=0: VDU3
250 *FX202,32
260 PRINT’ " **** MENU ****"
270 PRINT’ " Press A to add a name.

Press C to Correct a name.
Press D to Delete a name. "

280 PRINT" Press H -For a Hard copy.

169

Press S to see the list again."
290 key$=GETS
300 IF key$="H"THEN VDU2sonpaper=-l 8 GO

T0180
310 IF keyt="C" THEN 490
320 IF keyt="D" THEN 550
330 IF keyt»"S" THEN 170
340 IF keyt="A" THEN num=num—1sCLSsGOTO

60
350 G0T0290
360 END
370 DEF PRDCsort (start/,-finish/)
380 LOCAL Mt, Nt, AX, 87.
390 AX=startXs BX=-finishX
400 M$=name$((AX+BX) DIV2)
410 REPEAT
420 IF nametCAXXMt AX=AX+1 s GOTO42O
430 IF Mt<name$(BX) BX=BX-1:GDT0430
440 IF AX<=BX N$=name$(AX):namet(AX) =

name* (BX): name* (BX) =N$: AX=AX+1: BX=BX-1
450 UNTIL AX>BX
460 IF startX<BX THEN PROCsort (start/.,

B7.) '
470 IF AX<-Finish/ THEN PROCsort(AX,-fin

ishX)
480 ENDPROC
490 CLS: INPUT’ "Enter the number of the

entry you wish to correct, "cornum
500 IF corhum<l OR cornum>~FinishX+l TH

EN490
510 INPUT"Now type in the correct entr

y and press RETURN. " ’ cornamet
520 name*(cornum-1)=corname*
530 PROCsort (st ar t7., f i ni shX)

160

540 GOTO 170
550 CLS: INPUT’ "Enter the number of the

entry you want to delete. "delnum
560 delnum=delnum—1
570 FOR k=delnum TO -FinishX
580 name$(k)=name$(k+l)
590 NEXT
600 finish%=-Finish%—1
610 GOTO17O

WORDS
Here is another version of the NAMES program, which
allows the list to be stored. File handling is beyond the scope
of this book, so DATA statements have been used. Different
blocks of line numbers can be allocated to groups of related
words: eg student names in year groups. These can be
amended or deleted as required.

IO REM WORDS
20 M0DE7: DIMname* (800)
30 start7.=O:num=-l:onpaper=0
40 PRINT”" **** WORD ARRANGER

****"
50 PRINT’’ "When sorting, numbers are
placed -First, then UPPER CASE then lower
case.

60 PRINT’"Insert the words in DATA st
atements between lines 490 and 30000
. The presentline 500 is a sample only ."
70 PRINT’ "After the chosen line number,

161

type DATA and then the entries separa
ted by commas."
80 PRINT* "These can be changed by lis
ting the program and adding, del etin
g or correcting entries as desir
ed."
90 REPEAT
100 num=num+l: READ nameitnum)
110 UNTIL name*(num)="@"
120 num=num-IsfinishZ—num
130 PROCsort(start/,finishX)
140 PRINT’"HOLD SHIFT KEY DOWN TO SCROLL

ENTRIES."’
150 FOR num=0 TO finish/
160 PRINTname*(num)
170 IF onpaper THEN 200
180 IF INKEY(-l)=0 THEN 180
190 delay=INKEY(5)
200 NEXT
210 onpaper=0: VDU3
220 *FX202,32
230 PRINT’" *♦** MENU ***#"
240 PRINT’"Press H -For a Hard copy.

Press S -For a screen display.
Press Q to Quit the program . "

250 key$=GET*
260 IF key$="H" THEN VDU2:onpaper=-lsGO

T0150
270 IF key*="S“ THEN CLSsGOTO 140
280 IF key$="Q" THEN CLSsEND
290 G0T0250
300 DEF PROCsort(start/,finish/)
310 LOCAL M$,N$,A/,B/
320 A/=start/.: B/=finish/

162

330 M$=name$ ((AZ+B7.) DIV2)
340 REPEAT
350 IF names(AZ)<M$ A7.=A7.+1 :GDT0350
360 IF M$<name$ (BZ) BZ-BZ-1:G0T0360
370 IF AZ<=BZ N$—name$ (AZ) :name$ (AZ) =

name$ (BZ) : name$(BZ) =N$: A7.=A7.+1:B7.=B7.-1
380 UNTIL AZ>BZ
390 IF startZ<BZ THEN PROCsort (startZ,BZ)
400 IF AZ<finishZ THEN PROCsort (AZ,-Fin .

ishZ)
410 ENDPROC
420 REM *** PUT LINES OF DATA STATEMEN
TS AFTER THIS «** LINE 500 IS A SAMPLE 0
NLY
500 DATA FISH,CHIPS,fish,chips,45, 19,s
paces can be left
30000 DATA @,FINISH

163

The BBC Micro is an immensely powerful computer. And its potential for
assisting in education is enormous. But the means of tapping that potential
are not immediately obvious.

In this detailed work, experienced teacher Don Thorpe discusses the role
the BBC Microcomputer could occupy in your teaching activitives. He
compares its possibilties with those of other, more traditional, teaching
aids, and outlines specific areas of application in which the computer has
no rival.

You’ll be shown - in step-by-step detail - how to run a first course in
computing, the simplest way to get complicated subjects across to students,
and how to maintain the students’ interest once it has been aroused.

Designing an educational program is a demanding task, but this task is
made much simpler for you with the explicit rules and suggestions outlined
in the third part of this book. And this is no empty theory. Don Thorpe
has devised these ideas based on solid experience in classrooms just like
yours. See, for example, his advice on controlling unruly students. This is
no armchair theorising.

Finally this book will help you design a custom program for a non­
computing colleague. You’ll be shown how to lead your fellow-teachers to
an understanding of the possibilities of computers (so they do not have
unrealistic expectations); how to crystallize their objectives, and how to
implement them.

If your school has a BBC Micro in use, or is contemplating acquiring one,
you need this book.

Another great book from

IHTERRKEBO
PUBLICATIONS

9 780907 563877£5.25

