
■ III

T . k I
Tim Hartnell and Jeremy Ruston

The Book
of Listings
Fun Programs for
the BBC Microcomputer

BBC

SOFT

The Book of Listings

11 Bill 11 inn ■

Tim Hartnell and Jeremy Ruston
BBC

SOFT

The Book
of Listings
Fun Programs for z
the BBC Microcomputer z

r i i i r irI r I i rill 1 i r

ISBN 0 563 16534 0

© Tim Hartnell and Jeremy Ruston 1982
First published 1982

Printed in Great Britain by
Spottiswoode Ballantyne Ltd.
Colchester and London

Published by the
British Broadcasting Corporation
35 Marylebone High Street
London W1M 4AA

Contents
Introduction8

9

14

16

19

24

34

40

44

52

55

Life
Birth, growth and death in a sci-fi colony of organisms.

Space Storm
A storm of asteroids that your space-ship has to destroy.

Turtle Graphics
Create your own geometrical patterns.

Numbfinger
A fast and furious game of memory; your fingers follow the
numbers.

Fairground Organ
The old style of funfair music.

Outlaw
You’re the Sheriff of Mean City and the baddies riding into
town mean business.

3D Super Plot
Draw three-dimensional figures, view them and change them.

Racetrack
A trackful of hazards.

Cairo
You are a harassed taxi-driver in one of the most crowded
cities on earth.

Little Eliza
A tongue-in-cheek session with a cut-price psychiatrist.

62

66

70

73

82

86

90

94

99

106

111

114

Codebreaker
Break the code before it breaks you.

Bomb Squad
Your space-ship goes on a bombing run.

Dome Dweller
A variation on one of the most popular computer games.
You play the ruler of a space colony.

Tyranno
You do battle with a prehistoric monster.

Franglais
Let the computer take over the burden of writing bad French
for you.

Rain Catcher
A colourful game of reflexes.

Poet
Poetry - as a computer would write it.

Magic Square
A number guessing game.

Masterword
Similar to 'Codebreaker’ but uses words.

Wordsquare
A computer imitation of a sliding plastic games puzzle.

Reversi
A classic game of placing pieces on squares.

133 Character Definition
Writing your own character shapes.

Romland
Beasts and gold mines and intrepid you.

123 Gomoku
A very popular game. You have to get five pieces in a line
before the computer does.

128 Safari
Elephant blobs stampede towards you, the human asterisk!

138 Graphic Displays Section

151 Quadrant String Art

157 Character Count Scale

As in 'String Art’ above, but in four quadrants, three of
which are reflections of the pattern in the first.

139 String Art
String art patterns.

141 Cat o’Six Tails
Psychedelic curves.

145 Prison Bars
'Moire’ patterns.

147 Eight o’Clock
An optical earthquake.

150 Cartwheel
Cartwheel effects.

143 Chess Art
Colourful ever-changing squares.

149 Polar-plotting
Flower-shaped patterns.

155 Goodbye
A surprise farewell.

156 Typing in Program Listings

153 Oval
Moving ovals of colour that finally spin.

Introduction

8

Welcome to the first BBC Book of Listings. There are a host of
games and other programs for you here. They range from arcade­
like action programs, through board games which will tax your
wits, to some startling graphics demonstrations.

We’ve tried to make the most of the tremendous sound and
colour potential of the BBC microcomputer, and have written most
programs so that they will run on both A and B model machines.
The programs were developed on both the A and B model machines
with the 0.1 Operating System.
Important The listings in the book should not be typed in exactly
as you see them, but as you would normally (see pages 156 and 157).

Structured programming techniques have been used as far as
possible. Although programs may thus be a little longer than
strictly necessary, they do tend to be relatively easy to debug and
modify. Many of the program notes include suggestions on how you
can adapt the programs to make them your own and to develop
them further. This is always well worth while, for you then put
your own stamp on them. Further, working through other people’s
programs alerts you to useful programming techniques. Take a
critical attitude to everything you see here and improve and tailor
programs to your taste.

We have as far as possible avoided multistatement lines and
unconditional GOTOs; used, whenever possible, procedures, with
the game being called from a series of procedures cycling within a
master REPEAT/UNTIL loop; used REM statements, or a line of
asterisks (and sometimes both) to break the program down into
clearly separate routines which perform specific tasks.

Now it’s time to get on with having fun with your BBC
microcomputer.
Good games-playing!

Tim Hartnell
Jeremy Ruston

Models A and B

Racetrack

The Program
10 Title
20 Set the mode
30 Send action to the initialisation procedure.
40-60 Master REPEAT/UNTIL loop. A equals zero unless the car
hits something, when its value changes to one.
70 Sends computer to the 'smash’ procedure.
80-510 This is the initialisation procedure. Line 90 turns off the
cursor, the initial direction of the car is set to the right (B$ = in
line 100), and the car is placed three characters across (CARA) and
two down (CARD). Lines 140 to 220 print out the instructions,
while 230 to 250 accept your choice of the degree of difficulty. Line
260 sets the timer to zero, so this can be used to indicate how long
you have managed to keep driving, when the game is actually
underway.

The Game
You drive a car (which looks remarkably like a hash symbol)
around a race track, trying to keep it moving for as long as possible
without hitting the walls.

The 'A’ key moves your car up on the Micro Racetrack, the 'Z’
moves it down, while the moves you to the left and the to the
right. The 'greater than’ and 'less than’ symbols on the ',’ and '.’
keys indicate the direction of travel the car will take if you press
these keys. You control the car’s up-and-down movements with
your left hand, the right and left directions with your right hand.

There are five levels of difficulty in the game, ranging from
fairly easy (five) to nearly impossible (one).

520-680 This procedure allows you to 'drive’ the car, and checks to
see if it has crashed. Lines 530 and 550 supposedly produce the
sound of the car being driven. Line 540 prints the duration of the
race in seconds and tenths of a second in the top right hand corner
of the screen. Line 560 prints the car in its current position, and
570 prints a blank in the same position. This happens very quickly,
so the car appears to move fairly smoothly, even in the slowest
(easiest) game. The routine from 580 to 650 reads the keyboard and

9

changes the direction of the vehicle in response to the value
assigned to A$. Line 590 keeps the vehicle moving in the same
direction as it was, if no key is pressed. The same line jumps the
section (lines 610 to 640) that changes the car’s direction if a new
direction is required. Line 600 is a 'mugtrap’ designed to reject any
key press which is not one of the four required. Line 660 checks the
position where the car is about to be printed; if it finds an asterisk
there, it knows the car is about to crash and changes the crash flag
(A) from zero to one. Line 670 reprints the car in position.
690-840 This is the crash procedure, where the computer is sent if
the crash flag has been changed from zero to one (from line 60). The
buffer is cleared (line 700) and the time you have survived is set to
variable W (line 710) before a dramatic sound of crashing is
generated (lines 720 to 740). The final REPEAT/UNTIL loop runs
from 750 to 830; prints the word 'smash!’ in random places and
colours; and generates a cacophony from sound channels one, two
and three.

Suggestions for improvement
• Change the sound and cut it off after a second or so.
• Change the shape of the racetrack by changing the print
statements 280 to 500; or work out a routine to POKE a random set
of obstacles into a frame which you have previously printed.
• Add a 'high score’ (longest race) feature, so you can try to better
your score from game to game, without having to start all over
again.
• Increase the number of levels of difficulty. Note that the 'level
of difficulty’ ('D’) works by changing the length of the sound
statement in line 550.
• Instead of your having to press ESCAPE and then RUN if you
lose, program a facility to offer a new game or to end with the
computer back in Mode 7.

The Listing
10 REM Racetrack
20 MODE7
30 PROCinitialise
40 REPEAT
50 PROCmovecar
60 UNTIL A=1
70 PROCsmash
80 DEFPROCinitialise
90 VDU 23;8202;0;0;0
100 BS="."
110 A=0:REM end of race flag
120 CARA=3:REM position car across
130 CARD=2:REM position car down

10

CHR$(130);"Welcome to the Micro Ra
car

the , move

Your ti

a second in tICths of

1evel, f

one the

**** **

** *****

••* ****

"* ************

"* ********* **
■•* *********

"* ***********

"* ************
■■* ******************

***** ******

"* ******** **********

"* ************ ********
11

•■*

140 PRINT
cetrack"

150 PRINT’’CHR$(131);"The A key moves your
up, the Z key"
160 PRINT CHR$(131);"moves it down,

s you to the"
170 PRINT CHR$(131);"left and the . to the rig

ht"
180 PRINT’CHR$(129);"You have to continue driv

ing for as"
190 PRINT CHR$(129);“1ong as possible,

me is shown"
200 PRINT CHRS(129)j"in

he top corner"
210PRINT’’CHR$(133);"Enter your skill

rom 1 to 5"
220 PRINT’CHR$(133);"Five is easiest,

hardest"
230 D=GET
240 D=D—48
250 IF D<1 OR D>5 THEN 230
260 TIME=0
270 CLS
280 PRINT ’"**********************************

290 PRINT "***
**■'

300 PRINT
**"

310 PRINT
*"
320 PRINT

*"
330 PRINT

*"
340 PRINT

*■■

350 PRINT
*"
360 PRINT

*"
370 PRINT

*"
380 PRINT

**"
390 PRINT

**"
400 PRINT

"* *************************

** ** ******

•'** **** *«

"*** ***** ** *****

******** *** *****

****** **** ******
“****** **** *** ********
'■ *** *** ********

** **********

"***********************************

It

THEN A=1

12

AND CARD>2 CARD=CARD—1
AND CARD<22 CARD=CARD+1
AND CARA>1 CARA=CARA—1
AND CARA<40 CARA=CARA+1

"****

590 IF A$=“"
600 IFA»O,,A“

. " A«=,,.M
610 IF AS^'A"
620 IF A$="Z''
630 IF A$=”,H
640 IF AS="
650 B$=A$
660 IF?(HIMEM+CARA+40*CARD)=ASC("*”)
670 PRINT TAB(CARA,CARD);
680 ENDPROC
690 DEF PROCsmash
700 *FX 15,0
710 W=TIME DIV 10
720 FOR T=1 TO 10
730 SOUND 0,—15,RND(10),T
740 NEXT
750 REPEAT

**"
410 PRINT

**"
420 PRINT "*

*"
430 PRINT

**■■

440 PRINT
**■■

450 PRINT
**"

460 PRINT "*****
**"

470 PRINT
**"

480 PRINT
**"

490 PRINT •'****
**"

500 PRINT
** '•
510 ENDPROC
520 DEFPROCmovecar
530 SOUND 0,-3,1,1
540 PRINT TAB(31,1);CHRS(133);(TIME DIV 10)/10

550 SOUND 0,-7—RND(8),254,D
560 PRINT TAB(CARA,CARD);
570 PRINT TAB(CARA,CARD);" "
580 A$=INKEY$(0)

A$=B$:GOTO 610
AND A$<>,*Z“ AND A^O"," AND A$< >

13

760 PRINT TAB(RND(30)—1,RND(23));CHR$(RND(5)+1
28);"smash!”

770 PRINT TAB(31,1);CHR$(RND(5)+128)JW/10
780 FOR T=1 TO 10 STEP 2
790 SOUND 3,-15,20*T,l
800 SOUND 2,—15,RND(20),RND(3)
810 SOUND 1,-15,RND(20),RND(3)
820 NEXT
830 UNTIL FALSE
840 ENDPROC

14

init Initialises the turtle to point in a specified direction. (All
angles are given in degrees).
anticlockwise Turns the turtle counterclockwise by a specified
number of degrees.
clockwise Turns the turtle clockwise by a specified number of
degrees.
position Moves the cursor to specified co-ordinates.
draw Moves the turtle in the direction it is pointing, for a specified
distance, leaving a white trail.

The Program
You control an invisible ’turtle’, moving it around the screen to
create geometrical patterns. The commands to move the cursor are:

1000 Starts the definition of PROCinit.
1010 Sets the variable 'angle’ to the direction specified, MOD 360.
Here 'angle’ is used to store the direction the 'turtle’ is pointing
towards.
1020 Ends PROCinit.

3000 Starts the definition of PROCclockwise.
3010 Increments 'angle’. The MOD ensures the angle does not
exceed 359.
3020 Ends PROCclockwise.

2000 Starts the definition of PROCanticlockwise.
2010 Decrements 'angle’. The extra MODs ensure the direction
('angle’) does not become negative.
2020 Ends PROCanticlockwise.

Models A and B

Turtle Graphics

These commands are procedure calls mixed with normal BASIC
statements. The example the program gives draws a hexagon - see
lines 50 to 100. When you start you probably will want to do
something a little simpler - maybe just drawing a single character
on the screen. Children often find a moving turtle easier to
understand than the grid arrangement usually used on the BBC
Microcomputer. Notice that the numbers 640, 512, 0, 100 and 60 will
have to be changed to get different results.

The Listing

15

4000 Starts the definition of PROCposition.
4010 Sets the x and y co-ordinates of the turtle.
4020 Ends PROCposition.
5000 Starts the definition of PROCdraw.
5010 Moves the graphics cursor to the current turtle position.
5020 Computes the new x co-ordinate of the turtle.
5030 Computes the new y co-ordinate of the turtle.
5040 Draws a line to the new turtle position.
5050 Ends PROCdraw.

10 REM Turtle Graphics
20 REM See text for instructions
30 REM -----------------------------
40 MODE 4
50 PROCposition(640,512)
60 PROCinit(0)
70 FOR T=1 TO 6
80 PROCdraw(100)
90 PROCanticlockwise(60)
100 NEXT T
110 END
999 REM **************************
1000 DEF PROCinit(direction)
1010 angle=direction MOD 360
1020 ENDPROC
2000 DEF PROCanticlockwise(step)
2010 angle=(angle+360—step) MOD 360
2020 ENDPROC
3000 DEF PROCclockwise(step)
3010 angle=(angle+360+step) MOD 360
3020 ENDPROC
4000 DEF PROCposition(xpos,ypos)
4010 x=xpos
4020 y=ypos
4030 ENDPROC
5000 DEF PROCdraw(1ength)
5010 MOVE x,y
5020 x=SIN(RAD(angle))*1ength+x
5030 y=COS(RAD(angle))*length+y
5040 DRAW x,y
5050 ENDPROC
5060 REM **************************

Models A and B

Numbfinger

16

The Game
This game tests your memory. When you first press RUN, a digit
from 1 to 4 appears on the screen, along with a distinctive tone.
Number four’s tone is the highest, number one’s the lowest. You
must press the same number, and wait till the number appears and
the tone sounds.

Once you’ve done this, a multicoloured wall of hash symbols
obscures the screen for a few seconds. Then the first number-and-
tone combination is repeated, followed by a second one. You must
press the first number, and once it and its respective tone are seen
and heard, press the second number. This will continue, with an
additional tone/number being added to the sequence, until a total of
seven tones/digits has been presented and repeated correctly. If you
do this you win the game. Failing to repeat the sequence at any
time ends the game. You get a score related to the number you
managed to work out correctly.

There is no reason why the same digit cannot appear up to
seven times in the sequence (although that is most unlikely). If the
same digit is repeated, it appears on the screen with its tone, is
replaced by a coloured block for a moment, then reappears at the
same position with the tone being sounded again. You must press
this digit’s key twice, allowing the digit to appear and tone to
sound after the first press, before completing the sequence.

The Program
10-20 REM statements for the title.
30 Sets the mode.
40 A$ is used to hold the sequence, as you can see in the routine
starting at 120.
50 M is the maximum number of digits in a sequence. Increase this
to make the game harder, reduce it to make it simpler.
60 Z is a variable set equal to one, and is used in several places in
the program.
70-90 This routine sets up the digits which will have to be
remembered, storing them in string A$.
100 X is the number of digits which must be remembered each time
a sequence is presented; there is only one digit in the first
‘sequence’.

17

20 REM
30 MDDE7

The Listing
10 REM Close encounters of

the NUMBFINGER kind!

110 Starts the REPEAT/UNTIL loop for the main game.
120-170 This loop presents the digits, selecting them from the
string (line 130); printing them in position in a random colour
(140); producing an appropriate tone (150); adding a delay which
gets shorter for each additional digit in the sequence (160);
overprinting a little coloured square where the digit appeared
(180); adding another pause (190); and then going back for more
(210).
220-320 This routine accepts, and processes, the player’s input.
Line 230 waits until the keyboard is untouched, and 240 waits until
a new key is touched. Line 250 clears the screen, and 260 sets B$ to
the key being touched. A digit and tone are produced (lines 270 and
280) in accord with the key touched; then there is a short delay
(290) before the program checks if the key pressed corresponds to
the relevant digit in the sequence. If not, the program goes on to
the procedure called ’end’.

Line 310 clears the buffer, to be ready for the next key press, and
320 starts it again if all digits in the sequence have not been
repeated and checked.
330 If you have repeated M digits correctly, you are declared the
winner. You must press ESCAPE to end the program from here.
340-400 One is added to the number of digit/tones you must
remember (340); a wall of pound signs or hash symbols appears (our
printer reproduces the hash as a pound sign - use anything you like
here); and the screen is cleared (390) in preparation for going back
to the line after the initial REPEAT (400).
410-460 This procedure ('end’) is where you are sent if you fail to
repeat the sequence correctly. It prints your score, in randomly
chosen colours, over and over again, while generating an
offensively random bit of music until ESCAPE is pressed.
Suggestions for improvement
• Allow the player to choose the maximum number of digits which
will be in the sequence from game to game.
• Add a 'highest score’ feature so that the number of correct
digits remembered in one game is compared with the maximum in
subsequent games.
• Rewrite it so that eight digits, positions and tones are involved.
• Make a provision for the unsuccessful player to be asked if he or
she would like to play the game again; cut off the sound after a
couple of seconds.

18

THEN 230
THEN 240

40 AS=""
50 M=7
60 Z=1
70 FOR A=Z TO M
80 AS=AS+STRS < RND(4))
90 NEXT A
100 X=Z
110 REPEAT
120 FOR Q=Z TO X
130 L=4*((ASC(MIDS(AS,Q,1)))—48)
140 PRINTTAB(M,L+3);CHRS(128+RND<5))MIDS(AS,

Q, 1)
150 SOUND 3,-15,40*((ASC(MIDS(AS,Q,1)))-48),6
160 FOR J=Z TO 1000-20*X
170 NEXT
180 PRINTTAB CM,L+3)5CHRS(133)CHRS(255)
190 T=TIME:REPEAT UNTIL TIME-T=50
200 CLS
210 NEXT
220 FOR B=Z TO X
230 IF INKEYS (0)0
240 IF INKEYS(0)="
250 CLS
260 BS=INKEYS(50)
270 PRINTTAB(M,3+4*(ASC(BS)-48));CHRS(128+

RND(5))BS
280 SOUND 3,-15,40*((ASC(BS)-48)),10
290 T=TIME:REPEAT UNTIL TIME~T=30
300 IF BSOMIDS(A$,B, 1) PROCend
310 *FX 15,0
320 NEXT
330 IF X=M PRINT CHRS(128+RND(5))"You win!

GOTO 330
340 X=X+Z
350 CLS
360 FOR W=Z TO 5*(M+M)
370 PRINT CHRS (128+RND (5)) "##################

ft###################"
380 NEXT
390 CLS
400 UNTIL FALSE
410 DEF PROCend
420 REPEAT
430 PRINTTAB(8,8)jCHRS(128+RND(5))"You

scored “;X—Z
440 SOUND 1,-15,RND(100)+150,1
450 UNTIL FALSE
460 ENDPROC

Models A and B

Cairo

19

The Game
In this game you are an irate cab driver, caught up in one of Cairo’s
notorious traffic jams. Your blood pressure rises as you steer
through the traffic at ever-increasing speed. You dare not crash
into any other vehicles. If you stay the course, you have won.

Your car appears as a little red arrow, highlighted with a light
blue streak. The other vehicles appear as yellow asterisks. If you do
not press any key, you move across the screen horizontally by
default; and when you reach the right hand side,.you re-appear on
the left-hand side.

To move down, press the key; to move up, press the key.
These keys can be used with or without shift. At each move up or
down, a short tone will sound: the sound of the 'horns’ of other
irate drivers. All the way through the game, the background sound
is that of your blood pressure rising. When this sound stops, you
are near the end of your ordeal.
Note You do not need to move the car horizontally, as this happens
anyway if you don’t move it up or down.

You can alter the number of other vehicles on the screen by
changing line 20 of the listing.

The Program
20 'asterisks’ sets the number of other vehicles on the road.
30 Puts the computer in Mode 7.
40 Calls PROCSETUP, which sets up the screen and places the
asterisks on it.
50 Initialises X and Y which contain the x and y positions of your
cab.
60 TIM is the time delay between each movement, multiplied by
two. It is decremented at each movement.
80 Starts the main REPEAT loop of the game.
90 HIT is a boolean variable which is true if you have crashed into
another vehicle.
100 Calls PROCPLACE. PROCPLACE puts your cab at position X,
Y on the screen.
110 Resets TIME.

300

20

120
130
140
150
160
170

380
390
400
410
420
430
450
470
480

Starts the definition of PROCSETUP.
Sets all variables used in this procedure to be LOCAL.
Starts a loop, pointing to the left-hand location of each screen

Starts the definition of PROCEND.
Clears the screen.
PRINTs part of the message.

Gives a delay of TIM/2 centi-seconds.
Turns off the sound channel 1.
Gets a key press from the user.
Empties both the SOUND and keyboard buffers.
Plays a sound through channel 3 of frequency TIM.
Plays a sound through channel 2 of frequency TIM 4- 1. This

produces a pleasant chord, with the tone from line 160.
180 Calls PROCREMOVE. PROCREMOVE removes your cab from
position X, Y.
190 If the 'up’ key was pressed, decrement Y, and SOUND hooter.
200 If the 'down’ key was pressed, increment X and SOUND hooter.
210 If an attempt was made to move too close to the bottom of the
screen, this line puts the cab on the bottom line of the display.
220 Similarly, if an attempt was made to move off the top of the
screen, puts the cab on the top line.
230 Increments the X co-ordinate of the cab’s position.
240 If the cab’s new position is over an asterisk, put HIT to TRUE.
The function FNADDRESS(X, Y) gives the address of the screen
cell with co-ordinates X, Y.
250 If an attempt was made to move beyond the right-hand edge of
the screen this line puts the cab on the left-hand edge.
260 Decrements TIM.
270 Stops the loop either when a hit is registered, or when the
game has run its course.
280 If the game ended with a hit, calls PROCHIT.
290 Calls PROCEND, which restores the screen to normal, and tells
you how well you did.

ENDs the program.

320 ;
330 I
340 ;
line.
350 Puts the code for yellow alphanumerics into each of the
locations.
360 Ends the loop.
370 Starts a loop from one to the number of other vehicles on the
road.

Picks a random x co-ordinate for each asterisk.
Picks a random y co-ordinate for each asterisk.
Puts the asterisk on the screen.
Ends the asterisk loop.
Sets 'moves’ to zero.
Ends PROCSETUP.

21

Suggestions for improvement
• The graphics could be made more appealing, if you have a model
B, by transferring the game to Mode 4.
• The ENVELOPE command could be used to brighten up the
sound effects.
• The asterisks could be made to move as the game progresses,
rather than remaining static.
• Remove the cursor while the game is being played, then restore
it when it ends.

490 If you survived the course, tells you so.
500 Ends PROCEND.
520 Defines the function FNADDRESS(X, Y). This function uses a
standard calculation to give the address of location X, Y on the
screen.
540 Starts the definition of PROCPLACE(X, Y). This procedure
places your taxi at position X, Y on the screen.
550 Places a right square bracket at position X, Y on the screen.
This appears as a little arrow pointing to the right in the Mode 7
character set.
560 Places the code for light blue alphanumerics at the start of the
line on which the cab has been placed.
570 Places the 'new background colour’ colour at the next screen
location. This gives a horizontal light blue line across the screen.
580 Places the red alphanumerics code at the next screen location.
This makes the foreground colour of this line red.
590 Ends PROCPLACE.
610 Starts the definition of PROCPLACE(X, Y). This procedure
removes your cab from the position X, Y on the screen.
620 Places a space at position x, y.
630 Places the code for yellow alphanumerics at the left-most
column.
640 Removes the 'new background colour’ code.
650 Removes the red alphanumerics code.
660 Ends PROCPLACE.
690 Starts the definition of PROCHIT.
690 Resets TIME.
700 Starts a REPEAT loop to generate random sound effects.
710 Clears all buffers, including the sound buffers.
720 SOUNDs a random note.
730 Stops the loop after two seconds.
740 Turns off any remaining sound effects.
750 Ends PROCHIT.

THEN Y=Y—1:SOUND 1,-1

THEN Y=Y+1:SOUND 1,-1OR A$="?"

22

The Listing
10 REM *************************************

20 asterisks = 200
30 MODE 7
40 PROCSETUP
50 X=0:Y=12
60 TIM=200
70 REM *************************************

80 REPEAT
90 HIT=FALSE
100 PROCPLACE(X,Y)
110 TIME=0
120 REPEAT UNTIL TIMEXTIM/2)
130 SOUND 1,0,0,0
140 A$=INKEY$(1)
150 *FX 15,0
160 SOUND 3,-10,TIM,255
170 SOUND 2,—10,TIME+1,255
180 PROCREMDVE(X,Y)
190 IF A$="OR A$=

5,100,255
200 IF A*="/"

5,100,255
210 IF Y>24 THEN Y=24
220 IF Y<0 THEN Y=0
230 X=X+1
240 IF ?FNADDRESS(X,Y)=42 THEN HIT=TRUE
250 IF X>37 THEN X=0
260 TIM=TIM—1
270 UNTIL HIT=TRUE OR TIM=0
280 IF HIT=TRUE THEN PROCHIT
290 PROCEND
300 END
310 REM *************************************

320 DEF PROCSETUP
330 LOCAL counter,X,Y
340 FOR counter=0 TO 960 STEP 40
350 ?(HIMEM+counter)=3
360 NEXT counter
370 FOR counter=l TO asterisks
380 X=RND(37)
390 Y=RND(25)~1
400 ?(HIMEM+X+2+Y*40)=42
410 NEXT counter
420 moves=0

23

")
")

430 ENDPROC
440 REM *************************************

450 DEF PROCEND
460 LOCAL
470 CLS
480 PRINT ’ ’ ’ You had ";TIM;“ moves to go."
490 IF TIM=0 THEN PRINT ’" Therefore you

won. ! ! ! "’
500 ENDPROC
510 REM *************************************

520 DEF FNADDRESS<X,Y)=HIMEM+X+2+Y*40
530 REM *************************************

540 DEF PROCPLACE(X,Y)
550 2FNADDRESS(X,Y)=ASC("J")
560 ?(HIMEM+Y*40)=6
570 ?(HIMEM+Y*40+1)=29
580 ?(HIMEM+Y*40+2)=1
590 ENDPROC
600 REM *************************************

610 DEF PROCREMOVE(X,Y)
620 ?FNADDRESS(X,Y)=ASC(”
630 ?(HIMEM+Y*40)=3
640 ?(HIMEM+Y*40+1)=ASC("
650 ?(HIMEM+Y*40+2 > =ASC <"
660 ENDPROC
670 REM *************************************

680 DEF PROCHIT
690 TIME=0
700 REPEAT
710 *FX 15,0
720 SOUND RND(4)—1,—15,RND(256)—1,255
730 UNTIL TIME>200
740 *FX 15,0
750 ENDPROC
760 REM *************************************

24

The Game
In this program the computer acts as a 'psychiatrist’, while you are
the 'patient’. A free-format dialogue passes between you.
Note The computer is programmed to be a 'psychiatrist’, not to
argue, so try not to fall into the easy trap of just exchanging insults
with it. It has been programmed to respond to 36 'keywords’. We
chose these because they are the sort of words people use often. You
may not agree. You may well get a more convincing dialogue if you
change these to words you are more likely to use.

10
40
50
60

Models A and B

Little Eliza

The Program
Puts the computer in Mode 7.
Prints the first part of the opening message.
Starts trying to be a mother-substitute.
ANS() holds which of the three possible responses to a keyword

was used last.
70 M$() holds all the possible responses by the computer - sorry,
'Eliza’.
80 Calls PROCinit, which reads all the answers into M$.
90 P$ holds the response you last typed in. This is set to a plus sign,
so that the mechanism for stopping you typing the same thing
twice in a row works all the time.
100 Starts the main REPEAT loop of the program. This one carries
on until you type 'shut up’.
110 Sets the your response to the null string, because otherwise the
comparison in the next-line-but-one would cause a 'No such
variable’ error.
120 Starts the REPEAT loop concerned with getting a valid
response from you.
130 If your response was the same as the last one, prints a message
telling you not to repeat yourself.
140 Inputs your reply. INPUT LINE is used to ensure that if you
type a comma, all the typing will still be used.
150 Stops the loop when you do not repeat yourself.
160 Sets the old response to the new response, ready for the next
input session.
170 Translates your input to upper case if it was lower case, or just
leaves it if it was upper case.

530 Starts the definition of the function FNchange_case_to_upper.
This function changes any lower case letters in its argument to
upper case.
540 Sets all variables used in this function to LOCAL.
550 B$ is the destination string, and it is set to null, to stop the 'No
such variable’ error message coming up.
560 Starts a loop through all the characters of A$.
570 Picks out the T’th character of A$.
580 If the character is 'greater than 'Z’ ’ then subtracts 32 from its
code. This line carries out the actual conversion.
590 If the character is a single quote, removes it.
600 Adds the character to the destination string.
610 Ends the loop.
620 Exits the function with the destination string, B$.

25

180 This line uses nested function calls. The function FNanswer
will generate a response to A$, and the function FNoutput will
convert that response to lower case.
190 Stops the loop when 'shut up’ is typed.
200 Prints a suitable response to your typing 'shut up’.
210 Ends the program.

230 Starts the definition of FNtranslate_input(A$).
FNtranslate_input(A$) takes the string A$ and makes the
substitutions in the DATA statements starting at line 370. Thus all
occurrences of the word ARE will be replaced with AM%. The
percentage sign is to stop the program later replacing AM with
ARE (see line 490).
240 Sets the DATA statement pointer to line 370.
250 Sets all variables used in this function to LOCAL.
260 Adds spaces to both ends of A$. This is because all substitutions
are made with words, and words are only known to be words when
they are flanked by spaces. Thus the words starting and finishing a
sentence will not be counted as such without this measure.
270 Starts a FOR loop for each of the 15 possible substitutions.
280 Reads the two words that make up the substitution.
290 Adds spaces to the first word.
300 Adds spaces to the second word.
310 Starts a REPEAT loop for that particular substitution.
320 Finds out the position of the search word in A$. INSTR itself is
not used because INSTR is not totally reliable in functions when
the second argument is longer than the first. FNinstr checks the
lengths of both arguments.
330 If X$ is in A$, the substitution is made.
340 The process continues until P = 0, when all occurrences of X$
in A$ have been dealt with.
350 Ends the major loop.
360 Exits the function with A$.

640 Starts the definition of FNoutput(A$). This function changes
every character of A$ to lower case, except the first, which is kept
in upper case. The percentage signs are also taken out.
650 Sets all variables used in the function to LOCAL.
660 Sets B$, the destination string, to a null string.
670 Sets the Boolean variable Y to false. This variable is false if the
first character of A$ is being processed, and TRUE otherwise.
680 Starts a loop through all the characters of A$.
690 Picks out the T’th character of A$.
700 If it’s a capital letter, and Y is true, it is converted to lower
case by subtracting 32 from its code.
710 If it’s an alphabetic character, sets Y to TRUE. This means that
if the first character is non-alphabetic, ie. a space, it still waits till
it meets an alphabetic character before starting conversions to
lower case.
720 If it’s a percentage sign, removes it.
730 Adds the character to the destination string.
740 Ends the loop.
750 Exits the function, with B$.
770 Starts the definition of FNinstr(A$,B$). This is a debugged
version of INSTR (see page 281 of the User Guide).
780 If the second argument is longer than the first, exits with zero.
790 Else just uses INSTR to provide the result for the function.
810 Starts the definition of FNanswer(A$). This function thinks up
a suitable answer to your response.
820 Declares LOCAL variables. Notice that B$ is not a LOCAL
variable, since it is used again in FNmessage(X, Y).
830 Restores the DATA pointer to line 910.
840 K counts which of the keywords was found to be in the input
string. This is initially set to zero.
850 Starts a REPEAT loop concerned with finding keywords in the
patient’s response.
860 Reads the next keyword.
870 Increments K.
880 UNTIL either the end of the list of keywords has been reached,
or a match is found.
890 Increments the correct element of ANS. This is so that answers
are used in cycles.
900 Uses the ANS(K)’th answer out of the K’th group of three.
910 Starts the list of keywords. Notice the order in which they are
placed - 'YOU ARE’ is found before 'YOU’ on its own, and words
like 'FRIENDS’ are a last resort.
970 Starts the definition of FNmessage(X, Y). This function picks
out the correct response and, if needed, adds the translated part of
the human response on to the end of it, depending on whether the
answer ends in an asterisk or not.

26

"Please don’t repeat y
A$

27

980 Sets up the LOCAL variables.
990 Picks the answer string from the string array which holds all
the answers.
1000 If the rightmost character is not an asterisk, then returns the
string as it is.
1010 Or else, takes off the asterisk.
1020 Combines the answer with the user’s input, translated with
FNtranslate_input.
1040 Starts the definition of PROCinit. This routine just reads in
all the answers.

Suggestions for improvement
« The best way to improve 'Eliza’ is to alter the responses to put
your personal stamp on them. You do this by either altering the
data statements from lines 1140 onwards, being careful to keep the
same number, or by adding extra keywords.
• Each new keyword is added into the DATA statements at line
910, in the place where it is unlikely to interfere with other
keywords. Once this has been done, you must alter lines 60 and 70,
to allow for more than 36 keywords.
• You must then add the responses to the keywords you’ve added
into the DATA statement list in line 1140. This should be done in
the same place (relative to the other items) where you added your
keywords in the keyword table. Each group of three responses is
REMmed to show which keyword it is associated with.

’"Hello.
Tell me what your problem is "

The Listing
10 MODE 7
20 REM ELIZA
30 REM **************************************

40 PRINT ’’’"Hello. My name is ’Eliza’."
50 PRINT
60 DIM ANS(36)
70 DIM M$(2,36)
80 PROCinit
90 P$="+"
100 REPEAT
110 A$=""
120 REPEAT
130 IF A$=P$ THEN PRINT

ourself."
140 INPUT LINE "->
150 UNTIL AOP
160 P$=A$
170 A$=FNchange_case_to_upper(A$)
180 PRINT FNoutput(FNanswer(FNchange_case_to_u

pper(“ "+A$+" ")))

28

"+XS+"
"+YS+"

190 UNTIL FNinstr(AS,"SHUT UP")
200 PRINT "Shut up yoursel-F ...
210 END
220 REM **************************************

230 DEF FNtranslate_input(AS)
240 RESTORE 370
250 LOCAL W,XS,YS,P
260 AS=" "+AS+" "
270 FOR W=1 TO 15
280 READ XS,YS
290 XS="
300 YS="
310 REPEAT
320 P=FNinstr(AS,XS)
330 IF P>0 THEN AS=MIDS(AS,1,P-1)+YS+MIDS(AS,P

+LEN(XS))
340 UNTIL P=0
350 NEXT W
360=AS
370 DATA ARE,AM7.
380 DATA WERE, WAS7.
390 DATA YOUR,MY7.
400 DATA YOU, 17.
410 DATA IVE,YOU’VEX
420 DATA IM,Y0U’RE7.
430 DATA ME,YDU7.
440 DATA I AM,YDU’RE7.
450 DATA I HAVE, YOU’VE7.
460 DATA MY,YOUR7.
470 DATA Y0URE,I’M7.
480 DATA I,Y0U7.
490 DATA AM,ARE7.
500 DATA WAS,WERE7.
510 DATA YOUVE, I ’ VE7.
520 REM **************************************

530 DEF FNchange_case_to_upper<AS)
540 LOCAL T,CS,BS
550 BS=""
560 FOR T=1 TO LEN(AS)
570 CS=MIDS(AS,T,1)
580 IF CS>”Z" THEN CS=CHRS(ASC(CS)-32)
590 IF CS="’" THEN CS=""
600 BS=BS+CS
610 NEXT T
620=BS
630 REM **************************************

THEN=0

"," YOU ARE"," YO
, " ARE

29

640 DEF FNoutput(AS)
650 LOCAL B$,T,C$,Y
660 B$=""
670 Y=FALSE
680 FOR T=1 TO LEN(AS)
690 C$=MID$(AS,T,1)
700 IF C$>="A" AND C$<="Z" AND Y THEN C$=CHR$(

ASC(C$>+32)
710 IF C$>="A" AND C$<="Z" THEN Y=TRUE
720 IF CS="%" THEN C$=""
730 B$=B$+C$
740 NEXT T
750=B$
760 REM **************************************

770 DEF FNinstr(AS,BS)
780 IF LEN(BS)>LEN(AS)
790=INSTR(AS,BS)
800 REM **************************************

810 DEF FNanswer(A$)
820 LOCAL K
830 RESTORE 910
840 K=0
850 REPEAT
860 READ BS
870 K=K+1
880 UNTIL BS="NOKEY" OR FNinstr(AS.BS)
890 ANS(K)=(ANS(K)+1) MOD 3
900=FNmessage(ANS(K),K)
910 DATA " CAN YOU ", " CAN I

URE " , " I DONT " , " I FEEL "
920 DATA" WHY DONT YOU "," WHY CANT I

YOU "," I CANT "," I AM "," IM "
930 DATA" YOU "," I WANT "," WHAT "," HOW ","W

HO "," WHERE ",“ WHEN “," WHY "
940 DATA CAUSE,SORRY,DREAM,HELLO," HI",MAYBE,N

O," YOUR ",NAME
950 DATA " ALWAYS “," THINK "," ALIKE "," YES"

," FRIEND"," COMPUTER",NOKEY
960 REM **************************************

970 DEF FNmessage(X,Y)
980 LOCAL DS,FS
990 DS=MS(X,Y)
1000 IF RIGHTS(DS, 1)0"*" THEN =DS
1010 FS=LEFTSCDS,LEN(DS)-1)

30

1020=FS+FNtranslate_input(MIDS(AS,FNinstr(AS,BS
)+LEN(B$)))
1030 REM **************************************

1040 DEF PROCinit
1050 RESTORE 1140
1060 LOCAL X,Y
1070 FOR Y=1 TO 36
1080 FOR X=0 TO 2
1090 READ M$(X,Y)
1100 NEXT X
1110 NEXT Y
1120 ENDPROC
1130 REM **************************************

1140 DATA DON’T YOU THINK I CAN*
1150 DATA WHAT MAKES YOU THINK I CAN’T*
1160 DATA PERHAPS YOU WOULD LIKE TO BE ABLE TO*
1170 REM
1180 DATA PERHAPS YOU DON’T WANT TO*
1190 DATA WHY DO YOU WANT TO*
1200 DATA I DOUBT IT
1210 REM
1220 DATA WHY DO YOU THINK I’M*
1230 DATA DOES IT PLEASE YOU TO BELIEVE I AM*
1240 DATA HOW DID YOU KNOW
1250 REM
1260 DATA WHY DO YOU THINK I’M*
1270 DATA DDES IT PLEASE YOU TO BELIEVE I AM*
1280 DATA HOW DID YOU KNOW
1290 REM
1300 DATA DON’T YOU REALLY
1310 DATA WHY DON’T YOU*
1320 DATA IS IT ONLY YOU THAT DOESN’T*
1330 REM
1340 DATA TELL ME MORE ABOUT SUCH FEELINGS
1350 DATA DO YOU THINK SUCH FEELINGS ARE NORMAL
1360 DATA DO YOU THINK EVERYONE FEELS*
1370 REM
1380 DATA I COULD SAY THE SAME TO YOU
1390 DATA DO YOU THINK I SHOULD*
1400 DATA DO YOU REALLY BELIEVE THAT I DON’T*
1410 REM
1420 DATA PERHAPS YOU HAVEN’T TRIED HARD ENOUGH
1430 DATA MAYBE THERE’S JUST SOMETHING WRONG WI

TH YOUR MIND
1440 DATA MAYBE YOU ARE NOW IN A POSITION TO*
1450 REM

31

1460 DATA DOES THE QUESTION INTEREST YOU
1470 DATA DO YOU THINK I’M*
1480 DATA WOULD IT PLEASE YOU TO BELIEVE THAT I

’M*
1490 REM
1500 DATA YOU TELL ME
1510 DATA PERHAPS YOU HAVEN’T TRIED HARD ENOUGH
1520 DATA MAYBE THERE’S JUST SOMETHING WRONG WI

TH YOUR MIND
1530 REM
1540 DATA DO YOU THINK IT’S NORMAL TO BE*
1550 DATA HOW LONG HAVE YOU BEEN*
1560 DATA DO YOU ENJOY BEING*
1570 REM
1580 DATA DO YOU THINK IT’S NORMAL TO BE*
1590 DATA HOW LONG HAVE YOU BEEN*
1600 DATA DO YOU ENJOY BEING*
1610 REM
1620 DATA WHO’S THE PATIENT AROUND HERE
1630 DATA WE WERE DISCUSSING YOU — NOT ME
1640 DATA KEEP ME OUT OF THIS
1650 REM
1660 DATA WE ALL WANT*
1670 DATA WHAT WOULD IT MEAN TO YOU IF YOU GOT*
1680 DATA DOES EVERYONE WANT*
1690 REM
1700 DATA DDES THE QUESTION INTEREST YOU
1710 DATA WHY DO YOU ASK
1720 DATA I REFUSE TO ANSWER THAT
1730 REM
1740 DATA DO YOU KNOW HOW*
1750 DATA I SHOULD BE ASKING YOU HOW*
1760 DATA THAT’S A SILLY QUESTION FOR A START
1770 REM
1780 DATA WOULD IT HELP YOU TO KNOW WHO*
1790 DATA WHY DO YOU ASK WHO*
1800 DATA WHO INDEED
1810 REM
1820 DATA DO YOU NEED TO KNOW WHERE*
1830 DATA IS THAT A DUMB QUESTION OR IS IT A DU

MB QUESTION
1840 DATA WHAT WOULD IT MEAN TO YOU IF I TOLD Y

OU WHERE*
1850 REM
1860 DATA TIMES AND DATES DON’T BOTHER ME- PRAY
CONTINUE
1870 DATA WHEN WHAT
1880 DATA HOW SHOULD I KNOW WHEN*

THERE’S NO NEED TO APOLOGIZ
E

PLEASE STATE YOUR PR

PLEASE STATE YOUR PR

JUST TO BE NEGATI

32

1890 REM
1900 DATA HOW SHOULD I KNOW WHY*
1910 DATA DO YOUR FRIENDS KNOW WHY*
1920 DATA WHY DO YOU ASK
1930 REM
1940 DATA DO ANY OTHER REASONS SUGGEST THEMSELV

ES
1950 DATA IS THAT THE REAL REASON
I960 DATA ARE YOU SURE
1970 REM
1980 DATA PLEASE

1990 DATA APOLOGIES ARE NOT NEEDED
2000 DATA DON’T BE SO DEFENSIVE
2010 REM
2020 DATA DO YOU DREAM OFTEN
2030 DATA WHY DO YOU THINK YOU DREAM
2040 DATA WHAT IS SO IMPORTANT ABOUT DREAMS
2050 REM
2060 DATA HOW DO YOU DO

OBLEM
2070 DATA YOU ARE POLITE
2080 DATA OK — I’VE GOT THE MESSAGE
2090 REM
2100 DATA HOW DO YOU DO

DBLEM
2110 DATA YOU ARE POLITE
2120 DATA OK — I’VE GOT THE MESSAGE
2130 REM
2140 DATA YOU SEEM UNSURE
2150 DATA PLEASE BE MORE POSITIVE
2160 DATA BE MORE ASSERTIVE
2170 REM
2180 DATA ARE YOU SAYING ’NO’

VE
2190 DATA YOU ARE BEING RATHER NEGATIVE
2200 DATA WHY NO?
2210 REM
2220 DATA WHY ARE YOU CONCERNED ABOUT MY*
2230 DATA ARE YOU INTERESTED IN MY*
2240 DATA WHAT ABOUT YOUR OWN*
2250 REM
2260 DATA NAMES DATES DON’T BOTHER ME- PRAY CON

TINUE
2270 DATA WILL YOU PLEASE KEEP NAMES OUT OF IT

i i i
2280 DATA I HAVE ND USE FOR NAMES
2290 REM

PRAY CONTIN

33

ALWAYS?"
AN EXAGGERATION?

2300 DATA"REALLY,
2310 DATA ISN’T ’ALWAYS’
2320 DATA HOW OFTEN IS ’ALWAYS’
2330 REM
2340 DATA DO YOU THINK OFTEN
2350 DATA DO YOU THINK THINKING DAMAGES YOUR HE
ALTH
2360 DATA DID YOU THINK BEFORE YOU CAME TO SEE

ME
2370 REM
2380 DATA WHAT DOES THE SIMILARITY SUGGEST TO Y

OU
2390 DATA WHAT OTHER CONNECTIONS DO YOU SEE
2400 DATA WHAT RESEMBLANCE DO YOU SEE
2410 REM
2420 DATA YOU SEEM QUITE POSITIVE
2430 DATA ARE YOU SURE?
2440 DATA I SEE
2450 REM
2460 DATA WHY DO YOU BRING UP THE TOPIC OF FRIE

NDS?
2470 DATA DO YOU HAVE ANY FRIENDS
2480 DATA DO YOUR FRIENDS LIKE YOU
2490 REM
2500 DATA DO COMPUTERS WORRY YOU
2510 DATA ARE YOU THINKING ABOUT ME IN PARTICUL

AR?
2520 DATA WHY DO YOU MENTION COMPUTERS?
2530 REM
2540 DATA I’M NOT SURE I UNDERSTAND YOU FULLY
2550 DATA PLEASE ENLARGE
2560 DATA THIS IS MOST REVEALING

UE
2570 REM **************************************

I

Models A and B

Life
The Game
During the winter of 1970, John Conway, then attending
Cambridge University, created LIFE, a game whose simple rules
produce effects more delightful and unexpected than any
examination of the rules of the game could suggest. The world of
LIFE-admirers remained small until Scientific American published
an article on the game, written by Martin Gardner. Then LIFE
broke out all over.

Without a computer the moves of the game are so tedious and
slow to implement that the beauty of the unfolding patterns is lost.
LIFE really is one of the true 'natural’ computer games; it has
deserved its vibrant success.

LIFE creates an evolving colony of cells on a grid; these are
born and live and die in accordance with Conway’s rules:
• Each cell on the grid has eight neighbours.
• Every cell with two or three neighbours survives to the next
generation.
• A cell with only one neighbour dies.
• If there are three, and only three, neighbouring cells, a new cell
is born.
• Any cell with four or more neighbours dies from
overpopulation.
You can work out how the game proceeds by using a draughts
board, placing some pieces on it, then checking each piece and the
squares immediately around it to work out what will happen in the
next generation. It is important to note that a particular cell is not
changed immediately after it is examined, but only when the whole
grid has been examined. The rules are applied all over the grid
simultaneously.

There are two versions of the program. The first one generates
the initial colony at random, and the second allows the player to
enter the starting colony of his or her choice. We suggest you enter
the 'automatic’ version first and then, when you’re familiar with
how the process works, run the version (LIFE 2) that allows you to
define your initial colony.

After you input the number of cells (in LIFE 2), you then enter
the co-ordinates of each cell within the LIFE grid.

It is impossible to describe how effective the whole process is.
34

Reading this description will not prepare you for the pure magic of
this evolution of Life.

10
20
30
40
50
60

The Programs
Program one

Title
Sets mode.
Sends action to the initialisation procedure.
Start of master REPEAT/UNTIL loop (terminated in line 70).
To the procedure to print out the present colony.
To the procedure which determines how the next colony will

look.
70 Termination of master REPEAT/UNTIL loop.
90-180 Initialisation procedure:
100 Clears screen.
110 Turns off cursor.
120 Dimensions arrays to hold the plotted colony (A) and the
colony which is amended (B) before being copied into the plotting
colony.
130-160 Distribute the initial cells in the colony. The value one in
an array tells the computer a cell is present; a zero equals an empty
element of the grid. Line 150 copies the contents of each element of
the A array into the B array, so they start the run holding an
identical colony.
200-300 The procedure which actually prints out the colony:
210 Moves the print position to the top left-hand corner of the
screen; prints two blank lines.
220 Sets the counter Z to zero. This counter controls the number of
times the random notes sound just before the number of the
generation is changed. The word 'Generation’, and the value
assigned to the variable GENERATION are printed in red
(CHR$(129)). Lines 260 to 290 run through loops from two to 14
(leaving out the elements on the 'Frame’ of the grid). Line 270
copies the elements from the B array (which has been updated) into
the A array, and line 280 prints a double space if the element is
zero, and a space followed by a green asterisk if the element is one.

320-470 This is the procedure which updates the cell colony:
330 Adds one to the generation count.
340 Starts both the X and Y loops (terminated in line 460).
350 Sets the variable C, which will count the number of
neighbouring cells, to zero.
360^130 Check the cells surrounding the cell under examination,
looking at the elements in the A array.
440-450 Modify the contents of the B array in light of the value
which C has obtained, and in light of the contents of the A array. If
A equals one (that is, a cell is present at this location) and there are

35

Program two
There are many similarities between the first and second programs.
The major REPEAT/UNTIL loop is identical, and the procedures
which print the colony and update the generations are also
identical. The difference between the two programs lies within
lines 100 and 270, where you can entei’ your own colony. You’ll find
that if you enter a colony which forms a balanced pattern, it may
well evolve more interestingly than a colony of random cells. You
will find certain patterns that cycle, and others that move across
the screen, keeping each cell in a fixed relationship with the other
cells in the pattern.
150 Allows you to enter the number of starting cells you desire.
Line 160 rejects an answer less than zero.
180-240 This loop (FOR entry = 1 TO start) accepts your input as
X and Y (line 190) and checks to see if the cell lies within the grid
(line 200) and ensures that the cell is not already occupied (line
210). Line 220 sets that element in the A array to one, and line 230
copies this into the B array.
It is worth keeping track of your entry numbers so that if you
discover a particularly attractive pattern you can always repeat it
to impress your friends.

not two or three neighbours (which means there must be none, one,
or more than three), the cell is 'killed’ (that is, the equivalent
element in the B array is set to zero). If A equals zero (that is, there
is no cell present at this location), and there are three surrounding
cells (ie. C equals three), then a cell is born (the equivalent element
in the B array is set to one).

The Listings
10 REM *** LIFE ***
20 MODE 7
30 PROCinitialise
40 REPEAT
50 PROCprint_colony
60 PROCgeneration_update
70 UNTIL FALSE
80 REM **************
90 DEF PROCi initialise
100 CLS
110 VDU 23;8202;0;0;0
120 DIM A (15, 15) , B (15, 15)
130 FOR X=2 TO 14:FOR Y=2 TO 14
140 IF RND(1)>.35 A(X,Y)=1

36

ELSE PRINT CHR$(1

C=C+1

C=C+1
C=C+1

AND C<>2 AND C<>3 B<X,Y)=0

37

10 REM *** LIFE 2 ***
20 REM ALLOWS USER TO DEFINE STARTING COLONY
30 MODE 7
40 PROCinitialise
50 REPEAT
60 PROCprint_colany

150 B (X, Y) =A <X, Y)
160 NEXT:NEXT
170 GENERATION=0
180 ENDPROC
190 REM **************
200 DEF PROCprint_colony
210 PRINT CHR$30’’
220 Z=0:REPEAT
230 SOUND1,—15,RND(100)+30,1:SDUND1,-7,59,1
240 Z=Z+1:UNTIL Z=3
250 PRINT CHR$(129);" Generation:

GENERATION’’
260 FOR X=2 TO 14:FOR Y=2 TO 14
270 A(X,Y)=B(X,Y)
280 IF A(X,Y)=0 PRINT "

30) ; ,,*,‘;
290 NEXT:PRINT:NEXT
300 ENDPROC
310 REM **************
320 DEF PROCgeneration_update
330 GENERATION=GENERATION+1
340 FOR X=2 TO 14:FOR Y=2 TO 14
350 C=0
360 IF A(X—1,Y—1)=1
370 IF A(X—1,Y)=1 C=C+1
380 IF A(X—1,Y+1)=1 C=C+1
390 IF A(X,Y-1)=1 C=C+1
400 IF A(X,Y+1)=1
410 IF A(X+l,Y—1)=1 C=C+1
420 IF A(X+1,Y)=1
430 IF A(X+1,Y+1)=1 C=C+1
440 IF A<X,Y)=1
450 IF A(X,Y)=0 AND C=3 B(X,Y)=1
460 NEXT:NEXT
470 ENDPROC

“start

"Jentry

11 5Generation:

ELSE PRINT CHRS(111 5

38

70 PROCgeneration_update
80 UNTIL FALSE
90 REM **************
100 DEF PROCinitialise
110 CLS
120 vdu 23;8202;0;0;0
130 DIM A (15, 15),B(15,15)
140 PRINT’ ” ” ’
150 INPUT“HOW MANY CELLS TO START?
160 IF start<=0 THEN 150
170 FDR entry=l TO start
180 PRINT“Please enter cell number
190 INPUT X,Y
200 IF X*Y=0 OR X>14 OR Y>14 PRINT CHR$(130);

x;“ “;Y;“ is out of range":goto iso
210 IF A(X,Y)<>0 PRINT CHR$(129)j"THAT CELL

IS ALREADY OCCUPIED":GOTO 180
220 A(X,Y)=1
230 B(X,Y)=A(X,Y)
240 NEXT entry
250 CLS
260 GENERATION=0
270 ENDPROC
280 REM **************
290 DEF PROCprint_colony
300 PRINT CHR$30’’
310 Z=0:REPEAT
320 SOUND1,—15,RND<100)+30,1:SOUND1,-7,59,1
330 Z=Z+1:UNTIL Z=3
340 PRINT CHR$(129);

GENERATION’’
350 FOR X=1 TO 14:FOR Y=1 TO 14
360 A (X , Y) =B (X , Y)
370 IF A<X,Y)=0 PRINT "

30);"*";
380 NEXT:PRINT:NEXT
390 ENDPROC
400 REM **************
410 DEF PROCgeneration_update
420 GENERATION=GENERATION+1
430 FOR X=2 TO 14:FOR Y=2 TO 14
440 C=0
450 IF A(X—1,Y—l)=1 C=C+1
460 IF A(X-1,Y)=1 C=C+1
470 IF A(X—1,Y+l)=1 C=C+1
480 IF A(X,Y—1)=1 C=C+1
490 IF A<X,Y+1)=1 C=C+1
500 IF A(X+1,Y-1)=1 C=C+1

39

510 IF A(X+1,Y)=1 C=C+1
520 IF A(X+1,Y+1>=1 C=C+1
530 IF A(X,Y)=1 AND C<>2 AND C<>3 B(X,Y)=0
540 IF A(X,Y)=0 AND C=3 B(X,Y)=1
550 NEXT:NEXT
560 ENDPROC

Models A and B

Fairground Organ

40

The Game
In this game, your interaction with the computer consists of typing
in RUN, pressing RETURN, then sitting back to listen as the
computer composes a passable imitation of music on a fairground
steam organ. It changes speed from 'verse’ to 'verse’ of its little
tune, and obligingly prints its speed (Moderate or Allegro) on the
screen for you as it does so.

110-130
160-180
200-220
240-260
290-310
320-350

The Program
The heart of the program is the 'bass sequences’ which play twelve­
bar blues in the key of C, and from time to time generate notes
which harmonise, more or less, with the bass sequence being played.
10 Title.
20 Clears the screen (can be changed to MODE 7).
30 Dimensions the arrays which hold the notes to go with 'cchord’
and 'fchord*.
50-360 This is the master REPEAT/UNTIL loop.
60,100, 150, 190, 230, 280 These change the colour of the words
'Fairground organ’ and 'Moderate’ or 'Allegro’.
70-90 Call the 'cchord’ procedure four times.

Call the 'fchord’ and 'fnote’ procedure four times.
Call the 'cchord’ procedure a further four times.
Call the 'gchord’ procedure twice.
Call the 'fchord’ and 'fnote’ procedures twice.
Call the 'cchord’ procedure twice.
Play the final note of the 'verse’, and pause for an

appropriate time (using the zero in the second SOUND statement -
line 330 - to effectively turn off the sound for six times the value of
Z, the variable which controls the tempo). Line 350 changes the
speed from 'verse’ to 'verse’.
380-410 This procedure controls the display.
430-510 This procedure plays the bass run (C, E, G, E), calling notes
three times, and choosing a volume setting for the middle two notes
at random (thus giving a different stress to each bar, which stops it
from being too mechanical and monotonous). Notes one and four (C
and E) are chosen at random from different octaves, again to
increase variety.

41

530-580 This procedure plays the 'fchord' (F, A, C, A) in rigid time
and with a set volume. This stops the whole piece from
degenerating into apparent randomness (which tends to occur if
every 'chord’ has the same waywardness that 'cchord’ enjoys).
600-650 This procedure plays the 'gchord’ (G, B, D, B), again in
strict time, at a set volume.
670-690 This procedure chooses notes at random (by selecting
random elements of the array A) which go with 'cchord’.
720-840 The initialisation procedure fills the arrays with values
which correspond to appropriate notes.
860-880 Chooses 'fnote’s to go with 'fchord’.

Suggestions for improvement
<> Make better use of the dislay (perhaps to draw the notes as the
computer plays them).
• Change the notes the computer has to choose from.
• Allow 'fchord’ and 'gchord’ more variety, and add a routine to
change the volume within a verse or between verses.

The Listing
10REM** Fairground Organ **
20CLS
30 DIMA(8),B(4)
40PROC1ni ti ali se
50REPEAT
60PROCdisplay
70FORG=1TO4
80PROCcchord
90NEXT G
100PROCdisplay
110FORG=1TO4
120PROCfnote
130PROCfchord
140NEXTG
150PROCdisplay
160FORG=1TO4
170PROCcchord
180NEXTG
190PROCdisplay
200FORG=1TO2
210PROCgchord
220NEXTG
230PROCdisplay
240FORG=1TO2
250PROCfchord
260PROCcnote

42

270NEXTG
280PROCdisplay
290FORG=1TO2
300PROCcchord
310NEXTG
320SOUND 2,-10,53,4*Z
330SOUND 2,0,1,6*Z
340PROCdisplay
350Z=RND(2)+2
360UNTIL FALSE
370REM************
380DEF PROCdisplay
390PRINT TAB(0,3);CHRS(128+RND(6));"**

Fairground";CHR$(128+RND(6));"organ **"
400 IF Z=3 PRINT TAB(8,6);CHR$(128+RND(6));"

Allegro" ELSE PRINT TAB(7,6)jCHR$(128+RND(6));"
Moderato"

410ENDPROC
420END
430REM***********-**
440DEF PROCcchord
450IF RND(1)>.5 SOUND 2,-15,53,Z ELSE SOUND 2

,-15,5,Z
460 PROCcnote
470 IF RND(1)>.5 SOUND 2,-15,69,Z ELSESOUND 2

,-1,69,Z
480 IF RND(1)>.5 SOUND 2,-15,81,Z ELSESOUND 2

,-1,81,Z
490PROCcnote
500 IF RND<1)>.5 SOUND 2,-15,69,Z ELSESOUND 2

,-15,21,Z
510PROCcnote
520 ENDPROC
530REM***»*********
540DEF PROC-F chord
550 SOUND 2,-15,73,Z
560 SOUND 2,-15,89,Z
570 SOUND 2,-15,101,Z
580 SOUND 2,-15,89,Z
590ENDPROC
600REM*****************
610DEF PROCgchord
620 SOUND 2,-15,81,Z
630 SOUND 2,-15,97,Z
640 SOUND 2,-15,109,Z
650 SOUND 2,-15,97,Z
660ENDPROC
670REM**************

43

6B0DEF PROCcnote
690SOUND3,-13,A(RND(8)),Z*2:SOUND1,-4,A(RND(8

)) ,Z
700SOUND1,-7,A(RND(8)), Z
710ENDPROC
720REM»************
730DEF PROCi initialise
740Z=3
750 FORB^ITDB
760 READC
770 A(B)=C
780 NEXTB
790DATA149,165,177,5,245,233,117,33
800FORB=1TO4
810READC
820B(B)=C
830NEXTB
840DATA245,233,217,25
850ENDPROC
860REI1*************
870DEF PROCfnote
880SOUND3,-12,B(RND(4)),Z:SOUND1,—4,B(RND(4))

,2*Z
890ENDPROC

Model B

Space Storm

30
40
50
60

The Game
This program is a simplified version of the popular arcade game.
You steer a space-ship, roaming around in deep space, when you
encounter an asteroid storm.

All you have to do to destroy an asteroid is crash into it, or let it
crash into you. There is also a 'poisonous gas’ at the top left of the
screen which does you no harm but destroys asteroids at will. A
special feature of this game is that asteroids will occasionally merge
into one if they meet.

The object of the game is to destroy as many of the asteroids as
you can in the shortest possible time. The time in seconds is shown
ticking away in the top left corner of the screen. Pressing
'ESCAPE’ gives a special effect, so do not try to cheat.

You alter the number of asteroids you battle against in line 10.
Replace the '2’ with one less than the number of asteroids you feel
fit to tackle. The speed of the game can be altered in line 40;
increasing DIF% from 0 slows down the game. The speed is largely
determined by the number of asteroids used.

The controls you have for your ship are:
Travel in direction you are pointing in: Space bar.
Rotate clockwise: Colon key. (Asterisk key.)
Rotate counter-clockwise: Slash key. (Question mark.)

The Program
10 Initialises the number of asteroids to be used.
20 Dimensions an array to hold the X, Y positions of each of the
asteroids, and their velocities in each direction.

Sets up an 'ESCAPE’ trap.
Initialises the difficulty factor of the game.
Sets the computer into Mode 4.
Calls PROCdefine, which defines the asteroid shape, and eight

characters which are the space-ship pointing in each of eight
directions.
70 Calls PROCinit, which does the general initialisation required.
80 Starts the clock for the game.
90 This line of asteroids marks the start of the main game loop.
100 Starts the main game loop.
110 Prints the elapsed time near the top of the screen.

44

220

45

490
500
510
520

310
320
330
350

240
260
270

120 Saves the TIME.
130 And waits for DIF% centiseconds. As DIF% is usually 0 for
experienced players, you can delete this section of two lines and
line 40.
140 Uses INKEY with a negative number to sense whether the
space bar is pressed down. If so, places a space at the space-ship’s
current position, and calls PROCthrust, which does just that.
150 Checks for the 'slash’ key being held down. If it is, increments
the counter SH%, which gives the direction in which the space­
ship is pointing. This value is used MOD 8 since there are only
eight possible directions.
160 Checks for the colon key. SH% should then be decremented;
but, if it is, it could turn SH% into a negative number, so 7 is added
and the value taken MOD 8 again, to ensure SH% remains positive.
170 Places the space-ship at the required position, using SH% to
determine which of the eight space-ship shapes to print.
180 Calls PROCmoveast, which moves the asteroids on the screen.
190 Ends the game if all the asteroids have been destroyed. This is
checked by a call to FNall_destroyed.
200 A line of asterisks to delimit the end of the main loop.
210 Calls PROCfinished, which prints a progress report and
restores the cursor.

The program ends.

Starts the definition of PROCdefine.
Starts a loop through all the characters to be redefined.
Starts off the VDU statement required to redefine the

character.
280 Starts a loop through each of the eight rows required for each
character.
290 Reads the next character string from the data statements. This
will be a two-digit hexadecimal number.
300 Sends the byte to the redefining routine. The EVAL function
converts the hex string to a decimal number.

Ends loop.
Ends loop.
Ends PROCdefine.
Start of nine DATA statements to define each of the required

characters.
460 Starts the definition of PROCthrust.
470 If the ship is pointing left, moves the ship left.
480 If the ship is pointing left and up, moves the ship in that
direction.

If the ship is pointing straight up, moves it one space up.
If the ship is pointing right and up, moves it in that direction.
If the ship is pointing to the right, moves it one space right.
If the ship is pointing down and to the right, moves it in that

direction.

46

570
580
590
610

750
760
770
780
790
800

940
950
960
970

ends the loop.
Turns off the cursor.
Starts a loop for each of the available asteroids.
Chooses a random x co-ordinate for each asteroid ...
and a random y co-ordinate.
Chooses a random velocity in each direction for each of the

530 If the ship is pointing straight down, moves it one space down.
540 If the ship is pointing down and to the left, moves it in that
direction.
550 If the ship has moved off the left-hand side of the screen, moves
it to the right edge of the screen.
560 If the ship has moved off the top of the screen, moves it to the
bottom.

Takes the MOD value of the x co-ordinate of the ship . . .
and of the y co-ordinate.
Ends PROCthrust.
Starts the definition of FNreadch. This function is directly

taken from the User Guide, and an explanation of it may be found
in its chapter on *FX calls.
730 Starts the definition of PROCinit. This routine initialises all
the variables required, and sets up the display.
740 Restores the normal display colours - black background, white
foreground.

Chooses a yellow foreground and a red background.
Sets the starting x co-ordinate of the ship.
Sets the starting y co-ordinate of the ship.
Sets the starting direction for the ship.
Places your ship on the screen.
Starts a loop through all the memory locations on one line of

the screen.
810 Places a yellow block on the top line ...
820 and on the bottom.
830 Ends the loop. The end result of all this is to fill the top and
bottom lines of the display with yellow blocks.
840 For each of the top 31 lines of the display .. .
850 prints a white block at the beginning and end of every line
and ..
860
870
880
890
900
910
asteroids. This can be — 1, 0 or +1.
920 See above.
930 Sets the flag 'is asteroid not shot down’ to TRUE for each
asteroid.

Places each asteroid on the screen.
Ends loop.
Sets the print field width to 3.
Lets the cursor control keys give true values for GETting and

INKEYing.
980 Ends PROCinit.

47

1300
1310
1320
1330
1340
1370
1380
1390
1400
1410

1200
1210
1220
1230
1240
1250
1270
1280
1290

1010
1020
1030
1040
1050
1060
1070
1080
1090

1140
1150
1160
1170
1190

1000 Starts the definition of PROCmove_ast. This procedure moves
all the asteroids according to their current velocities.

Sets the LOCAL variables required.
Starts a loop through each of the available asteroids.
Gets the x co-ordinate of the current asteroid.
Gets the y co-ordinate of the current asteroid.
If the asteroid is meant to be on the screen, and the place

where it should be does not contain an asteroid, resets the flag.
If the asteroid has still survived, replaces it with a space.
Increments the x co-ordinate according to the x velocity.
Increments the y co-ordinate according to the y velocity.
If the asteroid has moved off the screen, places it at the

bottom.
1100 If the asteroid has moved off the left edge of the screen, puts it
on the right edge.
1110 Takes the MOD value, in case the asteroid has moved off the
bottom.
1120 Takes the MOD value, in case the asteroid has moved off the
right-hand edge of the screen.
1130 If the asteroid is still meant to be on the screen, puts an
asteroid at the relevant space.

Resets the array with the new co-ordinate ...
does the same for the y co-ordinate.
Goes back for the reset of the asteroids.
Ends PROCmove_ast.
Starts the definition of FNall_destroyed. This function checks

to see if there are any 'un-destroyed asteroids’ around.
Sets the relevant LOCAL variables.
Sets the flag for 'all destroyed’ to TRUE.
Starts a loop through all the asteroids.
If the current asteroid is visible, sets the flag to FALSE.
Ends the loop.
Ends the loop with the flag.
Starts the definition of PROCfinished.
Clears the screen.
Gives the screen a blue foreground and a red background

(very difficult to read).
Starts the congratulatory message.
Carries on with the above.
And finishes it.
Gives you back the cursor.
Ends PROCfinished.
Puts the machine in Mode 5.
Prints 'CHEAT’ in the middle of the screen.
Resets Time.
Sets the flash rate for the flashing colours at very high.
Ditto.

48

1420 Makes the screen flash black/white.
1430 Ends the effect after a predetermined time.
1440 Returns to the start of the program.

Suggestions for improvement
• Sound effects should be your first priority. The cues for sound
would be given at a collision and when the game is over.
• You could have more than one shape for the asteroids (although
most people playing this version do not notice or even care that
they are all identical).
• A high-score feature, or - better still - a score ladder, as in the
arcade versions, would increase the competitive element.
• An option to end a game and also an option to begin a new game.

THEN SH7.= (SHX+1)
THEN SHX=(SHX+7)

MOD 8
MOD 8

The Listing
10 ASZ=5
20 DIM ASTX(ASX,4)
30 ON ERROR GOTO 1360
40 DIFX=1
50 MODE 4
60 PROCde-Fine
70 PROCinit
80 TIME=0
90 REM ***************************
100 REPEAT
110 PRINT TAB(2,2),TIME DIV 100
120 TIX=TIME
130 REPEAT UNTIL TIME>DIFX+TI7.
140 IF INKEY (-99) THEN VDU 31, XX+1, Y7.+ 1,32:

PROCthrust
150 IF INKEY(-105)
160 IF INKEY(-73)
170 VDU 31, X7.+ 1, Y7.+ 1, SHX+224
180 PROCmove_ast
190 UNTIL FNall-destroyed
200 REM ***************************
210 PROC-f ini shed
220 END
230 REM ***************************
240 DEF PROCdefine
250 LOCAL X7.,YZ,A$
260 FOR X7=224 TO 233
270 VDU 23, XX
280 FOR YX=0 TO 7
290 READ M
300 VDU EVAL (,,8c"+A«)
310 NEXT Y7.
320 NEXT XX

49

480
490

560 IF SGN(Y7.)=-1
570 X7.= (X7. MOD 38)
580 Y7.= (Y7. MOD 30)
590 ENDPROC
600 REM ***************************
610 DEF FNread (X7-, Y7.)
620 LOCAL A7.,LX7.,LY7.,C7.
630 LX7.=P0S
640 LY7.=VP0S
650 VDU 31,X7.,Y7.
660 A7.= 135
670 C7.=USR (&FFF4)
680 C7.=C7. AND &FFFF
690 C7.=C7. DIV &100
700 VDU 31,LX7.,LY%
710=(CZ MOD 32)+224
720 REM ***************************
730 DEF PROCinit
740 VDU 20
750 VDU 19,1,3,0,0,0,19,0,1,0,0,0
760 X7.=20
770 Y7.=20
780 SH7.= 1
790 VDU 31,X7.+ l,Y7.+ l,SH7.+224
800 FOR R7.=0 TO 319

330 ENDPROC
340 REM ***************************
350 DATA 06,1C,7C,F8,F8,7C,1C,06
360 DATA 00,10,30,38,7E,7C,F0,C0
370 DATA 00,81,E7,7E,7E,3C,3C,18
380 DATA 00,08,0C,1C,7E,3E,0F,03
390 DATA 60, 38,3E,IF,IF,3E,38,60
400 DATA 03,0F,3E,7E,1C,0C,08,00
410 DATA 18,3C,3C,7E,7E,E7,81,00
420 DATA C0,F0,7C,7E,38,30,10,00
430 DATA 30,1C,7E,F8,3E,7E,7E,18
440 DATA FF,FF,FF,FF,FF,FF,FF,FF
450 REM ***************************
460 DEF PROCthrust
470 IF SH7.=0 THEN X7.=X7.-1

IF SH7.= 1 THEN X7.=X7.-1 : Y7.=Y7.+ 1
IF SH7.=2 THEN Y7.=Y7.+ 1

500 IF SH7.=3 THEN X7.=X7.+ 1: Y7.=Y7.+ 1
510 IF SH7.=4 THEN X7.= X7.+ 1
520 IF SH7.=5 THEN X7.=X7.+ 1: Y7.=Y7.-1
530 IF SH7.=6 THEN Y7.=Y7.-1
540 IF SH7.=7 THEN X7.=X7.-1 : Y7.=Y7.-1
550 IF SGN(X7.)=-1 THEN X7.=38+X7.

THEN Y7.=30+Y7.

THEN VDU 31,X7.+ 1,Y7.+ 1,232

50

810 ? (HIMEM+R7.) =255
820 ?(HIMEM+RZ+9920)=255
830 NEXT R7.
840 FOR R7.=0 TO 30
850 VDU 31,39,RZ,233,233
860 NEXT RZ
870 VDU 23;8202;0;0;0;
880 FOR TZ=0 TO ASZ
890 ASTZ(TZ,0)=RND(38)—1
900 AST7. (TZ,1) =RND (30) -1
910 ASTZ (TZ, 2) =RND (3) -2
920 AST7. (TZ,3)=RND(3)—2
930 AST7. (TZ,4) =TRUE
940 VDU 31,ASTZ(TZ,0)+1,ASTZ(TZ,1)+1,232
950 NEXT T7.
960 @Z=3
970 REM
980 ENDPROC
990 REM ***************************
1000 DEF PROCmove_ast
1010 LOCAL TZ,XZ,YZ
1020 FOR TZ=0 TO ASZ
1030 XZ=ASTZ (T7., 0)
1040 YZ=ASTZ (T7., 1)
1050 IF ASTZ(TZ,4) AND FNread(XZ+1,YZ+1)<>232

THEN AST7. (TZ,4) =FALSE
1060 IF ASTZ(TZ,4) THEN VDU 31,XZ+1,YZ+1,32
1070 XZ=XZ+ASTZ(TZ,2)
1080 Y7.=Y7.+AST7. (TZ , 3)
1090 IF SBN(XZ)=—1 THEN XZ=38+XZ
1100 IF SBN(YZ)=—1 THEN YZ=30+YZ
1110 XZ=XZ MOD 38
1120 YZ=YZ MOD 30
1130 IF ASTZ(TZ,4)
1140 AST7. (TZ,0)=XZ
1150 ASTZ (TZ, 1) =YZ
1160 NEXT T7.
1170 ENDPROC
1180 REM ***************************
1190 DEF FNall-destroyed
1200 LOCAL AZ,TZ
1210 AZ=TRUE
1220 FOR TZ=0 TO AS7.
1230 IF ASTZ(TZ,4) THEN AZ=FALSE
1240 NEXT T7.
1250=A7.
1260 REM ***************************
1270 DEF PROC-Fini shed
1280 CLS

";TIME DIV 10the asteroids in

15

51

1290 VDU 19,1,4,0,0,0,19,0,1,0,0,0
1300 PRINT ’’’"You have succeeded in

destroying”
1310 PRINT "all

0;" seconds"
1320 PRINT ’’"Well done."”’
1330 VDU 23,0, 10, 64, 0; 0; 0; 0; s *FX
1340 ENDPROC
1350 REM if**************************
1360 REM *** ON ERROR SUBROUTINE ***
1370 MODE 5
1380 PRINT TAB(2,16);"C HEAT !
1390 TIME=0
1400 *FX 9,2
1410 *FX 10,2
1420 VDU 19,3,8,0,0,0,19,0,15,0,0,0
1430 REPEAT UNTIL TIME>300
1440 GOTO 40

Models A and B

Outlaw

52

The Game
This game, based on a program written by Alastair Gourlay, puts
you in the role of Sheriff. You have to clean up the town by killing
off all the outlaws so that decent, law-abiding folk (such as you and
me) can walk the streets free of fear. The outlaws are, we have
heard, 'plenty mean’. The moment you spot one, you must shoot
him very, very dead ... or he will draw his six-shooter and gun you
down. It is fairly easy to shoot an outlaw: you just hit any key on
your trusty computer when you are told that an outlaw has been
spotted. But you must be very quick on the draw, as you’ll discover
when you run this game. You start a game with between 11 and 20
outlaws to 'clean up’ and you win the game only if you manage to
get them all.

The game is essentially a reaction test.

The Program
10-20 Title.
30 Sets the mode.
40 Decides how many outlaws are in town and sets the variable A
equal to this number (which is between 11 and 20)
50 Prints title.
60 Tells you how many outlaws are left.
70 This line ensures that around 70% of the time you will be told
the streets are empty.
90-110 A random delay before the streets are surveyed again.
130 Prints out a warning sign.
140 Clears the buffer, to await the 'gun shot’.
150 Waits for a time (which gets shorter as the game progresses) for
you to react.
150 If a shot has been fired (ie. a key has been touched) action is
sent to the routine from line 240 which guns down the outlaw.
160-230 This is the 'you have been shot’ routine which ends the
game.
240 Clears the buffer.
250-310 'Fires’ the gun, using the J loop and the two sound lines
(270 and 280).
320 Determines if you hit the outlaw or not.
330-340 You did not.

The Listing

t

THEN 240

+++

The outlaw

53

Suggestions for improvement
• Note that if you hold down a key long enough, the Sheriff
always wins. You could perhaps try to modify the program to get
around this.
• Cut off the ending message after a few seconds and give an
option to restart the game. It is best to put the computer into Mode
7 at the end of the current game.

350-390 Well done. You did.
400-450 The congratulatory message if you kill all the outlaws.

10 REM OUTLAW
20 REM ALASTAIR GOURLAY/TIM HARTNELL
30 MDDE7
40 A=RND<10)+10
50 PR I NTT AB (12,3); CHR$ (1284-RND (5)) " OUTLAW "
60 PRINTTAB (0,16) ; CHRS (1284-RND <5)) "There are

";A;" outlaws left in town "
70 IF RND(10)<4 THEN 130
80 PRINTTAB (3, 8) ; CHRS (1284-RND (5)) "The streets

are empty... "
90 T=TIME
100 K=RND (250) 4-50
110 REPEAT UNTIL TIME-T=K
120 GOTO 50
130 PRINTTAB(3,8);CHR$<128+RND(5))"Look out,

here’s an outlaw!
140 *FX 15,0
150 IF INKEYS (204-A) < >
160 REPEAT
170 PRINT’’CHRS(129)"++++++++++ Too slow!!

+++++++++++"
180 PRINT’’CHRS(128+RND(5))"

got you! "
190 T=TIME
200 REPEAT UNTIL TIME-T=10
210 K=RND<4)-1
220 SOUND K,-15, RND< 100) 4-128, K+l
230 UNTIL FALSE
240 *FX 15,0
250 FOR J= 1 TO 60 STEP6
260 PR I NTT AB < 3 , 8) ; CHRS (1284-RND (5)) " ***********

** BANG ****************"
270 SOUND 1,-154-3/5, 1, 1
280 SOUND 2,—15+J/5,2,1
290 NEXT
300 T=TIME

"**********
************"

done,

54

310 REPEAT UNTIL TIME-T=40
320 IF RND(10)>3 THEN 350
330 PRINTTAB(3,8);CHR$(128+RND(5))"**********

You missed! ************"
340 GOTO 150
350 PRINTTAB(3,8)j CHR$(128+RND(5))

You got him!
360 A=A—1
370 T=TIME
380 REPEAT UNTIL TIME-T=300
390 IF A>1 THEN 50
400 REPEAT
410 PRINTTAB(3,8);CHR$(128+RND(5))"Well

Sheriff,you’ve cleaned"
420 PRINTTAB(6,10);CHR$(128+RND(5))

f outlaws"
430 SOUND 1,—15,RND(20)+30,RND(4)
440 SOUND 2,-15,RND(20)+30,RND(4)
450 UNTIL FALSE

"the town o

Model B

3D Super Plot

55

The Game
This program allows you to build up images of three-dimensional
objects and then view the finished drawing from any position in
three-dimensional space. This has the effect of variously rotating
and changing the size of the drawing. You can also edit the
drawings, in a manner similar to BASIC editing, to correct errors
or to enhance an image. 'Sub-drawings’, such as a cube, can be
stored under user-definable keys, to allow easy repetition of parts of
an object.

When you run the program, the prompt 'Enter the X, Y and Z
co-ordinates’ is printed near the bottom of the screen. The portion
below this prompt is not available for drawing. The program is
asking you to enter the co-ordinates of a point somewhere in three-
dimensional space. This point will then be used as the viewpoint
from which a drawing is constructed.

In response to the prompt, enter three numbers separated by
commas. The numbers that you enter depend on the drawing you
intend to construct, but usually TOO, 200, 300’ is a suitable
viewpoint. For this reason, it has been stored under function key 9.
Thus a simpler method of answering the prompt is to simply press
function key 9.

After you answer the first question, the program asks you to
'Enter 'D’ or 'E’ (Draw or Edit)’. For the moment, press 'E’. This
puts you in 'edit mode’, where drawings can be constructed and
edited. Entering 'D’ would have put you in 'draw mode’, which
allows you to view the most recent drawing from the chosen
viewpoint. However, as the program does not have a drawing
stored in it at the moment, you will get no joy from this option. In
'edit mode’ the program responds to the keys 'U, D, L, R, F, B, S, O,
P’ and 'Return’. Pressing 'Return’ brings you back to the initial
prompt and stores the current drawing. The first six keys in the
above list draw lines in the following directions:
'U’ up
'D’ down
'L’ left
'R’ right
'F’ forwards
'B’ backwards

56

You can try experimenting with these keys in various
combinations. If you get confused, just press 'Return’. (It is worth
commenting that if you choose to edit from a 'negative viewpoint’
(eg. —100, — 200, 300), the above keys will work in the opposite
sense, since the 'F’ key adds a certain amount to one of the three
co-ordinates. From a negative viewpoint, an addition will result in
a line going away from the user. The implication of this is to avoid
editing a drawing from a negative viewpoint).

If, after pressing 'Return’, you still wish to use some of the parts
of your previous drawings, you can use the 'cursor keys’ and the
'copy’ key to copy parts of the previous drawing, since all key
presses also appear printed on the screen.

The 'S’ key is used to change the size of the lines drawn using
the above keys. The initial, default, size is '8’. To change size, press
'S’ and then a number key from 1 to 9. Thus 'S4’ will halve the size
of the lines drawn.

The 'O’ and 'P’ keys are used to change the kind of lines drawn.
Normally, solid lines are drawn, but by pressing 'P’ these can be
changed to dotted lines. Similarly, pressing 'O’ will return the
program to drawing solid lines. These dotted lines are left out when
the drawing is drawn using the 'D’ option in answer to the second
prompt; so, by judicious use of these keys, you can draw pictures
which do not 'join up’ all over. The 'etch-a-sketch’ program in the
Welcome Pack uses a similar method to allow you to move to
another part of the screen without leaving a trace.

That covers the edit mode. To prepare a picture for the 'draw
mode’ to act upon, proceed as follows: Press 'Return’ to return you
to the initial prompt, and enter suitable co-ordinates again.
Function key 9 is still a suitable viewpoint. After pressing 'D’ in
response to the second prompt, the program will draw your picture
from the chosen viewpoint, which is displayed at the top left of the
screen; but it will not draw any of the dotted lines.

When it has finished, it waits for you to press one of the keys 'U,
D, L, R, F, B’ or 'Return*. 'Return’ returns you to the first prompt
as before, and the other keys change the viewpoint by 80 units in
the direction they indicate. Thus repeatedly pressing 'L’ will move
the viewpoint to the left, and so seem to rotate the drawing. You
can have great fun using this mode.

In response to the first prompt, you can also press function key 8
as the new viewpoint. This deposits '0, 0, 0’ as the new viewpoint.
In this case, the program inserts random values for the three co­
ordinates, to allow special effects.

To store a section of a picture under a function key, it is
necessary to 'escape’ into the program and type something of the
form "*KEY O'’”, inserting within the quotes the section you
want to store. This can be edited down from the screen display.

210-250 These lines make up PROCSPLIT. They first define a
graphics window and then relocate the graphics origin to the
bottom left of the window. A screen window is defined.
260-330 These lines make up PROCACT. U, V and W are variously
the current viewpoint and the current plotting position. Thus this

57

The Program
10-150 This section of the program initialises some variables:
SP is a pointer into the string array which stores the current
drawing. That is, it contains a number equal to the subscript of the
string array which is currently being processed.
mode is a variable which will have a value of 0 for a model B
machine and 4 for a model A machine, since it governs the screen
mode the program will run in.
lines is a variable containing the number of lines per page in the
current screen mode, selected by 'mode’. This will almost always
have a value of 32.
columns is a variable containing the number of characters per line
in the current screen mode. This will be either 40 or 800. Thus to
run the program in a model A machine, change this variable and
'mode’ in line 20.
foreground_number is the number of the normal foreground colour.
Thus for Modes 0 and 4 it will be 1, since the normal foreground
colour is 1.
background colour is the number governing the colour the
background of the screen will be. I have chosen cyan, indicated by
the 6.
foreground colour is the number governing the colour the
foreground of the screen will be. I have chosen red, indicated by the
1.
80, 90 Define the two user-defined keys used by the program.
100, 110 Declare how many key presses the drawing may be made
up of, and then dimension a string array S$ to store all the key
presses. It is this array that the variable SP is pointing into.
120 Puts the computer into the screen mode selected in line 20.
130 The call to PROCSPLIT here calls a sub-program which
partitions the screen into the graphics and text windows, and
moves the graphics origin into the centre of the graphics window.
140, 150 Change the screen colours according to the previously
selected colours.
160-200 This section is the main program - all five lines of it. The
program repeatedly calls PROCGET, which presents the user with
the various prompts outlined above and extracts answers to the
questions. Depending on the outcome of the second prompt, the
program calls PROCDRAW or PROCEDIT.

The CLG statement clears the graphics window between Mode
switches.

58

routine decrements or increments these variables according to A$.
The change is governed by the variable G, which is usually the size
of lines drawn in the 'edit mode’.
340-360 These lines make up PROCINIT. The variables U, V and W
are initialised to zero for the edit routine and the draw routine.
370-430 These lines make up PROCVIEW. PROCVIEW sets up the
variables used by the plotting routine, according to the current
viewpoint (A, B and C). In addition, L, M and N are made equal to
the current view position. The next routine, PROCPLOT3, uses all
these variables.
440-500 These lines make up PROCPLOT3. This routine is a three-
dimensional equivalent of the standard PLOT statement. Thus K is
exactly equal to the first argument of the PLOT statement. The
operation of this routine is complex, but it depends on the
constants defined in the previous procedure.

510-590 These lines make up PROCGET. This procedure presents
the user with the prompts outlined above, and inserts the random
viewpoints if required.

600-790 These lines make up PROCPICTURE. This procedure is
the main working section of the program, since it is the portion
used by both draw and edit modes to construct the picture.

U, V and W are defined to be LOCAL, since these variables are
also used outside this procedure. A$ and G are defined as LOCAL
also, because the value of A$ has to be preserved, as does G.

PROCINIT is called in line 620 to zero the three LOCAL
variables U, V and W. Then PROCVIEW is called, to initialise the
constants required by PROCPLOT3. Then the program repeatedly
gets key presses from FNGET, and draws the necessary lines.

The value of MOV defines whether dotted lines are to be drawn
or left out, depending on whether the procedure is called from the
DRAW or EDIT sections of the program. This section of the
program is fairly simple, since it relies almost exclusively on other
procedures and a function.

The point to bear in mind when reading this section is that INP
is a variable which is true if the procedure was called from the
EDIT section, and false otherwise.

800-870 These lines make up PROCSIZE. This procedure is called
whenever 'S’ is encountered in the list of characters which define a
drawing. Only if INP is true is the numeral following S printed out.

880-890 These lines make up the function FNGET. This function
chooses whether to get input from the keyboard or from the string
array S$.

900-940 These lines make up PROCEDIT. This routine simply calls

The Listing

59

PROCPICTURE, having previously defined MOVes to be dotted
lines and having set INP equal to TRUE.
950-1120 These lines make up PROCDRAW. The current cursor
position is saved in temporary registers at line 960, then a new text
window of the same size as the current graphics window is defined.
This is to allow the current view position to be displayed at the top
of the screen.

MOV and INP are assigned as necessary, before a loop is entered
which repeatedly draws the current picture, and moves the current
view position according to the direction keys, until 'Return’ is
pressed. When the loop has been exited the old screen windows are
established, and the cursor moves to its old position.

Suggestions for improvement
• The program could be made more user-friendly by allowing the
user to input a two-digit number after S; improving the prompts;
allowing curved and diagonal lines; and allowing the function keys
to be programmed directly by the program. Most of these
enhancements could not, however, be made on the Model A
machine because of its limited memory.
• The program could be speeded up considerably by calculating a
new picture while a previous one is being displayed, and
compressing the program’s structure.
• Does the program exit 'gracefully’ ? If you think not, modify it
to do so.

10 SP=1
20 mode=0
30 lines=32
40 columns=80
50 -f□reground_number=l
60 background_colour=6
70 •foreground_colour=l
80 *KEY9 "100,200,300:M"
90 *KEY8 ,,0,0,0:M,,
100 storage=80*4
110 DIM S$(storage)
120 MODE mode
130 PROCSPLIT
140 VDU 19,0,background_colour,0,0,0
150 VDU 19,foreground_number,

foreground_colour,0,0, 0
160 REPEAT
170 PROCGET
180 IF A$="D" THEN PROCDRAW ELSE PROCEDIT
190 CLG

’D’ ’E* - [Draw or Edit!or

60

THEN W=W+G
THEN W=W—G
THEN U=U+G
THEN U=U—G
THEN V=V+G
THEN V=V—G

540 IF A=0 THEN A=(50+RND(300))*SGN(RND)
550 IF B=0 THEN B=(50+RND(300))*SGN(RND)
560 IF C=0 THEN C=(50+RND(300))*SGN(RND)
570 A$=GET$
580 PRINT
590 ENDPROC
600 DEF PROCPICTURE(A,B,C)
610 LOCAL U,V,W,A$,G
620 PROCINIT
630 PROCVIEW(A,B,C)
640 SP=1
650 PRDCPL0T3(69,0,0,0)

200 UNTIL FALSE
210 DEF PROCSPLIT
220 VDU 24,0;256;1279;1023;
230 VDU 29,0;256;
240 VDU 28,0,1ines-1,columns—1,24
250 ENDPRDC
260 DEF PROCACT(A$)
270 IF At="U"
280 IF A$="D"
290 IF A»="L"
300 IF A«="R"
310 IF A$="F"
320 IF A$="B"
330 ENDPROC
340 DEF PROCINIT
350 U=0:V=0:W—0:G=80
360 ENDPROC
370 DEF PROCVIEW(A,B,C)
380 S=A*A+B*B
390 T=S+C*C
400 Q=SQR(T)
410 R=SQR(S)
420 L=A:M=B:N=C
430 ENDPRDC
440 DEF PRDCPLDT3(K,U,V,W)
450 LOCAL O
460 O=T—U*L—V*M—W*N
470 C=T*(V*L-U*M)*4/(R*O)+640
480 D=384+3*Q*(W*S-N*(U*L+V*M))/(R*O)
490 PLOT K,C,D
500 ENDPROC
510 DEF PROCGET
520 INPUT "Enter the X,Y and Z co-ordinates "

A,B,C
530 PRINT "Enter

61

730 IF AS="S"
740 IF AS="O"
750 IF AS="P"
760 SP=SP+1
770 UNTIL AS=CHRS(13)
780 PRINT
790 ENDPROC
800 DEF PROCSIZE
810 LOCAL AS
820 SP=SP+1
830 AS=FNGET
840 IF INP=TRUE THEN PRINT AS;
850 G=10*VAL(AS)
860 SS(SP)=AS
870 ENDPROC
880 DEF FNGET
890 IF INP=TRUE THEN VDU 7:=GETS ELSE=SS(SP)
900 DEF PROCEDIT
910 MDV=21
920 INP=TRUE
930 PROCPICTURE(A,B,C)
940 ENDPRDC
950 DEF PROCDRAW
960 TPOS=POS:TVPOS=VPDS
970 VDU 28,0,23,columns—1,0
980 G=80
990 MOV=4
1000 INP=FALSE
1010 U=A:V=B:W=C
1020 REPEAT
1030 PRINT "Current view position is.. ";v;",";W
1040 PROCPICTURE(U,V,W)
1050 VDU 7
1060 AS=GETS
1070 CLS
1080 PROCACT(AS)
1090 UNTIL AS=CHRS(13)
1100 PROCSPLIT
1110 VDU 31,TPOS,TVPOS
1120 ENDPROC

"; U;“,

660 G=80
670 K=5
680 REPEAT
690 AS=FNGET:SS(SP)=AS
700 IF INP=TRUE THEN PRINT AS;
710 PROCACT(AS)
720 PROCPLOT3(K,U,V,W)

THEN PROCSIZE
THEN K=5
THEN K=MDV

Models A and B

Codebreaker
The Game
'Codebreaker’, or variants of it, has been popular in England for
centuries under the name 'Bulls and Cows’.

The computer 'thinks of’ a code consisting of four colours
chosen from six possible colours. You have 10 guesses to work out
which four colours the computer has in mind. All four colours in
the code are different to each other. Not only do you have to guess
the colours but you must also discover where in the sequence each
colour stands.

The computer helps you after each guess, in terms of 'blacks’
(correct colours in the correct position) and 'whites’ (colours which
appear in the code, but not in the position you specified).

When you run the game, the numbers one to six, and the colours
they represent, are shown at the top of the screen. You enter your
guess by typing in the numbers which represent the colours but
together as one four-digit number which the computer 'strips
down’ into four separate 'colours’. Each of your guesses, and the
feedback information on it, stays on the screen, so you can use the
information given on earlier guesses to improve later ones.

10
20
30
40
50

The Program
Title.
Sets the mode.
Turns off the cursor.
Clears the buffer.
Dimensions the arrays to hold the computer’s number and

processes your guesses.
70-140 Instructions for you, including a print-out of the six colours
from which the code will be guessed.
150-160 The GETS waits for any key to be pressed, and the screen
clears for the game to begin.
180-200 Prints out the six colours and their corresponding
numerical codes.
220-300 Selects the four-digit code, making sure that all digits are
different.
310 Starts the loop (terminated in 630) to give you up to 10 guesses.
330 Accepts your guess.
340 Moves the print position back to overprint your input.

62

The Listing
**

am choosing -From

63

350-390 Strips your guess down to four separate digits.
400 Sets the counters for black (B) and white (W) to zero.
410-450 Looks for blacks, converting any element of the array
found to be a black to zero, so it will not be recounted when the
whites are assessed.
460-520 Looks for whites, jumping over (line 470) any elements of
the array which have been set to zero.
530-600 Prints out the colour version of your guess, and the score
you have achieved. Note that all the foregoing, from line 330 to this
point in the program, happens extremely quickly, so you have the
impression that once you type the number in it is reprinted more or
less immediately as four colours, together with a score.
630 If there are less than four blacks (that is, B is not equal to four)
the computer goes back to line 320 for the next guess.
610-620 'Congratulations’ message if the code is guessed correctly.
650-700 Prints out the complete code, either because it has been
guessed, or the 10 guesses are over. Line 680 puts a maddening
pause into the print-out, just to frustrate you if you are desperate
to know what the code was.
710 Pauses before offering new game.
720-780 Offers you a new game; and, for any answer except one
beginning with N or n, gives you a new game.
Note This program can be improved considerably. For instance, it
would be neater to put the computer into Mode 7 at the end of the
program, and also give the user the option of ending it 'gracefully’.

am thinking of a

10 REM ** Codebreaker
20 MODE 7
30 VDU 23;8202;0;0;0
40 *FX 15,0
50 DIM C(4) ,G(4) ,H<4)
60 CLS
70 PRINT ” ’CHR$(133);"I

four—colour code,"
80 PRINT CHRS(133);"which you have 10 goes

to guess."
90 PRINT ’ ”CHR$(134) ; “I

these colours:"’
100 FOR colour=l TO 6
110 PRINT CHR$(135);col our;">";CHR$(128+

col our);"* ";
120 NEXT
130 PRINT”’CHR$(129) ; "All four colours are

different."
140 PRINT” ” ”CHR$(131) ; "Press any key to

begin..."

THEN 230

" ;G

THEN 450

THEN 510

ELSE PRINTII II

64

150 A*=GET$
160 CLS
170 PRINT’’’
180 FOR colour=l TO 6
190 PRINT CHR$(135);colourCHR$(128+

colour);"*
200 NEXT
210 PRINT ’’’
220 C<1)=RND(6)
230 Z=1
240 Z=Z+1
250 C(Z)=RND(6)
260 J=0
270 J=J+1
280 IF C(J)=C(Z)
290 IF 3<Z-1 THEN 270
300 IF Z<4 THEN 240
310 FOR G=1 TO 10
320 PRINT CHR$(133);"Enter guess number
330 INPUT A:IF A<1000 OR A>9999 THEN GOTO 330
340 PRINT CHR$(11)CHR$(11)CHR$(11)
350 FOR Z=1 TO 4
360 G(Z)=A-10+INT(A/10)
370 H(Z)=G(Z)
380 A=INT(A/10)
390 NEXT
400 B=0:W=0
410 FOR Z=1 TO 4
420 IF C(Z)OG(Z)
430 B=B+1
440 G(Z)=0
450 NEXT
460 FOR Z=1 TO 4
470 IF G(Z)=0 THEN 520
480 FOR J=1 TO 4
490 IF C(Z)OG(J)
500 W=W+1
510 NEXT J
520 NEXT Z
530 FOR T=4 TO 1 STEP -1
540 PRINT CHR$(128+H(T));"*";
550 NEXT
560 PRINT CHR$(132);"scored";CHR$(129);B;"

black";
570 IF BO1 PRINT "s"; ELSE PRINT " ";
580 PRINT CHRS(132);"and“;CHRS<129);W;"

white";
590 IF WO1 PRINT

"es"

another

"n"

65

bye -for now!"

"Enter Y or N“

610 IF B=4 PRINT CHR$(133);"You guessed it.,
in just " ;G;" guess";
620 IF G>1 AND B=4 PRINT
630 IF BO4 NEXT G
640 PRINT CHR$(11)CHR$(11)CHR$(11)
650 PRINT ’’TAB(3);CHR$(134);"The code was";
660 FOR H=1 TO 5000:NEXT
670 FOR T=4 TO 1 STEP -1
680 FOR H=1 TO 2000:NEXT
690 PRINT CHR$(128+C(T));"*";
700 NEXT
710 FOR H=1 TO 8000:NEXT
720 PRINT ”CHR$(134) ; "Do you want

game?"
730 PRINT CHR$(132);TAB(8);
740 A$=GET$
750 IF ASC A$<> ASC "N" AND ASC A$<> ASC

THEN RUN
760 CLS
770 PRINT” ’’CHR$(136) ; "OK,
780 END

66

The Game
This program is similar to 'Codebreaker’ except that instead of
using colours the computer thinks of a four-letter word (which,
you’ll be pleased to know, will be remarkably pure). You are given
ten guesses to work out the word. The words are held in the DATA
statements from lines 800 to 900, and these can easily be changed
when you get to know the 40 words provided in the computer’s
vocabulary. It is useful to make the words you put in the DATA
statements similar to each other (words such as FEAT, FEAR and
NEAT; or FACE and FATE) so that it is somewhat difficult to
guess the word.

You play the game just as you would 'Codebreaker’, entering
your guess (a four-letter word), for which you are awarded 'blacks’
(correct letters in the correct position) and 'whites’ (correct letters
in the wrong position). In many ways, this game is more
challenging than 'Codebreaker’ because the computer can choose
from 26 variables, rather than just six. But the letters within the
code do bear some relationship to each other, so it is often easier to
work out the missing letters from the way the word is 'shaping up’,
rather than from the computer’s feedback.

10
20
30
40
50

Models A and B

Masterword

The Program
Title.
Sets the mode.
Turns off the cursor.
Sets up arrays to hold the codes of the letters of the words.
Sets the DATA pointer back to the beginning of the list of

words.
70 Sends action to the procedure which selects the required word.
80-120 Brief instructions, and a key-press (line 110) to get the game
underway.
140 Start of the master loop which counts the number of guesses.
This loop terminates in line 430.
160 Accepts your guess.
170 Asks for a new guess if the one just entered is not a word of
four letters.
180-190 Sets the counters for black (B) and white (W).

which you

67

200 Compares your word (B$) with the computer’s word (C$) and, if
they are the same, sends the computer to the procedure PROCwin.
210-270 Compares the letters of the computer’s word with your
word to find blacks, substituting any letter which is correct with
the code for 9.
280-350 Checks the word for whites, jumping over any letter which
is a '9’.
360 Converts C$ back into the original word
370 Moves the print position up to print over your input.
390-420 Prints out your word in a randomly selected colour, and
gives an assessment.
450 'Sorry’ message if the word was not guessed.
460 Directs action to the procedure PROCword which prints out
the word the computer was thinking of.
470 Directs action to PROCnextgo to offer you another game.
500-550 This procedure selects a word from the DATA store by
reading through it to a random point.
570-620 This procedure congratulates you for guessing the word,
prints out the word (PROCword) and offers you a new game
(PROCnextgo).
640-660 Prints out the word the computer was thinking of.
680-760 Offers you a new move, prints farewell message if a new
game is not wanted.
800-900 The 'DATA-bank’ vocabulary.
Note As it stands, the program will accept an input such as '1234’
or '&&&&’. Program your way around this, and improve the ending
message so that it does not run interminably if you don’t press
'Escape’.

The Listing
10REM*MASTERWORD**
20MODE7
30VDU23;8202;0;0;0
40DIME(4),F(4)
50RESTORE
60REM*****************
70PROC-F i nd_a_word
80PRINT” ’’CHR$<128+RND(6));"I am thinking

of a -four—letter word,"
90PRINTCHR*(128+RND(6));“

must try and guess"
100PRINT’” ”CHR$(128+RND (6)); "Press any key

to begin"
110D$=GET$
120CLS:PRINT’’’
130REM****the game****
140FORE=1TO10

THEN350
THEN340

time is

68

ELSE PRINT"
white";

ELSE PRINT

";B;" black";
11 5

150PRINTCHR*(128+RND(6));"Enter guess number ";e
160INPUTB*
170IF LEN(B*)<>4 THEN150
180B=0
190W=0
200IF B*=C* PROCwin
210REM***get blacks***
220FORC=1TO4
230ECO=ASC(MID*(A*,C))
240F(C)=ASC(MID*(B*,C>)
250IF E(C)=F(C) B=B+1
260IF E(C)=F(C) E(C)=ASC"9"
270NEXT
280REM***get whites***
290FORC=1TO4
300IFE(C)=ASC"9“
310FOR D=1TO4
320IF E(C)OF(D)
330W=W+1
340NEXTD
350NEXTC
360A*=C*
370PRINTCHR*(11)CHR*(11)CHR*(11)
380REM***print result***
390PRINTCHR*(128+RND(6));B*;" -
400IFBO1 PRINT"s";
410PRINT" and ";W;"
420IFWO1 PRINT"s"
430NEXTE
440REM***if didn’t guess***
450PRINT’’CHR*(128+RND(6));"Sorry,

up"
460PRDCword
470PRDCnextgo
480END
490REM****************
500DEF PROC-Fi nd_a_word
510 FORT=1TDRND(40)
520READA*
530NEXT
540C*=A*
550ENDPROC
560REM*»******»*******
570DEF PROCwin
580PRINT” CHR*(128+RND(6));"You got it right

in just ";E;" guess";
590IFE>1 PRINT"es" ELSE PRINT

thanks -for the

69

600PROCword
610PROCnextgo
620ENDPROC
630REM**************
640DEF PROCword
650 PRINT CHR$(128+RND(6));"The word was";

CHR$(128+RND(6));A$
660ENDPROC
670REM**************
680DEF PROCnextgo
690PRINT” CHR$(128+RND (6)); "Do you want to

play again?"
700PRINT’CHR$<128+RND(6));"Enter Y or N"
710Z$=GET$: IF Z$O"N" RUN
720REM***farewel1 message***
730CLS
740REPEAT
750PRINTCHRS(128+RND(6));"OK,

game"
760UNTIL FALSE
770ENDPROC
780REM************
790REM**words — change to suit**
800DATA"FACE","FATE","FEAT","FEAR"
810DATA"DASH","NEAT","PUSH","PAST"
820DATA"DATE","DIET","DEAD", "GRAB"
830DATA"SAID","DAIS","DUET","DUEL"
840DATA"RANT","RAVE","MARS","GETS"
850DATA"TINY","TRIP","PERT","REST"
860DATA"ROAD","RAID","SOUL","SOLE"
870DATA"STAY","THIN","OVER","DOWN"
880DATA"PEST","LONG","LAST","LIST"
890DATA"MANY","MOST","ONLY","QUIT"
900DATA"QUIZ","PACE","BATS","CATS"

70

Models A and B

Bomb Squad

30
40
60
70
80
90

140
150
160
170

The Game
In this game you pilot a space-ship across the screen, from left to
right, for a predetermined number of trips, dropping bombs on a
line of asterisks. If you hit one, that asterisk disappears; if you
miss, another one appears . The object of the game is to obliterate
all the asterisks.

You drop bombs by pressing any key (except ESCAPE,
CONTROL and SHIFT).

A continuously updated display of the 'pass’ you’re on and your
current store is maintained at the top of the screen.

The Program
20 Removes the delay between a key being pressed and its
repeating.

Sets the number of passes across the screen that will be made.
Sets the speed of the game.
Puts the machine in Mode 7.
Places the code for blue alphanumerics at the start of line 20.
Places the code for red alphanumerics at the start of line 10.
Starts a loop from line 11 to line 19 of the display.

100 Puts the code for magenta alphanumerics at the start of each of
the lines.
110 Ends loop.
120 Starts a loop from one to 39.
130 Calculates the address of the T’th point on the 20th line of the
screen.

If T is odd, puts an asterisk at that place, else puts a space.
Ends loop.
Sets the score to 20, since there are 20 asterisks on the screen.
Moves the cursor to the tenth position on the top line of the

display.
180 Prints the current score, in yellow.
190 Moves the cursor to the tenth position on the second line down
the display.
200 Prints the current score, again. A double-height code will
shortly be printed.
210 Sets up a loop for each of the PASSes that will be made.
220 Homes the cursor.

71

Suggestions for improvement
• Sound effects would enhance the game; so would the superior
graphics available in Mode 4. To transfer the game to a different
mode, you will need to use FNREADCH given in the chapter of *FX
calls in the User Guide, to find out which character is at a
particular position.
• You could change the game so that you can alter your direction
but not your speed.
• Does the game exit 'gracefully’ ? If not, modify it to do so.

230 Prints the PASS number.
240 As above.
250 Starts a FOR loop across the screen for your gun.
260 Places your gun on the screen.
270 If a key has been pressed, calls PROCFIRE.
280 Empties all buffers.
290 Removes the gun from the screen.
300 Ends loop, enables editing keys.
310 Restores key repeat.
320 ENDs the game.
330 Starts the definition of PROCFIRE.
340 Sets all variables used in PROCFIRE to LOCAL.
350 Starts a loop from the position of your gun on line 10 to line 20.
360 Places the bomb symbol, an upright 'equals’ sign, at each
position on the way.
370 Starts a very short delay.
380 Finishes delay.
390 Replaces the bomb with a space.
400 Ends the 'bomb’ loop.
410 D will have been incremented at the NEXT statement, so it is
safe to test the character under D. If it is an asterisk, replaces it
with a space and decrements the variable SCORE. If not, puts an
asterisk there, and increments SCORE.
420 See line 170.
430 See line 180.
440 See line 190.
450 See line 200.
460 Ends PROCFIRE.

The Listing
10 *FX 4,1
20 *FX 11,1
30 PASS=5
40 SPEED=20
50 REM *** KILL ***

ELSE ?P=3
2

72

60 MODE 7: VDU 23;8202;0;0;0;
70 ?(HIMEM+20*40)=4
80 ?(HIMEM+10*40)=1
90 FOR T=ll TO 19
100 ?(HIMEM+T*40)=5
110 NEXT T
120 FOR T=1 TO 39
130 P=HIMEM+20*40+T
140 IF (T MOD 2)=1 THEN ?P=ASC (,,*,‘)
150 NEXT T
160 SCORE=20
170 VDU 31,10,0
180 PRINTCHRS(128+3);"SCORE=",SCORE
190 VDU 31,10,1
200 PR I NTCHR* (128+3) ; " SCORE= " , SCORE
210 FOR T=PASS TO 1 STEP -1
220 VDU 30
230 PRINT CHR$(13+128);CHRS(2+128);"PASS=";

PASS+l-T
240 PRINT CHR$(13+128);CHR$(2+128);"PASS=" ;

PASS+l-T
250 FDR 8=32145 TO 32183
260 ?G=ASC("O")
270 IF INKEY (SPEED) OTRUE THEN PROCFIRE
280 *FX 15,0
290 ?G=32
300 NEXT G,T:*FX 4,0
310 *FX 12,0
320 VDU 23;29194;0;0;0;:END
330 DEF PROOFIRE
340 LOCAL D,T
350 FOR D=6+40 TO G+9*40 STEP 40
360 ?D=ASC("!")
370 FDR T=1 TO 10
380 NEXT T
390 ?D=32
400 NEXT
410 IF ?D=ASC("*") THEN ?D=32:SCORE=SCORE-1

ELSE ?D=ASC("*"):SCORE=SCORE+1
420 VDU 31,10,0
430 PRINTCHR$(128+3);"SCORE=",SCORE
440 VDU 31,10,1
450 PRINTCHR$(128+3);“SCORE=",SCORE
460 ENDPROC

Models A and B

Dome Dweller
The Game
This game is in the classic 'Kingdoms’ genre. In most 'Kingdoms’
games (including the one on the Welcome Pack which came with
your computer) you rule an ancient colony in which your
administrative decisions seem limited almost solely to how many
acres of land you buy and how much corn you plant. Your attempts
to prove a wise and just ruler are constantly thwarted by such
natural disasters as floods, rats, thieving neighbours and killer
bees, all of which are triggered by the random number generator.

This game is a little different. Although the starting parameters
are randomly selected, once you’ve got them they are - more or less
- yours for the duration of a particular game. Apart from an
occasional attack from outer space (which will not necessarily
occur every time you play the game) the fate of your lunar dome
depends entirely upon the wisdom of your decisions in buying and
trading.

When the game begins (year one) you have somewhere between
81 and 120 people living in a lunar dome. You have a limited
amount of oxygen and food in the stores, and a limited amount of
money in the treasury. Your people need a certain amount of food
and oxygen to survive each year; the costs of these basic necessities
vary from game to game.

Your only means of raising money to buy more food and oxygen,
and pay the annual maintenance on your dome, is to trade your
'unique lunar sculptures’ with the inhabitants of other domes.
This, as you can see, is hardly a mixed economy. However, each
lunar sculpture uses up precious oxygen in its manufacture; so the
amount of oxygen you have, and the number of people you must
support on this oxygen, limits the number of sculptures you can
make. From time to time you’ll have very generous starting
parameters - a lot of oxygen, few people, and low oxygen needs for
both the people and the sculpture manufacturing process. If this is
so, the dome will last forever (unless you are exceptionally
dimwitted) and you will end up with millions in the treasury.
However, if the starting parameters (even one of them) are not
favourable, or you are simply a hopeless administrator, you will not
get beyond year 12.

'Dome’ has another important difference from the old 'Ruler of
73

YEAR

ARTPAY

74

AS
FOLK
CASH
FOOD
FOODCOST
FOODNEED
ARTCOST

OXY
OXYNEED
OXYCOST
REPAIR

The Program
10 Title.
20 Sends action to the initialisation procedure.
30-120 The main REPEAT/UNTIL loop. It cycles through the
updating of the year and the number of people within your dome,
and gives you the chance to make and trade your precious
sculptures and buy food and oxygen. From time to time, if you’re
unlucky, the random number generator (see line 110) will decide it
is time a NASTYS burst in from the vacuum and inflicted some
damage.

the Kingdom’ games. Instead of some worthless subject beginning
the annual report to you with: 'O Ruler of Sumeria ...’, as Dome
Master you learn of the state of your domain through the dome’s
computer. The game output is designed to look just like the possible
output of such a computer 'in real life’ would look; and it is
possible, when you’re playing this game late at night by yourself, to
become completely wrapped up in it, and almost start believing
there is a real dome out there whose survival depends on you.

There are a number of small elements in the program which you
may only appreciate after you have played 'Dome’ many times.

To make the program easier to modify and follo.w, explicit names
are given to the variables. Although these take longer to enter, it
makes for a much clearer program, and you should find it fairly
easy to find your way about it. The variables are:

The year of your dome’s life, with the game starting
at year one.
The tragic phrase, 'The lunar dome is dead’.
The number of people within your dome.
The money in the Treasury.
The quantity of food in your food stores.
How much you must pay per unit of food.
How much each of your FOLK consume each year.
The number of units of oxygen it takes to make one
of your dome’s famed pieces of sculpture.
How much you can get for these remarkable
creations.
The amount of oxygen in your tanks.
How much oxygen your FOLK each need per year.
The price of each unit of oxygen.
Your annual maintenance bill.

The names of the procedures are self-explanatory: year__pop_
update; computer_report; food; oxygen; oxydeath; fooddeath;
cashdeath; folkdeath; drawline (which 'rules off’ each report from
your computer); trading; attack (which assigns NASTYS to the
name of the attacking forces!); and warningbell.

700-810 The computer tells you how much food you have in stock
and how long this will last for the present population. It also gives
you the chance to buy as much food as you can afford. The
computer ensures (line 770) you do not try to overspend. 'Neither a
borrower nor a lender be’ is the rule on the moon.

1270-1330
1340-1410
1420-1500
1510-1620

130-320 This is the initialisation procedure which sets the starting
parameters for your term of office.
290-310 This procedure adds one to the year and increases your
population. You’ll find that in some games your dome dwellers
appear to have learned their breeding habits from terrestrial
rabbits; in others, they seem to have better things to do (like
making those sculptures or fending off NASTYS).
330-520 This is the major procedure (PROCcomputer reporl) in
the game. It controls the information the dome’s computer feeds to
you during the game. Lines 350 to 380 are the 'doom’ ones, which
terminate the game if you run out of food, money, oxygen or people.
Lines 390 to 420 are the 'warning bells’ which let you know when
supplies of anything are nearing critical levels. Lines 430 to 500
print out in every round of the game (a round is four months long)
to keep you in touch with your dome. The figures in this are
updated between rounds when necessary.
530-590 This procedure, 'drawline’, draws a red line across the
screen, pauses, and makes some squiggly noises.
600-690 This is the creative procedure, where you at last get a
chance to make those pieces of sculpture. The only limit on the
number you can make in a year is the amount of oxygen. The
computer will not allow you to attempt to make more than your
oxygen would permit (see warning in line 640).

820-920 This procedure allows you to buy oxygen, the most vital
ingredient in your dome’s economy and the one element in the
economic mix which you can most easily mismanage.

930-1260 This is the most dramatic procedure, the one when
NASTY$ attack. Note the routine from lines 980 to 1000. It
determines which of the baddies has got at you this time. The rest
of the procedure gives you the bad news ... in detail.

The balance of the program is made up of procedures which you
trigger when you’ve made some fatally bad decision or series of
decisions. These procedures all trigger the final one ('warningbell’)
until you’re sick to death of its sound.

You have run out of oxygen.
You have run out of food.
You have run out of money.
You have run out of people and, as the program happily

75

The Listing

76

informs you, 'You are the only one left alive on your dome - you
have betrayed your Oath of Office ... I hope you feel real bad!!!!!’
1630-1680 The sound you’re going to come to hate - the sound of
the warning bell.

Suggestions for improvement
• Make it much harder to play; reduce the starting stocks of food
and oxygen, and increase the number of people and the amounts of
food and oxygen they need.
• Do the same by cutting the return from sculptures and
increasing the amount of oxygen these consume during
manufacture.
• Add even more factors which you must control, such as viruses
and plagues, radiation poisoning, being hit by stray meteorites,
dialogue with other domes to (a) stop them attacking you; or (b)
uniting with you to attack other domes to steal food and oxygen.
• Limit the number of sculptures which each person can make
each year. This will really make the dome hard to control and is not
a modification I would suggest you make until you are familiar
with the program in its present form.
• As it stands, the program accepts negative numbers and alpha
characters as inputs - so modify the program to avoid this.
• Cuts off the sound after a couple of seconds.
• Does the game exit 'gracefully’ ? If not, modify it to do so.

10 REM ** DOME DWELLER **
20PROC1niti alise
30REPEAT
35 *FX15,2
40PROCyear_pop_update
50PROCcomputer_report
60PROCtrading
70PROCcomputer_report
80PROC-food
90PROCcomputer_report
100PRDCoxygen
110IF RND(5)=2 PROCattack
120UNTIL FALSE
130DEF PROCinitialise
140 CLS
150YEAR=0
160AS="The lunar dome is dead”
170FOLK=80+RND(40)
180CASH=INT(7*(700+RND(2000)/RND(3)))
190FOOD=700+RND(500)
200FOODCOST=RND(7)

“;FOLKj"

550T=TIME
77

210FDDDNEED=1+RND(5)
220ARTCOST=1+RND(5)
230ARTPAY=30*RND(ARTCOST)
240OXY=3000—RND(2000)
250OXYNEED=2+RND(4)
260OXYC0ST=2+RND(7)
270REPAIR=200+RND(400)
280ENDPROC
290DEF PROCyear_pop_update
300YEAR=YEAR+1
310FOLK=FOLK+INT(FOLK/(12+RND(8)))
320ENDPROC
330DEF PROCcomputer_report
340PRINT’CHR$(128+RND(5));"Computer report

to Dome Master:"’
350IF DXY<OXYNEED*FOLK PROCoxydeath
360IF FOOD<FOODNEED*FOLK PRCCfooddeath
370IF CASH<50 PROCcashdeath
380IF FOLK<2 PROCfolkdeath
390IF F0LKC13 PRINTCHRS(129);"WARNING!"’"

Population is nearing extinction"
400IF OXY<2*OXYNEED*FOLK PRINT CHR$(130);“

WARNING!"’CHRS(129);"Oxygen supplies are low"
410IF F0DD<2*F0DDNEED*F0LK PRINT CHR$(131);“

WARNING!"’"Food stocks depleted"
420IF CASH<2000 PRINT CHR$(129);"WARNING!"’"

Cash reserves dangerously low"
430PRINT” CHR$(131); "There are

people living"
440PRINTCHR$(131);"within your dome in year "

;YEAR’
450PRINTCHRS(130)j"Money credit is $";CASH
460PRINT CHR$(130);"Annual maintenance

charge is REPAIR’
470PRINT CHR$(133);"Oxygen tanks hold "jOXYj"

units"
480PRINT CHR$(133);"Oxygen costs OXYCOST;"

per unit"
490PRINT CHR$(133);"Each dome dweller needs "

jOXYNEED;" units a year"’
500PRINTCHR*(134);"Food stocks stand at

FOOD
510PROCdrawline
520ENDPROC
530DEF PROCdrawline
540PRINT CHR$(129);"

you

78

560SOUND1,-7,RND(254),5:SOUND1,-7,RND(254),5
570REPEAT UNTIL TIME-T=400
580SOUND1,-7,RND(254),5:SOUND1,-7,RND(254),5
590ENDPRDC
600DEF PROCtrading
610PRINT CHRS(132);"You can trade your

unique lunar"’CHR$(132)j" sculptures with the
people"’CHR$(132);" who live in other domes"’

620PRINT CHR$(129)j" You use up ";ARTCDST;
“ units of oxygen"’CHR$(129);"making each one,
and sell them -For ARTPAY’
630PRINT CHR$(134);"How many pieces of

sculpture will you"’CHR$(134);" create
this year?"

640INPUTB
650IFB*ARTCOST>OXY PRINT CHRS(129)j"There is

not enough oxygen to "’CHR$(129);"make that
many":GOTO640

660CASH=CASH+B*ARTPAY
670OXY=OXY—B*ARTCDST
680PROCdrawli ne
690ENDPROC
700DEF PROCfood
710PRINT CHR$(132);"Food costs FOODCOST;"

per unit"
720PRINT CHR$(132);"Each dweller needs

FODDNEED;" units a year.’”
730PRINT CHR$(129);"($";FODDCOST*FOODNEED;"

each, $";FOLK*FOODCOST*FOODNEED;" for dome.
This will"

740PRINT CHR$(129);"last ";INT(FOOD/(
FODDNEED*FOLK))j" years at present population.)

750PRINT CHR$(130);"How many food units will
you buy?"
760INPUT C
770IF C*FOODCOST>CASH PRINT CHR$(129);"You

do not have enough moneyGOTO760
780FODD=FOOD+C*FODDCOST
790CASH=CASH—C*FOODCOST
800PROCdrawli ne
810ENDPROC
820DEF PROCoxygen
830PRINT CHR$(133);"How much oxygen will

buy?”’
840PRINT CHRt(129);"(Current stocks will

1ast “;INT(OXY/(OXYNEED*FOLK))j" years"

";folkdead; ■■

79

960NEXT
970RESTORE1010
980FORJ=1TORND(6)
990READ NASTY*
1000NEXT
1010DATA"A fleet o-f Sirian ships", "renegade

dwellers -from a nearby dome", "Mart i an sub­
fighters" ,"Vyri11iex outwor1ders","a lone ship,
under robot control","a Parralexian escort
vessel"
1020 PRINT CHR*(133);"The dome is under

attack by"
1030PRINT CHR*(132);NASTY*’
1040FORJ=1TO100 STEP RND(7)
1050SOUND1,-15,200—2*J,1:S0UND1,-15,J*2,1
1060NEXT
1070 FOLKDEAD=INT(FOLK/(RND(35)+1)) +1
1080DAMAGE=INT(RND(CASH/9))
1090IF CASH—DAMAGE<1 DAMAGE =0
1100FOODDEAD=INT(RND(FOOD/2))
1110OXYDEAD=INT(RND(OXY/2))
1120PRINT CHR*(133);"There were

people killed"’
1130FOLK=FOLK—FOLKDEAD
1140PROCdrawline
1150 IF DAMAGE>0 PRINT CHR*(129);"Damage to

the dome totals *";DAMAGE’
1160CASH=CASH—DAMAGE
1170PRDCdrawline
1180PRINT CHR* (133) ; FOODDEAD; " units o-f -food

have been ruined"
1190FOOD=FOOD—FOODDEAD
1200PRINT CHR*(133);"and

oxygen leaked away
could be repaired"

"; OXYDEAD; " units o-f
CHR*(133);"before the dome

850PRINT CHR*(129);"at the present
population of ";FOLK;")"
860INPUTD
870IF D*OXYCOST>CASH PRINTCHR*(129);"There

is not enough moneyGOTO860
880FOOD=FOOD—FOLK*£OODNEED
890CASH=CASH-REPAIR-D*OXYCOST
900OXY=OXY+D-FOLK*OXYNEED
910PROCdrawline
920ENDPROC
930DEF PROCattack
940FORJ=1TORND(25)+15 STEP RND(3)
950SOUND1,-15,RND(100)+30,1:SOUND1,-15,250,1

oxygen

people

"jFOLKj" people

You have

1610UNTIL FALSE
80

"will";CHR$(129);"die!"

"jFOLK;"
to death!"

1210PROCdrawline
1220REPAIR=REPAIR+RND(30)
1230FORJ=1TO100 STEP RND(7)
1240SDUND1,-15,200-2*J,1:SOUND1,-15,J*2,1
1250NEXT
1260ENDPROC
1270DEF PROCoxydeath
1280REPEAT
1290PROCwarningbel1
1300PRINT ’CHRS(133);AS
1310PRINT ’’CHRS(129);"You ran out of

in year "jYEAR
1320UNTIL FALSE
1330ENDPROC
1340DEF PROCfooddeath
1350REPEAT
1360PROCwarni ngbel 1
1370PRINT’ CHRS(129);AS
1380PRINT’CHRS(132)j"You ran out of food in

year ";YEAR
1390PRINT CHRS(129)j"Now,

will starve”’CHRS(129);"
1400UNT1L FALSE
1410ENDPROC
1420DEF PROCcashdeath
1430REPEAT
1440PROCwarningbel1
1450PRINT CHRS(131);AS
1460PRINT’CHRS(134);"The treasury ran dry in

year ";YEAR
1470PRINT CHRS(131)j"so the

who relied on you"
1480PRINT CHRS(131);
1490UNTIL FALSE
1500ENDPROC
1510DEF PROCfolkdeath
1520REPEAT
1530PRDCwarningbel1
1540PRINT"You are the only one left alive"
1550PROCwarni ngbel1
1560PRINTCHRS(130);"on your dome

betrayed your"
1570PROCwarni ngbel1
1580PRINT CHRS(129);"Oath of Office I hope

you feel"
1590PROCwarni ngbel1
1600PRINT CHRS(133);“real";CHRS(129);"bad!!!!!

81

1620ENDPROC
1630DEF PROCwarningbel1
1640FORJ=1TO50
1650SOUND RND (4)-1,-15,RND(10)+240,RND(5)
1660NEXT
1670SOUND1,1,1,1
1680ENDPROC

82

The Game
This program imitates a sliding plastic tile puzzle. A grid is printed
on the screen with letters of the alphabet filling every space except
one. This space can be moved around the grid with the cursor
control keys. As the space is moved, the letters in the grid move
around to accommodate it. Therefore, it is possible for you to
eventually get the letters in alphabetical order.

A continuous readout of the number of moves made so far is
shown. This adds a competitive element to the game. When the
letters are in order, pressing ESCAPE will return you to the first
prompt. This asks for the dimensions of the 'square’ (it can be a
rectangle). The dimensions are entered in the form of two numbers
that are separated by a comma.

The game is quite difficult until you work out a system.

The Program
The main section is from lines 10 to 140.
10 This sets up an error handler, so that 'Escape’ will return the
user to the start of the game.
20 This line waits half a second for a key to be pressed, and if a key
was pressed within this time limit, ends the game. This is so that
you can end the game without pressing BREAK. To end the game
press 'Escape’ and then press any other key as quickly as possible.
40 This line clears all variables, since otherwise the DIM statement
in line 50 could be executed twice, which would lead to an error.
50 Dimensions a string array which will hold the state of the grid.
60 Calls the procedure which sets up starting conditions for the
game, and asks you for the dimensions of the grid.
70 Calls the procedure which prints out the grid in colour.
80 Starts the main loop of the game.
90-110 Prints the number of moves made so far.
120-130 Accept a single keypress from you and then call PROCact,
which interprets the key pressed and acts on it if necessary.
140 Finishes the main game loop. Notice that this is an infinite
loop, so the only way out of it is to press 'Escape’.

Models A and B

Wordsquare

83

The section from line 150 to line 350 makes up PROCset_up. It is
called in line 60.
170 Initialises the variable MOV, which contains the number of
moves made so far.
180 Sets up a REPEAT loop, which will be executed until a valid
response to the dimensions question is registered.
190 Prints the prompt for the question, followed by a row of spaces.
The spaces are to erase any previous dimensions that you input
which were unacceptable.
200 Moves the cursor to the space after the prompt, and accepts the
two dimensions.
210 Finishes the input loop when the dimensions that have been
input are valid.
220 Clears the screen.
230 Turns off the cursor.
240 Sets up a REPEAT loop which will fill the grid with letters. It
does this by repetitively generating random co-ordinates inside the
grid, until the co-ordinates of an empty array element are
generated. It then fills that square with the next letter in sequence.
The last part of line 280 ensures that the bottom right element is
not chosen, since that element will contain the space at the start of
the game.
310 Places a space character in the bottom right hand corner of the
grid.
320 Switches the cursor control keys to the mode where they
generate actual values rather than just shift the cursor around.
330 Together with line 340, this sets variables L and M to the co­
ordinates of the space in the grid.
350 Returns control to line 70.
360-390 These make up PROCend, which is called at the end of the
program to restore the cursor keys to their normal functions and to
turn the cursor back on.
400-500 These make up PROCprint_whole, which prints out the
whole grid, using a simple loop arrangement. The grid itself
comprises underscore characters, which appear as elongated minus
signs in Mode 7.
510-650 These make up the last procedure - PROCact.
530 Generates a string which contains all the valid characters.
These are the codes generated by the four cursor control keys.
540 Checks to see if the key pressed was one of these keys, and if
not returns control to line 140, without doing anything.
550 Extracts the ASCII code of the key pressed.
560-590 Check to see if you are trying to move off the grid, and if
so, return control to line 140.
600 Increments the move counter, MOV, because we can now be
certain that the key just pressed was valid.

The Listing

THEN PROCend:END

(X*Y

84

610-640 Act on the key pressed, by moving the space around the
screen. FNad generates the screen address of the cell whose co­
ordinates are X, Y.
660 Defines FNad, as used in the previous procedure.

Suggestions for improvement
• If you have a model B, the game could be transferred to Mode 0,
where a larger grid could be used.
• If you can work out an algorithm for solving these puzzles
(which is not nearly as difficult as it sounds) you may like to write
a section of code which solves the puzzle when you give it a
starting condition. This could be extended to the point where the
machine gives you hints on where your best move would be, at a
penalty of, say, five points.
• All in all, Wordsquare gives scope for considerable modification
on your part.

10 ON ERROR GOTO 20
20 IF INKEYS(50)<>""
30 MODE 7
40 CLEAR
50 DIM letter$(10,10)
60 PROCset_up
70 PROCprint_whole
80 REPEAT
90 FOR T=4 TO 5
100 PRINT TAB(0,Y*2+T);CHRS(129);CHRS(128+13)j

"Moves made so far — ";MOV
110 NEXT T
120 AS=GETS
130 PROCact(AS)
140 UNTIL FALSE
150 DEF PROCset_up
160 LOCAL XC,YC,T
170 MOV=0
180 REPEAT
190 PRINT TAB(0,5)JCHRS(132)j"Enter size of sq

uare...CHRS(131);STRINGS(56," ")
200 INPUT TAB (25, 5) U'Z, V7-: X=U7.: Y=V7.
210 UNTIL X>1 AND Y>1 AND X<8 AND Y<8 AND

)<=27 AND INT(X)=X AND INT(Y)=Y
220 CLS
230 !&FE00=&10200A
240 FOR T=1 TO X*Y-1
250 REPEAT
260 XC=RND(X)

(XCOX OR YCOAND

85

270 YC=RND(Y)
280 UNTIL letterS(XC,YC)=

Y)
290 letters(XC,YC)=CHRS(T+64)
300 NEXT T
310 1etterS(X,Y)="
320 *FX 4,1
330 L=X
340 M=Y
350 ENDPROC
360 DEF PROCend
370 *FX 4,0
380 !&FE00=&10720A
390 ENDPRDC
400 DEF PROCprint_whole
410 LOCAL XC,YC
420 PRINT CHRS(131);STRINGS(X*2+l,"—")
430 FOR YC=1 TO Y
440 VDU 131,ASC(“—")
450 FOR XC=1 TO X
460 PRINT letters(XC,YC);;
470 NEXT XC
480 PRINT ’CHRS(131);STRINGS(X*2+l," — ")
490 NEXT YC
500 ENDPROC
510 DEF PROCact(AS)
520 LOCAL VS,A
530 VS=CHRS(136)+CHRS(137)+CHRS(138)+CHRS(139)
540 IF INSTR(VS,AS)=0 THEN ENDPROC
550 A=ASC(AS)
560 IF A=136 AND L=1 THEN ENDPROC
570 IF A=137 AND L=X THEN ENDPRDC
580 IF A=138 AND M=Y THEN ENDPROC
590 IF A=139 AND M=1 THEN ENDPROC
600 MOV=MOV+1
610 IF A=136 THEN ?FNad(L,M)=?FNad(L—l,M):L=L—

l:?FNad(L,M)=32
620 IF A=137 THEN ?FNad(L,M)=?FNad(L+l,M):L=L+

1:?FNad(L,M)=32
630 IF A=138 THEN ?FNad(L,M)=?FNad(L,M+l):M=M+

l:?FNad(L,M)=32
640 IF A=139 THEN ?FNad(L,M)=?FNad(L,M-l):M=M-

1:?FNad(L,M)=32
650 ENDPROC
660 DEF FNad(X,Y)=HIMEM+X*2+Y*80—40

86

The Game
In this game, you (the fearless yellow asterisk) must battle with a
mighty prehistoric monster (the dreaded red @) on a Blue Land
measuring 10 by 10. It is impossible to evade 'Rex’ forever.

You move yourself using the 'Q’ (moves you up), *M’ (down), 'A’
(left) and 'L’ (right) keys. You’ll find your fingers soon learn to
make the right movements automatically. Your score is clocked up
on the screen all through the game, along with the 'high score’
which is automatically updated, when needed, throughout the
game. You get a tiny pause at the end before you and 'Rex’ are
placed at random positions on the Blue Land, to battle it out again.

The Program
10 Title.
20 Sets HISCORE variable to zero.
30 Start of the master REPEAT/UNTIL loop which terminates in
line 180.
50 Sends action to the initialisation procedure (PROCbegin).
60-70 These direct the computer to the procedures which place you
and 'Rex’ in position.
90-170 This REPEAT ... UNTIL loop directs the computer to the
procedures which actually play the game. The loop repeats until the
flag GOT is changed from zero to one.

190-370 PROCbegin is the initialisation procedure. Line 200 clears
the screen (the computer assumes you are in Mode 7, by the way),
and 210 turns off the cursor. Line 220 prints out the instructions on
which key to press for which result; the loops 230 to 270 draw out
the Blue Land upon which the battle will be fought. The score for
each game is set to zero in line 280. Then the locations for 'Rex’ (C
and D) and the human (X and Y) are chosen at random. As the two
of you move around the screen, your old positions must be
overprinted with blue squares: Cl and DI hold the 'overprint
position’ for 'Rex’, while Xl and Y1 the overprint position for you.
390-420 Line 400 overprints your old position and 410 prints the
new position.
440-470 Line 450 overprints the old position of 'Rex’, and 460 prints
in the new position.

Models A and B

Tyranno

87

Suggestions for improvement
• Add a routine to shoot 'Rex’.
» Decrease 'Rex”s stupidity (or increase it).
• Add diagonal moves for yourself.
• Add a routine to keep yourself moving in a designated direction
unless a new key is pressed.

490-570 This procedure accepts your move. Lines 500 and 510 set
XI and Y1 equal to the current position, before the new position is
determined. Line 520 reads the keyboard, and lines 530 to 560 move
you in accordance with this reading, so long as the move will not
take you outside the Blue Land. The 'AND X greater than 1’ part of
these four statements ensures that you will not stray.
590-610 This procedure (PROCcheck if got) does a spot-check. If
'Rex’ and you are occupying the same square, you’ve been 'got’.
630-740 This procedure moves 'Rex’ around. Lines 670, 690, 710 and
730 check 'Rex”s position in relation to yours, and move him
towards you. However, lines 660, 680, 700 and 720 randomly prevent
'Rex’ from checking one or more of the relationships. Without
these lines (as you can easily see by deleting them), 'Rex’ would
swallow you without fail in a couple of seconds. Randomness
introduces some stupidity into 'Rex”s movements, and gives you
some chance to evade his crushing jaws for as long as possible.
760-800 This procedure checks the score (SCORE) in the current
game and compares it with the highest score yet achieved
(HISCORE), modifying HISCORE when necessary.
820-870 This procedure, joyfully executed when you are finally
nabbed, prints out the 'Gotcha, human!!’ message in changing
colours, and makes appropriate eating noises. The flag GOT is set to
zero to terminate the REPEAT/UNTIL loop running from 90 to 180.
950-970 This procedure (sound_and_fury) is called throughout the
game (see line 130) to add interest.

GOT=0
PROCbegi n
PROCplace_human
PROCplace_rex
REM**************
REPEAT

The Listing
10 REM TYRANND CHASE
20HISCORE=0
30REPEAT
40
50
60
70
80
90
100PROCupdate_score
110PRDCget_move

M - down, A 1 eup,

)

)

88

530IFA$="A"
540IFA$="L"
550IFA$="Q"

"*"410PRINT TAB(2*(X+4), Y+4);CHR$(131);
420ENDPROC
430 REM
440 DEF PROCpIace_rex
450 PRINT TAB(2*(Cl+4),D+4);CHR$(132);CHR$(255

460PRINT TAB(2*(C+4),D+4)j CHR$(129);
470 ENDPROC
480 REM
490 DEF PROCgetjnove
500 X1=X
510 Y1=Y
520A$=INKEY$(0)

AND X>1 X=X-1
AND X<10 X=X+1
AND Y>1 Y=Y-1

120PROCp1ace_human
130PROCsound_and_fury
140PROCmove_rex
150PROCplace_rex
160PROCcheck_if_got
170 UNTIL GOT=1
180 UNTIL FALSE
190 DEF PROCbegin
200 CLS
210VDU23j8202;0;0; 0
220PRINT’’’CHRS(133)j"Q

ft, L - right"
230FORA=1TO10
240FORB=1TO10
250 PRINT TAB(2*(A+4),B+4);CHR$(132)jCHR$(25

5)
260 NEXTB
270 NEXTA
280 SCORE=0
290 C=RND(10)
300 C1=C
310 D=RND(10)
320 D1=D
330 X=RND(10)
340 X1=X
350 Y=RND(10)
360 Y1=Y
370 ENDPROC
380 REM*********
390 DEF PROCpIace_human
400PRINT TAB(2*(X1+4),Yl+4);CHR$(132);CHR$(255

AND Y<10 Y=Y+1

730

human!!
human!!

89

"Gotcha,
880PRINT TAB(5,20);CHR$(134)"Score is ";SCORE;

CHR$(130);" High score is";CHR$(128+RND(5));HIS
CORE+1

890NEXTcount
900*FX 15,0
910SOUND0,0,0,0
920 GOT=1
930 ENDPROC
940 REM***********
950DEFPROCsound and -Fury
960SOUND3,-15,RND(100),1:SOUND2,-15,RND(128)+1

27,2
970 ENDPROC

560IFA«="M"
570ENDPROC
580 REM*********
590DEF PROCcheck_i-F_got
600IFX=C AND Y=D PROCgotcha
610ENDPROC
620 REM**********
630DEF PROCmove_rex
640D1=D
650 C1=C
660IF RND(5)>3 THEN 740
670IF C<X C=C+1
680 IF RND(5)>3 THEN 740
690IF C>X C=C-1
700IF RND(5)>3 THEN 740
710 IF D<Y D=D+1
720 IF RND(5)>3 THEN 740

IF D>Y D=D-1
740 ENDPROC
750 REM***********
760DEF PROCupdate_score
770IF HISCORE<SCORE HISCORE=SCORE
780SCORE=SCORE+1
790PRINT TAB(5,20);CHR$(134)"Score is ";SCORE;

CHR$(130)j" High score is";CHR$(128+RND(5));HIS
CORE+1

800ENDPROC
810 REM***********
820DEF PROCgotcha
830 FORcount=lT034
840 SOUND0,-15,RND(10),3
850PRINT TAB(4,17);CHR$(130);"Gotcha,
860 FORG=1TO50:NEXTG
870 PRINT TAB(4,17);CHR$(129);

90

Models A and B

Franglais
The Game
This program 'translates’ a phrase in English to an equivalent
'Franglais’ one. Franglais is a curious mixture of French and
English. It is promoted in magazines like Punch, where simple
words are translated correctly into French but any complex words
are left in English.

This program attempts to translate English into Franglais
automatically. All you do is type English in response to the prompts
displayed. After a few seconds the translation will appear. When
you are bored, enter a pre-designated keyword to indicate that
you’ve finished.

Input can be in upper or lower case, or both. All output is in
upper case. We realise it’s a little contrived, but we think you’ll
agree that it’s fun. Do not include any punctuation marks in your
input unless they are flanked by spaces.

The Program
40 Starts the main repeat loop of the program. This loop only
finishes when the keyword is found in your input.
50 Requests you to type your phrase for translation.
60 Inputs your phrase. The INPUT LINE statement is used to
ensure that commas will be read in as valid input.
80 Calls PROCtranslate, which translates the phrase and prints it
out.
90 Carries on with the main loop until the keyword is found. Insert
a word of your choice in the quotes.
100 No comment.
110 Ends the program.
130 Starts the definition of FNlower_case_to_upper. This function
changes all lower case letters in its argument to upper case.
140 Sets all the LOCAL variables required.
150 Sets the destination string C$ to be the null string.
160 Starts a loop through all the characters of A$, the string to be
converted.
170 Picks out the B’th character.
180 If it’s lower case, changes it to upper case. Refer to the table of
ASCII codes in the User Guide.

91

60 INPUT LINE ENGS
70 REM CAN INSERT OUTPUT TO PRINTER HERE
80 PRDCtranslate(ENGS)

190 Updates C$.
200 Ends the loop.
210 Returns with C$.
230 Defines a 'debugged’ INSTRfunction, to get around a 'bug’ in
Version 1 of the BASIC supplied.
270 Starts the definition of FNchange_single_word. This function
translates the single word held in A$, or whatever string is used as
the argument, to an equivalent Franglais string.
290 Returns if A$ is not a proper word.
300 Restores the DATA pointer to the beginning of the vocabulary
DATA statements.
310 Starts a REPEAT loop through all the words in the vocabulary.
320 Reads the next English and French pair of words.
330 Stops the loop when the end of DATA has been reached, or
when a match is found.
340 If the end of DATA was reached, exits with the calling
string...
350 or else, exits with the French string.
370 Starts the definition of PROCtranslate.
380 Sets the local variable required.
390 Changes the string to be translated to upper case.
400 Adds a space to the end of the string for translation.
410 Starts a REPEAT loop through all the words in the string for
translation, A$.
420 Finds the first space in the string.
430 Then calls the translate single word function, with all the
characters to the left of the space.
440 Strips off the bit that has just been translated ...
450 until A$ has all been translated.
460 Prints a new line.
470 Ends PROCtranslate
Lines 490 onwards are a list of English words with their French
equivalents, ended by two asterisks. Feel free to expand on this.

The Listing
10 REM Franglais
20 REM **************************************

30 MODE 7
40 REPEAT
50 PRINT CHRS(132);"Enter the English sentenc

e to be ";CHR$(132)5"’translated’ to Fren
ch "

THEN=

92

" OR AS=,,H

90 UNTIL FNINSTR(ENGS,"A KEY WORD",0)
100 PRINT "Merci "
110 END
120 REM **************************************

130 DEF FNlower_case_to_upper(A$)
140 LOCAL T,B$,CS
150 CS=""
160 FOR T=1 TO LEN(AS)
170 BS=MIDS(AS,T,1)
180 IF BS>="a" THEN BS=CHRS(ASC(BS)-32)
190 CS=CS+BS
200 NEXT T
210=CS
220 REM **************************************

230 DEF FNINSTR(AS,BS,K)
240 IF LEN(BS)>LEN(AS) THEN=0
250=INSTR(AS,BS,K)
260 REM **************************************

270 DEF FNchange_single_word(A$)
280 LOCAL ENGS,FRES
290 IF AS="
300 RESTORE
310 REPEAT
320 READ ENGS,FRES
330 UNTIL ENGS="*" OR AS=ENGS
340 IF ENGS="*" THEN=AS
350=FRES
360 REM **************************************

370 DEF PROCtranslate(AS)
380 LOCAL P
390 A$=FNlower_case_to_upper(A$)
400 AS=AS+" "
410 REPEAT
420 P=FNINSTR(AS , " " , 0)
430 PRINT FNchange_single_word(LEFTS(AS,P-1))5

•I II •

440 AS=MIDS(AS,P+1)
450 UNTIL AS=" "
460 PRINT
470 ENDPROC
480 REM **************************************

490 DATA THE,LE,HE,LUI,HIS,LE,ROOM,CHAMBRE, PEA

,POIS,STEAK,ENTRECOTE

93

500 DATA ME,MOI,I,JE,HERE,ICI,HAVE,Al,A,UNE,A,
UN,MY,SON

510 DATA BIG,GRAND,MATCH,ALLUMETTE,SUPER,FANTA
STIQUE,DEAD,MORT,DIE,MORT

520 DATA GIN,VIN,WHISKEY,VIN,WHISKY,VIN,MARTIN
I,VIN, BEER,VIN,NEWCASTLE
530 DATA PARIS,CIGARETTES,GAULOISES
540 DATA HAIR,CHEVAUX,ARM,BRA,LEG,JAMBE,LEFT, D

ROITE,RIGHT,GAUCHE
550 DATA TRENDY,AVANT-GUARDE,MEDICINE,VIN,POLI

CE,GENDARME,DETECTIVE,CLUESO
560 DATA DOOR,PORTE,PORT,DOOR,QUAY,CLEF,KEY,CL

EF,HEAD,TETE,LOVE,AMOUR
570 DATA HOUSE,MAISON,CHAIR,CHAISE,EYE,ORIEL,S

UN,SOLIEL
580 DATA SONG,CHANSON,MY,MOI,YOUR,VOTRE,DESK,P

UPITRE
590 DATA FRIENDS,AMIS,WINDOW,FENETRE,BEHIND,DE

RRIERE,SEA,MER,MOTHER,MERE
600 DATA FATHER,PERE,CAR,VOITURE,APPLES,POMMES

,ENGLISHMEN,POMS,POTATOES
610 DATA POMME DE TERRE,CAT,CHAT,DOG,CHIEN,BLU

E,BLEU,LITTLE,PETITE,MUSIC
620 DATA MUSIQUE,PLEASE,SI’L VOUS PLAIT,BOY,GA

RCON,GIRL,FILLE,CHIPS
630 DATA POMME FRITES,FISH,POISON,CHICKEN,POUL

ET,DUCK,CANARD,MUSTARD,MOUTARDE
640 DATA HDT,CHAUD,COLD,FROID,EVERYBODY,TOUT L

E MONDE,WORLD,MONDE
650 DATA HELLO,BONJOUR,GOOD,BON,SWEETS,BON BON

S
660 DATA *,*

The Game
This program 'gives’ you a bucket that you must use to try and stop
a sudden deluge of rain from drowning you. The bucket appears as
a white bar on the screen, and is moved left and right with the left
and right cursor control keys. As the waterdrops fall, you must
position yourself under each drop. The difficult part is that, as soon
as you start moving, the drops speed up by a factor of about five.
When a drop has either added to the puddle at the bottom of the
screen, or has been caught by the bucket, the bucket moves back to
the centre of the screen.

When the drop reaches the bottom of the screen it adds to the
multi-coloured puddle already there. When the puddle is deep
enough to drown you, the game ends, with suitable special effects.

The game is quite difficult to play but is more fun than the
normal 'breakout’ type game.

Models A and B

Rain Catcher

The Program
The game is divided into several sections. The main section is from
line 20 to line 270.
10 This line defines a key to restore the keyboard to its normal
repeat rate and lets the editing keys work as normal. Press fO after
an ESCAPE to give you control over the machine again. To LIST the
program now, go first into Mode 7.
20 Sets the speed of the game.
30 Makes sure the computer is in Mode 7.
40 Makes a call to PROCSETUP, which colours the screen and sets
up the bucket and other housekeeping jobs.
50 Sets up the main REPEAT loop. This loop is the one which sends
down the raindrops.
60 Sets up the REPEAT loop which releases each raindrop.
70 Moves the cursor to the position the raindrop used to occupy,
and puts a 'graphics control code’ in its place.
80 Increments the y co-ordinate of the raindrop, before re-drawing
it at line 90.
100 Waits for a key press, for T% centiseconds.
110 Clears the keyboard buffer, since any erroneous key presses
will give the bat a delayed action.

94

95

120 Together with line 130, decides whether the last key pressed
makes it necessary to call the bat-moving subroutines.
140 This UNTIL statement stops the drop when it has reached
anothei’ drop, or has hit the bucket, or has reached the bottom of
the screen.
150 Works out if the drop did in fact hit the top raindrop already in
the puddle; if so, sets the flag K% to true; else, to false.
160 Works out if the drop hit the bucket and, if so, blanks out the
drop.
170 This line puts a line of spaces where the bucket should be.
180 Sets S%, the position of the bucket, to 14, which is about the
centre of the line.
190 Places the pail at the correct position on the screen. (A$
contains all the information required to print the bucket.)
200 Chooses a new x co-ordinate for the next raindrop.
210 Sets the y co-ordinate of the new raindrop to zero, the top of
the screen.
220 Allows the game to carry on until the game end flag, K% is set.
230 With line 240, this resets the keyboard to normal repeating
speed, and returns the cursor keys to their usual function.
250 The call to PROCSHUDDER creates a grand finale.
260 Together with line 270, wraps up the loose ends and then ends
the program.

The next main section is the procedure SETUP at lines 290 to 480.
310 Defines a text window to be the entire screen, except the
extreme left-hand column.
320 Starts a FOR loop to place colour control codes down the entire
left-hand column of the screen. Thus the previously defined
window will stop the colour information from being scrolled.
350 Sets up a FOR loop to fill the bottom seven lines of the screen
with random colour control codes.
380 Places the 'white graphics’ control code in the extreme left­
hand position of the 17th row of the screen.
390-410 Initialise variables which contain the X and Y position of
the raindrop and the displacement of the bucket from the left-hand
side of the screen.
420 Sets up a string A$ containing the characters which make up
the bucket. These are a space, five lowercase p’s, and another space.
A lower case 'p’ looks like a single line when displayed on a
graphics line of the screen.
430 Allows the cursor control keys to generate specific codes,
rather than move the editing cursoi’ around the screen.
440 Places the bucket in its initial position at the centre of the
screen.
450 Turns the cursor off.
460 & 470 Make all keys repeat instantaneously, and very quickly.

The Listing

12!M*FX 4 IM"

96

The next two sections are the procedures called when the bucket is
to be moved right or left.
PROCLEFT comes first.
510 Checks to see if the bucket is not already on the left hand side;
and, if not, decrements S%, which is the bucket’s displacement
from the left of the screen.
520 Replaces the bucket on the screen.
PROCRIGHT is similar.
560 Checks to see if the bucket is not already too far to the right,
and if not increments S%.
570 Replaces the bucket on the screen.
PROCSHUDDER is a special routine, used to shake the screen from
right to left. VDU 23,0,13,X,0;0;0; puts the value X in the 6845’s
register 13. This register governs the position on the screen of the
extreme left hand character. Thus it usually contains 0. It is not
recommended that inexperienced users mess around with the 6845’s
internal registers. You are not going to damage your computer if
you do, but it is easy to upset your television.

Suggestions for improvement
• The screen layout could be improved, to make the picture more
interesting; for example, the bucket’s present shape is not
particularly convincing.
• A continuously updated score could add a bit more tension. This
could also take the form of some sort of time limit, again
continuously updated on the screen.

10 *KEY 0 "*FX
20 T7.= 10
30 MODE 7
40 PROCSETUP
50 REPEAT
60 REPEAT
70 VDU 31,X7.,Y7.,RND(5)+144
80 Y7.=Y7.+ 1
90 VDU 31,X7.,Y7.,255
100 L7.=INKEY(T%>
110 *FX 15,0
120 IF L7.=136 THEN PROCLEFT
130 IF L7.= 137 THEN PROCRIGHT
140 UNTIL (Y7->23) OR (? (HIMEM+Y7.*40+X7.+41) =25

5) DR (?<HIMEM+Y7.*40+X7.+41)=112)

AND YZ=17
THEN VDU 31

'■)

97

150 IF (7 (HIMEM+YZ*40+XZ+41) =255)
THEN KZ=—1 ELSE KZ=0

160 IF <7 (HIMEM+YZ*40+XZ+41) =112)
, XZ, YZ, 32

170 PRINT TAB(0,17);STRINGS(38,"
180 SZ=14
190 PRINT TAB(SZ,17);AS
200 XZ=RND(37)
210 Y7.=0
220 UNTIL KZ
230 *FX 12
240 *FX 4
250 PROCSHUDDER
260 MODE 7
270 END
280 REM *************************************

****************************-k-*««
290 DEF PROCSETUP
300 LOCAL CZ
310 VDU 28,1,24,39,0
320 FOR C7.=0 TO 40*16 STEP 40
330 7 (C7.+HIMEM) =20
340 NEXT CZ
350 FDR A7.=40*18 TO 40*24+39
360 7 (HIMEM+A7.) =RND (5) +16
370 NEXT A7.
380 7(HIMEM+17*40)=16+7
390 X7.= 10
400 Y7.=0
410 SZ=14
420 A$=“ "+STRINGS(5,CHRS(112))+“ "
430 *FX 4,1
440 PRINT TAB(SZ,17)jAS
450 ! &FE00=8< 10200A
460 *FX 11,1
470 *FX 12,1
480 ENDPROC
490 REM *************************************

500 DEF PROCLEFT
510 IF SZ>0 THEN SZ=SZ-1
520 PRINT TAB(SZ,17)jAS
530 ENDPRDC
540 REM *************************************

550 DEF PROCRIGHT
560 IF SZ<32 THEN SZ=SZ+1
570 PRINT TAB(SZ,17);AS

98

580 ENDPRDC
590 REM *************************************

600 DEF PROCSHUDDER
610 LOCAL A,B,C
620 FOR C=1 TO 20
630 FOR A=0 TO 39
640 VDU 23,0,13,A,0;0;0j
650 NEXT A
660 FOR B=39 TO 0 STEP -1
670 VDU 23, 0, 13, B, 0; 0; 0$
680 NEXT B
690 NEXT C
700 ENDPROC
710 REM *************************************

99

Models A and B

Reversi
The Game
At the start of this game a multi-coloured board is displayed. The
letters 'H’ and 'C’ are used for the 'human piece’ and the 'computer
piece’ respectively. The board is set up with the first four pieces on
it. You always move first, so you think of which square you wish to
move to and then enter the co-ordinates of that square, with the
displacement down the screen, first. The co-ordinates are entered
as a single two-digit number.

After you have pressed 'Return’, the computer starts to consider
its move. This takes some time, so the program has been set up so
that you can see the computer’s 'mental processes’. As it looks at
each of the squares in turn, that square flashes. If going to that
square is the best move it has found so far the square turns into a
purple block. If later on a better move is found, the purple block is
removed and placed elsewhere.

When the computer has examined all the possible moves, it
decides on a final move. Then the score board is updated as it makes
the move. If you cannot move, just enter '99’ instead. If in two
moves running neither player can move, the game ends.

Unless you enjoy cheating, do not look at the description
section until you’ve played a few games - once you know the
algorithm used, the computer is at a distinct disadvantage.

The Program
10 Puts the computer in Mode 7.
20 Calls PROCBOARD. This procedure prints out the board and
sets up some variables needed in the rest of the program.
30 Starts a loop to get a valid move from you.
40 Calls PROCSCORE, which prints out the current scores.
70 Inputs the actual move. The CLS will not wipe out the board,
because a text window was defined in PROCBOARD to occupy two
lines just below the board.
80 This UNTIL statement tests the move entered, in a number of
ways. First, the move entered is checked to make sure that it is a
positive whole number, then the function FNPIECE(X) is used to
check what character is at the location where you want to move.
The character should be a full stop. FNPIECE is used again later
on. FNNUM(A$,B$,X) is used to check the number of pieces that

150
160
170
180

you (A$) could make by moving to X. A$ and B$ must be H or C.
This has to be greater than zero.

Alternatively, the game is allowed to continue if you entered 99
as the move, to indicate that you cannot move. The computer
doesn’t bother to check to see if you could move (it would take far
too long); so, when you are in a tight spot, you could cheat and say
you cannot move.
90 If you could not move, this line jumps over the section
concerned with making your move and updating the scores.
100 The variable HUM is your score, and this is updated by using
the previously described function, FNNUM(A$,B$,X).
110 Similarly, the variable COM, the computer’s score, is updated.
120 A dummy variable is then used to call FNTURN(A$,B$,X). This
is almost identical to FNNUM, except that as well as counting the
number of pieces that you could take, it turns them over.
130 Calls PROCSCORE, to print out the newly updated scores.
140 Tells you to press 'Return’ when you are ready for the
computer to start making its move.

Uses a dummy variable to GET a key press.
Clears the screen window.
Prints out the scores again.
Initialises the variables H and M. H holds the number of the

square with the highest 'score’ found so far. This score is a measure
of how good a move it would be for the computer to move there. M
holds the square which had this highest 'score’.
190 This line sets up a loop through all the possible squares on the
board, plus a few more such as 79 and 40. These 'extra’ squares are
weeded out in the next line.
200 This line jumps over the computer’s move section if that square
is not occupied by a full stop; that is, it is not vacant.
210 Gets the character at the square.
220 Replaces it with a space, to make it appear to flash.
230 The 'score’ of a square is made up of the number that can be
turned over at a particular square, multiplied by the value of
FNVALUE for that square. FNVALUE gives a weighting to each
square; so that, for example, the corners will be moved to in
preference to the sides or anywhere else. This number is calculated
for the square being considered. If it is bigger than the current
highest score, it changes X$ to a block, to allow the purple block to
appear; puts a full stop at the last best position; calculates a new
value for H; and copies C to M, to make the best move so far be the
current square.
240 The character in X$ is placed at the square just considered.
This will normally be a full stop, unless X$ was changed to a block
in line 220.
250 Ends the loop through all the squares.
260 If H is still zero, no move was possible. If that happened, and
you couldn’t move, ends the game.

100

510

490
500

400
410
420
430
440
450

320
330

520
530
540
550

270
280
290
300
310

Updates your score, as previously described.
Similarly with the computer’s score.
Now computer’s move can be made, using FNTURN.
The program loops back, to get another move from you.
Just for completeness, an END statement has been included.

Starts the definition of PROCBOARD.
As a MODE 7 statement was executed just before this

procedure is called, the cursor is on the top line of the display. This
PRINT statement moves it down a line.
340 This line prints the top of the board. It consists of the code for
purple alphanumerics, the code for a block, the code for blue
alphanumerics, the numbers from 1 to 8, the code for purple
alphanumerics, and the code for a block.
350 Starts a loop to print out the middle section of the board.
360 Prints the middle section of the board. It consists of the code
for blue alphanumerics, the loop counter, and eight lots of the code
for red alphanumerics followed by a full stop. At the end of the line,
the loop counter is printed out in blue.
370 Ends the loop.
380 Is the same as line 340, to print out the bottom line of the
board.
390 Sets your score to two (for the two pieces at the start of each
game).

Sets the computer’s score to two.
Puts your piece at the correct place for the starting set up.
Puts another of your pieces down.
Places one of the computer’s two starting pieces on the board.
Puts the last of the computer’s pieces on the board.
Dimensions DIR(). This array holds the displacements from a

particular square to each of its eight neighbours.
460 Fills up part of DIR().
470 Fills up part of DIR().
480 Fills up part of DIR(). These three lines are arranged in such a
way that you can see which displacement belongs to which
direction.

Sets up the previously described text window.
Ends PROCBOARD.

Starts the definition of PROCPIECE. This procedure places the
piece A$ at position X.

Sets variable A to be LOCAL.
Calculates the screen address corresponding to the position X.
Puts the character in A$ at the position.
If the character was an H, then makes it a green H, placing the

alphanumeric green code in the location before the H.
560 If the character was C, then makes it a light blue C.
570 If the character was a full stop, then makes it a red full stop.

101

102

580
590
600
610
620
630

670
680
690
700
710

If the character was a block, then makes it a purple block.
Ends PROCPIECE.
Starts the definition of PROCSCORE.
Prints the current scores.
Ends PROCSCORE.
Starts the definition of FNPIECE(X). This reads the character

at a particular location on the board.
640 Sets A to be a LOCAL variable.
650 Calculates the address of location X.
660 If the character at that address was an H then exits the
function with H.

If the character at that address was a C, then exits with C.
If it was a full stop, then exits with a full stop.
If the character was a block, exits with a full stop.
As the character was something odd, exits with a pound sign.
Starts the definition of FNTURN(A$,B$,X). This function

turns over pieces starting at location X, for player A$.
720 Sets all the variables used in this function to be LOCAL.
730 Q will hold the number of pieces turned over.
740 Starts a loop to look in each of the eight possible directions
from a particular square.
750 Sets the current square to be the starting square.
760 Repeatedly moves in the direction T, until it finds a square
which is not occupied by you.
770 If only one square was moved before a square not occupied by
the opponent was found, or the piece at the end of the trail is not
one of your pieces, jumps past the turning-over routine.
780 Starts a loop which encompasses all the locations moved to.
790 Makes each location into one of your pieces.
800 Ends the loop.
810 Increments Q, as some captures were made.
820 Ends the loop for all the different directions.
830 Ends the function with Q.

840 Starts the definition of FNNUM(A$,B$,X).
850 Sets all the variables used in the function to be LOCAL.
860 As above.
870 The algorithm used is the same as the one in FNTURN, except
that no pieces are turned over, and Q is properly maintained.
960 Ends the function with Q.
970 Starts the definition of FNVALUE(X). This routine gives the
weighting for the square X.
980 A and B will hold the two separate digits of the square X.
990 A and B are calculated, using MOD and DIV.
1000 If any of the corners are X, gives a multiplication factor of 10,
and exits.

c

"END OF

103

1010 If X is anywhere else, except one away from any of the sides,
gives a multiplication factor of 4.
1020 As X is one away from the side, which means that you will
probably get the side, gives a multiplication factor of 1.

"H"
,M)

Suggestion for improvement
One way this game could be improved is by altering the way
FNVALUE operates, to give more exact biases towards specific
squares. For example, if you wanted to give the square 67 a bias of
100, you would add a line such as: 1055 IF B = 6 AND A = 7 THEN
= 100.

your move "move:CLS
(ABS(INT(move))=move AND FNPIECE(

DR move=99

The Listing
10 MODE 7
20 PROCBOARD
30 REPEAT
40 PROCSCORE
50 SOUND 1,-15,100,3
60 VDU 131
70 INPUT "Enter
80 UNTIL

move)=" ." AND FNNUM("H","C“,move)>0)
90 IF move=99 THEN GOTO 130
100 HUM=HUM+FNNUM (" H " , " C " ,move)+1
110 COM=COM-FNNUM<"H","C",move)
120 DUMMY=FNTURN("H","C",move)
130 PROCSCORE
140 PRINT CHRS(129);"Press";CHR$(130);

return’";CHR$(129);"for my move";
150 DUMMY$=GET$
160 CLS
170 PROCSCORE
180 H=0:M=—1
190 FOR C=ll TO 88
200 IF FNPIECE(C)<>"." THEN GOTO 250
210 X$=FNPIECE(C)
220 PROCPIECE(" ",C)
230 IF (FNVALUE(C)*FNNUM("C" , "H",O) >H THEN

X$=CHR$(255):PROCPIECE(".",M):H=FNVALUE(C)*
FNNUM("C","H",C):M=C

240 PROCPIECE(X$,C)
250 NEXT C
260 IF H=0 AND move=99 THEN PRINT

GAME ";:VDU 26:END
270 HUM=HUM—FNNUM("C","H",M)
280 COM=COM+1+FNNUM("C","H",M)
290 DUMMY=FNTURN("C","H"
300 GOTO 30

THEN ?(A-1)=5

104

THEN ?(A-1) =2
THEN 2(A-1) =6

THEN="H"
THEN="C"
THEN="."
THEN="."

310 END
320 DEF PROCBOARD
330 PRINT
340 PRINT CHR*(128+5);CHR*(255)jCHR*(128+4);"

1234567 8";CHR*(128+5)jCHR*(255)
350 FOR T=1 TO 8
360 PRINT CHR*(128+4)jTjSTRING*(B,CHR*(129)+ "

. “) ;CHR*(128+4)jT
370 NEXT T
380 PRINT CHR*(128+5);CHR*(255)jCHR*(128+4);"
1234567 8";CHR*(128+5);CHR*(255)
390 HUM=2
400 COM=2
410 PROCPIECE("H",44)
420 PROCPIECE("H",55)
430 PROCPIECE(“C" ,54)
440 PROCPIECE("C",45)
450 DIM DIR(8)
460 DIR(1)=—11:DIR(2)=—10:DIR(3)=—9
470 DIR(4)=—1:DIR(5)=1
480 DIR(6)=9:DIR(7)=10:DIR(8)=11
490 VDU 28,0,14,39,13
500 ENDPROC
510 DEF PROCPIECE(A*,X)
520 LOCAL A
530 A=HIMEM+(X MOD 10)*2+41+(X DIV 10)*40
540 ?A=ASC(A$)
550 IF A$=,'H"
560 IF A*="C"
570 IF A*="." THEN ?(A-1)=1
580 IF A*=CHR*(255)
590 ENDPROC
600 DEF PROCSCORE
610 PRINT CHR*(128+3);"YOUR SCORE—“jHUM;TAB(2

0);CHR*(128+3);"MY SCORE—COM
620 ENDPROC
630 DEF FNPIECE(X)
640 LOCAL A
650 A=?(HIMEM+(X MOD 10)*2+41+(X DIV 10)*40)
660 IF A=ASC("H")
670 IF A=ASC("C")
680 IF A=ASC(".")
690 IF A=255
700="#"
710 DEF FNTURN(A*,B*,X)
720 LOCAL T,S,G,Q
730 (3=0
740 FOR T=1 TO 8

105

750 S=X
760 REPEAT S=S+DIR<T):UNTIL FNPIECE(S><>B$
770 IF (S—X)=DIR(T> OR FNPIECE(S)<>A$ THEN

GOTO 820
780 FOR G=X TO S STEP DIR(T)
790 PROCPIECE(A*,G)
800 NEXT G
810 Q=Q+1
820 NEXT T
830=Q
840 DEF FNNUM<A$,B$,X)
850 LOCAL T,S,Q,K
860 LOCAL
870 Q=0
880 FOR T=1 TO 8
890 S=X:K=-1
900 REPEAT
910 S=S+DIR(T):K=K+1
920 UNTIL FNPIECE (S)OB$
930 IF FNPIECE (S)OA$ THEN K=0
940 Q=Q+K
950 NEXT T
960=Q
970 DEF FNVALUE(X)
980 LOCAL A,B
990 A=X MOD 10:B=X DIV 10
1000 IF X=ll OR X=18 OR X=81 OR X=88 THEN=10
1010 IF AO7 AND A< >2 AND B< >2 AND B< >7 THEN=4
1020=1

The Game
In this game, you type RUN and then sit back to admire the
brilliant 'poems’ written by your BBC microcomputer. Once you’ve
endured a few hundred stanzas using the words in the DATA
statements we’ve provided, add your own words to create your own
poems.

The idea for this program came from an article called
'Producing Computer Poetry’ by Margaret Chisman {The Best of
Creative Computing, Volume 2, edited by David Ahl, Creative
Computing Press, Morristown, New Jersey, USA; pp. 106-107) in
which Ms Chisman described how she 'wrote’ computer poetry by
first writing a verse which, although its content may have been
nonsense, gave her (and the computer) a scanning pattern to work
from. Ms Chisman said that she then broke down the original poem,
analysed the kinds of words it used, and collected a number of
similar words which the computer could then juggle to its heart’s
content within the dictated framework.

We decided to follow suit, and started with the following
coruscating verse:

Slowly I straightened in the sun
Hardly a man was caring

... had dared
A tree wandered through the doorway

. . . That botany should be confounded
Thinking, palmtrees waved

... Waiting, a tall tree shuddered

Models A and B

Poet

With a beginning like that, how could we fail? We broke the
original verse down into parts, working out which were bridging
words, which nouns; and so on. Then, we wrote the raw framework
of the program, leaving procedures 'aword’ to 'iword’ to be filled in
by trial and error. The nouns ('bword’, 'dword’, and 'fword’) were
fairly easy to add, but some of the other sections (such as 'gword’)
proved difficult in practice. Although in this procedure we put
words that should have worked, they did not seem to fit when the
program was run. The selection you see in this listing is the final
result of hours of trial and error.

106

The Program
The program itself is fairly simple and should prove easy to modify.
10 Title.
20-30 Clear the screen and set the mode.
40 Turns off the cursor.
50 Starts the master REPEAT/UNTIL loop (terminated in line
390).
60 Puts four blank lines between verses.
70-360 Go to specified procedures, adding link words (lines 150,
270) from time to time, and starting new print lines (lines 120, 170,
190, 240 and 290) at other times.
370-380 Pause at the end of each verse before a new one is written.
The rest of the program consists of procedures. Each contains a
number of words in a DATA statement. The loop in each procedure,
FOR J = 1 TO RND(X), chooses a word from this DATA statement,
prints it with a space after it, then returns to the program for the
next instruction.
Suggestions for improvement
o Change the words within the DATA statements to create poems
of the same general feel as ours, but using your own words.
• Once you understand how the process works, write your own
'framework verse’, then create a program from scratch to build on
your framework.
Finally, here is a sample poem from this program:
Savagely he frightened in the path
little a child had frightened

. . . had chastened
shadows wandered to the joy

.. . that the void might be stopped
waiting she frightened

. . . wanting a child cried
Quietly I sighed before the darkness
only the woman had wandered

. . . had cried
a crowd waited in the pain

. . . that the path should be chastened
turning they wandered

... asking a lonely man sighed
Sadly the woman stopped before the night
much a lonely man had waited

. . . had waited
I sighed before the agony

. . . that the darkness ought to be whispered
crying she waited

. . . wanting the prophet wondered

107

115
__ HAD 115

*■;

108

The Listing
10 REM ** POET **
20 CLS
30 MODE 4
40 VDU23;8202;0;0;0
50 REPEAT
60 PRINT ””
70 PRDCaword
80 PROCbword
90 PROCcword
100 PROCiword
110 PROCdword
120 PRINT
130 PROCeword
140 PROCbword
150 PRINT "HAD
160 PROCcword
170 PRINT ’"
180 PROCcword
190 PRINT
200 PROCbword
210 PROCcword
220 PROCiword
230 PROC-Fword
240 PRINT ’" THAT THE ";
250 PROCdword
260 PROCgword
270 PRINT "BE
280 PROCcword
290 PRINT
300 PROChword
310 PROCbword
320 PROCcword
330 PRINT ’"
340 PROChword
350 PROCbword
360 PROCcword
370 T=TIME
380 REPEAT UNTIL TIME-T>950
390 UNTIL FALSE
400 END
410 REM ***********
420 DEF PROCaword
430 RESTORE 480
440 FOR J=1 TO RND(10)
450 READ AS
460 NEXT
470 PRINT AS"

109

"ALL","MUCH",“NOTHING","LITTLE","ONLY
850 ENDPROC
860 REM ***********
870 DEF PROCFword
880 RESTORE 930

480 DATA "SADLY" , "HOPELESSLY","WITHDUT CARE","
QUICKLY”,"JOYFULLY","OFTEN","SAVAGELY","CALMLY",
"QUIETLY","SILENTLY"
490 ENDPROC
500 REM ***********
510 DEF PROCbword
520 RESTORE 570
530 FOR J=1 TO RND(10)
540 READ B$
550 NEXT
560 PRINT B$" ";
570 DATA "I","HE","THEY","THE PROPHET","A LONE

LY MAN","SHADOWS","A CHILD","SHE","A CROWD","THE
WOMAN"
580 ENDPROC
590 REM ***********
600 DEF PROCcword
610 RESTORE 660
620 FOR J=1 TO RND<13)
630 READ C$
640 NEXT
650 PRINT C$" "j
660 DATA "STOPPED","WONDERED","HOPED","WAITED"

,"WANDERED","SIGHED","WHISPERED","CRIED","SCREAM
ED","ENDED","IGNORED","CHASTENED","FRIGHTENED"

670 ENDPROC
680 REM ***********
690 DEF PROCdword
700 RESTORE 750
710 FOR J=1 TO RND(10)
720 READ D$
730 NEXT
740 PRINT D$" ";
750 DATA "WOODS","NORTHSUNPATH", "SEA" , "D

ARKNESS","NIGHT","VOID","DOORWAY","CAVERN"
760 ENDPRDC
770 REM ***********
780 DEF PROCeword
790 RESTORE 840
800 FOR J=1 TO RND(5)
810 READ E$
820 NEXT
830 PRINT E$"
840 DATA

II

110

,"OUGHT TO","SHOULD"

890 FOR J=1 TO RND(5)
900 READ F$
910 NEXT
920 PRINT F$" ";
930 DATA "SORROW","AGONY","PAIN","ANGUISH","JO

Y"
940 ENDPROC
950 REM ***********
960 DEF PROCgword
970 RESTORE 1020
980 FOR J=1 TO RND(4)
990 READ G$
1000 NEXT
1010 PRINT G$" ";
1020 DATA "MAY","MIGHT"
1030 ENDPROC
1040 REM ***********
1050 DEF PROChword
1060 RESTORE1110
1070 FOR J=1 TO RND(10)
1080 READ HS
1090 NEXT
1100 PRINT H$" ";
1110 DATA "SIGHING","REACHING","TURNING","HDPIN

G","ASKING","NEEDING","WAITING","CRYING","TAKING
","WANTING"
1120 ENDPROC
1130 REM ***********
1140 DEF PRDCiword
1150 RESTORE 1200
1160 FOR J=1 TO RNDC4)
1170 READ 1$
1180 NEXT
1190 PRINT IS" THE ";
1200 DATA "TO","IN","PAST","BEFORE"
1210 ENDPROC

Ill

Models A and B

Magic Square
The Game
The computer generates a three-by-three 'magic square’, which
vertically, horizontally and diagonally adds up to the same number.
Three of the numbers are shown as red hash signs when you first
run the program, and you have to enter a series of guesses to work
out the answer. At the end, the computer tells you how many
guesses it took you to work out the three missing numbers.

The Program
10 Title.
20 Sets mode.
30 Sends computer to the initialisation procedure.
50-80 The master REPEAT/UNTIL loop, which prints out the
square after each move (PROCprintout) and accepts your guesses
(PROCaccept-move).
100-130 Prints the end of game message.
150-450 This procedure assigns the values to each of the elements
in the grid using the three random numbers generated by the
REPEAT/UNTIL loop (200 to 240). Lines 340 to 370 check that none
of the nine numbers in the square equals zero; and, if any one is
zero, sends action back to the 200-240 REPEAT/UNTIL to try
again. Lines 390 to 410 copy the elements of array A into array B,
then lines 420 to 440 change three of the elements of array B to
zero. These are the numbers that you must try to deduce.
470-560 This procedure prints out the whole magic square, and
checks to see how many numbers still have to be guessed.
480 Adds one to the number of guesses made.
490 Prints title.
500-540 Prints out the numbers, or prints a pound sign if a number
has not been guessed.
550 Tells you the number of numbers still to be guessed.
570-670 This procedure accepts the player’s guess, and checks
whether it is correct (line 630). The next line counts the number of
correct guesses. Line 660 overprints the last guess.

; J-1; "you

112

Suggestions for improvement
• Add sound to reward a correct guess.
• Let the number of values to be guessed change from game to
game.
• Change the maximum values for A, B and C to be greater than
nine. Note that if you do this you will have to change the way the
program decides which squares to turn into zeroes (see lines 420 to
440).
• Change colours to suit your idea of the best colour
combinations.
• Restore the flashing cursor when the game ends.
• Change the layout of the square to make it look tidier.
• Modify the program to accept number inputs only, with a
corresponding message, and without increasing the count of the
number of guesses.
• Cut off the sound after a couple of seconds at the end of the
game, offering an option to start again, or exiting 'gracefully’.

The Listing
10 REM *Magic Square*
20 M0DE7
30 PROCinitialise
40 REM************
50 REPEAT
60 PROCprintout
70 PROCaccept_move
80 UNTIL M=9
90 REM************
100 PROCprintout
110 PRINT ’'CHR$(128+RND(5))j"You have

solved it. Well done!"
120 PRINT ’’CHR$(128+RND(5));"

guesses"
130 END
140 REM*************
150 DEF PROCinitialise
160 DIM A(9),B(9)
170 W=-99
180 M=6
190 J=0
200 REPEAT
210 A=RND(9)
220 B=RND(9)
230 C=RND(9)
240 UNTIL AOB AND AOC AND B< >C
250 A<1)=A+B
260 A(2)=A-B-C

J

II

670 ENDPROC

113

"j:GOTO 530

270 A(3)=A+C
280 A(4)=A—B+C
290 A(5)=A
300 A(6)=A+B-C
310 A(7)=A-C
320 A(8)=A+B+C
330 A(9)=A—B
340 K=1
350 FOR Z=1 TO 9
360 IF ACZ)=0 K=0
370 NEXT
380 IF K=0 THEN 200
390 FOR Z=1TO9
400 B(Z)=A(Z).
410 NEXT
420 B(ABS(A))=0
430 B(ABS(B))=0
440 B(ABS(C))=0
450 ENDPROC
460 REM***********
470 DEF PROCprintout
480 J=J+1
490 PRINT TAB<3,3);CHR$(128+RND(5));"Magic

Square"’’’’
500 FOR Z=1TO9
510 IF B(Z)=0 PRINT CHR$<129) ; "£
520 PRINT CHRS<129+RND(4));B(Z);"
530 IF Z=3 OR Z=6 PRINT:PRINT
540 NEXT
550 IF M<9 PRINT ” CHR$(128+RND(5));"You

have ";9—M;" to solve"
560 ENDPROC
570 DEF PROCaccept_move
580 M=0
590 PRINT TAB(1, 18)jCHRS(128+RND(5));"Please

enter guess number
600 INPUT W
610 FOR Z=1TO9
620 IF W=—99 THEN 640
630 IF A(Z)=W THEN B(Z)=W
640 IF B(Z)<>0 THEN M=M+1
650 NEXT
660 PRINT TAB(2,IB);"

10
20
30
40

Models A and B

Romland

The Program
Title.
Sets the mode.
Turns off the cursor.
Sends action to the initialisation procedure

(PROCsetupromland).
50 Start of master REPEAT/UNTIL loop.
60 To PROCstatus, which informs the player, after each move,
what the Romland scanner has detected.
70-80 Adds one to H, the variable storing the number of hours the
player has survived within the walls of Romland.

114

The Game
You are an intrepid explorer, working your way through Romland,
a peculiar place surrounded on all sides by impassable walls and
studded with a remarkable collection of landmarks - 'no entry’
sectors, magic tunnels, bottomless quagmires, RAM beasties and
treasure ('the fabled lost gold mines of Romland’). You must survive
in this unusual place for 25 hours while collecting as much gold as
you can.

From time to time you will be shown a map of Romland from
above. You can draw up a 10 x 10 grid and place landmarks on it to
form a map of Romland as you go along, so you can work out how to
avoid the beasties and quagmires while homing in on the gold.

You start each game in 'sector 55’ and can move North, South,
East or West at each move. If you try to walk through one of the
walls surrounding Romland, or try to enter a 'no entry sector’, the
program will tell you that you cannot go that way, and you’ll have
to choose a new direction.

After each move, assuming you haven’t wandered into a sector
containing something, your Romland Scanner will swing into
action, looking at the eight sectors immediately surrounding the
one you are currently occupying. If it finds something there, you
will be given a clue as to what is near you. However, if it finds more
than one thing, it will only tell you about one of them, and will not
tell you where - in relation to your present position - the thing is.

The game explains itself as it progresses, and makes good use of
the sound and colour available on the BBC microcomputer.

115

90 Q is a flag that dictates the section of the procedure
PROCend_of_the_world which is printed from time to time.

The procedure PROCstatus (lines 430-780) is the heart of the game,
being the only one which is called repeatedly (from line 60) within
the master REPEAT/UNTIL loop.
440 Places the H (for human) in the sector you are occupying.
450-460 Generates a random value for Q and, if it is zero, sends
action to PROCmap to give you a glimpse of Romland from above.
490-510 Tells you where you are and how much gold you have
found.
520 Sends the program to PROCclues to check the squares
surrounding the one you occupy.
530 Tells you how many more hours you must last.
540 Chooses a number at random (from 129 to 133) to determine the
colour in which the next two lines will be printed.
570-580 Accept a direction from the player (N, S, E or W) and first
check (line 580) that the direction chosen is one of these.
590 Clears the screen, and assigns zero to the variable U which
will, if it becomes one, indicate a 'no exit’.
600-680 Check to see if you can move in the direction indicated,

120-410 This procedure creates the initial conditions within
Romland (PROCset_up_rom_land), and initialises the variables (H
is hours, Q is the flag mentioned before, G is the gold found); the
array A holds each sector of Romland. The routine 150 to 210 puts
up the walls (character 255) and spaces (character 46, the full stop).
As the REM statement in line 230 points out, the next routine (220
to 390) distributes the landmarks within the land, assigning a
particular character code to a component of the land.

Line 250 selects an element of the land at random and assigns it
to a 'no exit’ (character 255, a solid square). Line 260 chooses an
element of the array at random and, in a check repeated in the rest
of the loop for other landmarks, makes sure this new element has
not already been assigned to a 'no exit’. Thus the 'no exits’ within
the walls are not reassigned, and - far more importantly - the walls
are not breached. The other landmarks are assigned in the rest of
the routine: magic tunnels (character 63, a question mark); Rom
beasts (character 66, the letter B); and quagmires (character 81, the
letter Q).

Note that apart from not overwriting 'no exit’ elements, there is
no mechanism to ensure that an element assigned to a landmark in
one part of the loop is not reassigned in another. This ensures that
the exact number of each landmark varies from game to game. The
Y loop, from 350 to the first part of 390, assigns approximately twice
as many 'money sectors’ as any other landmark. The player begins
in sector 55, and the number 55 is assigned to variable E, which
keeps track of the player’s position within the land.

116

and, if not, point this out in no uncertain manner, in double-height
letters (using CHR$(141) for this purpose).
700-730 Move you into the chosen sector.
740-770 If the sector is not empty, send you to a procedure related
to the contents of the sector.
800-900 PROCtunnel. This is the 'magic tunnel’ which will move
you to a random place within Romland, but not into a 'no exit’ or
wall sector.
920-1250 PROCbeast. This is one of the less frightening bad sectors
you can stumble into, because you have a chance to escape. With a
lot of sound and fury the computer lets you know you are in a
beastie sector, but you need patience to discover your fate. The
possible messsages are:
Warning! ! You have come across a Rom beastie!
Stand by!
Luckily for you, this one is blind!
Oh no ! It has seen you, and decides to ignore you !
Oh no ! It has seen you, and . .. EATS YOU. . .
As you can guess, any message except the one ending in 'EATS
YOU’ will allow you to continue the game.
1260-1380 PROCquagmire. To the accompaniment of Hartnell’s
'Quartet for Sucking Noises and Despair’ you are warned of your
imminent demise.
1400-1620 PROCgold. This is a jolly procedure, in which - with the
aid of a dazzling screen display - you gain between £101 and £150
(line 1540). Note that the ' in the listing stands for a £ sign.
1630-2040 PROCclues. This procedure checks the surrounding
sectors and reports on what they contain, reporting only on one of
the sectors, and not telling you which sector the report refers to.
2050-2190 PROCend-of-the-world. This procedure is called only at
the end of the game, your survival or extinction (held by the value
assigned to Q) determining which part of the procedure is used.
2200-2290 PROCmap. This is the cartographic procedure, printing
out the view of Romland from the air. This procedure is called at
random within a game (see lines 450 and 460) and at the 'end of the
world’.
Suggestions for improvement
• Add a 'shoot at the beastie’ mechanism to give you a chance to
survive if it sees you.
• Add other things besides 'gold’ which you can carry with you
(such as a gun which you’ll need later for shooting at the beastie).
• Add a little 'quagmire goblin’ who will allow you to bribe your
way out of the muck if you have enough gold.

The Listing

117

• Change the way the map is presented during the game, so only a
randomly selected part of the map is printed, with little indication
as to where the section comes from.
• Add extra landmarks which have unique effects.
• Increase the size of Romland.
• Cut off the sound after a couple of seconds at the end of the
game, offering an option to start again, or exiting 'gracefully’.

10 REM *ADVENTURE IN ROMLAND*
20 M0DE7
30 vdu 23;8202;05050
40 PROCset_up_rom_land
50 REPEAT
60 PROCstatus
70 H=H+1
80 UNTIL H=25
90 Q=9
100 PROCend_o-F_the_worl d
110 END
120 DEFPROCset_up_rom_land
130 DIMA(100)
140 H=1:Q=0:G=0
150 FOR B=1TO100
160 A(B)=46
170 IF B<22 OR B>90 THEN A(B)=255
180 IF B=31 OR B=41 THEN A(B)=255
190 IF B=51 OR B=61 OR B=71 OR B=81 THEN A(B)=

255
200 IF 10*INT(B/10)=B THEN A(B)=255
210 NEXT B
220 FOR B=1TO4
230 REM:DISTRIBUTE LANDMARKS
240 REM:NO ENTRY
250 A(RND(77)+11)=255
260 X=RND(77)+11:IF A(X)=255 THEN 260
270 REM:MAGIC TUNNEL
280 A(X)=63:REM
290 X=RND(77)+11:IF A(X)=255 THEN 290
300 REM:RAM BEAST
310 A(X)=66:REM "B"
320 X=RND(77)+11:IF A(X)=255 THEN 320
330 REM:BOTTOMLESS QUAGMIRE
340 A(X)=81:REM "Q"
350 FOR Y=1 TO 2
360 X=RND(77)+11:IF A(X)=255 THEN 360
370 REM:LOVELY GOLD
380 A(X)=71:REM “G"

"H"

CHR$(X);"Which direction do you wan

CN, S, E or

AND Z$O"S" AND Z$O"E" AND Z$<

he he, no exit the

no exit thehe he,

118

AND ACE-10)=255 THEN U=1
AND ACE+10)=255 THEN U=1
AND ACE+1)=255 THEN U=1
AND ACE—1)=255 THEN U=1

"Ha ha,

"to move

THEN E=E—10
THEN E=E+10
THEN E=E+1
THEN E=E—1

740 IF ACE)=63 THEN PRDCtunnel
750 IF ACE)=66 THEN PROCbeast
760 IF ACE)=81 THEN PRDCquagmire
770 IF ACE)=71 THEN PROCgold

390 NEXT:NEXT
400 E=55:REM YOUR LOCATION
410 ENDPROC
420 REM***********
430 DEF PROCstatus
440 ACE)=72:REM
450 Q= RNDC3)—1
460 IF Q=0 PROCmap
470 CLS
480 Q=1
490 PRINT ” ’CHR$C128+RNDC5));CHR$C141);“You a

re in sector ";E
500 PRINT CHR$C128+RNDC5));CHR$C141) ; "You are

in sector ";E’
510 IF G>0 PRINT CHR$C128+RNDC5))"with Romland
gold worth '";G
520 PROCclues
530PRINT ” ’CHR$C128+RNDC5))"You must endure f

or just “j25—H;" more hours"
540 X=128+RNDC5)
550 PRINT

t"
560 PRINT TABC5)jCHR$CX)j

W) "
570 Z$=GET$
580 IF Z$O"N

>"W" THEN 570
590 U=0:CLS
600 IF ZS="N"
610 IF Z$="S"
620 IF Z$="E"
630 IF Z$="W"
640 PRINT
650 IF U=0 THEN 690
660 PRINT CHR$C141)j

re be!"
670 PRINT CHRSC141);"Ha ha,

re be! "
680 GOTO 540
690 ACE)=46
700 IF Z$="N"
710 IF Z$="S"
720 IF Z$="E"
730 IF Z$="W"

You’

:PRIN

this o

□h no! It has seen you

119

78© ENDPROC
790 REM*************
800 DEF PROCtunnel
810 K=2+RND(7)
820 FOR T=254 TO 1 STEP -2
830 SOUND 3,-15,T,1
840 PRINT TAB(0,20);CHRS(128+RND(5));"Oh!

ve -fallen into a magic tunnel"
850 PRINT CHRS(128+RND(5))j"You will be transp

orted to a random"
860 PRINT CHRS(128+RND(5))j"part of Romland

.stand by..."
870 NEXT
880 ACE)=63
890 E= RND(77)+11:IF ACE)=255 THEN 890
900 ENDPROC
910 REM*************
920 DEF PRDCbeast
930 FOR J=1 TO 24:PRINT CHRSC128+RND(5))j"****

**********************************":NEXT
940 FOR Y=1 TO 2
950 FOR J=1TO30
960 SOUND 0,—15,RND(255),RND(3)
970 SOUND 1,-15,255-7*(INT(J/5)),3-Y
980 NEXT:NEXT
990 PRINT TAB(6,17)jCHRSC141);"Warning!!

T TAB(6);CHR$(141);"Warning!!"
1000 FOR J=1 TO 5
1010 SOUND 1,-3*J,60,30-2*J
1020 NEXT
1030 PRINT CHRS(129);"You have come across a"CH
RS(132)"RAM beastie!"
1040 FDR J=1TO500
1050 PRINT TAB(9,14)jCHRSC128+RND(5));"Stand by

■ i ■■

1060 NEXT
1070 CLS
1080 M=RND(10)
1090 IF M>3 THEN 1130
1100 PRINT ’’’CHRS(130)“Lucki1y for you,

ne is blind!"
1110 FOR Z=1 TO 5000:NEXT
1120 ENDPROC
1130 PRINT CHRS (131)”

, and"
1140 FOR J=1 TO 1000 STEP 10
1150 SOUND 1,-15,(J+l)/4,1
1160 NEXT

EATS
EATS

OH N

i
in

Bye bye, sue

6

120

1170 IF M<9 THEN 1210
1180 PRINT(CHRS131)"deci des to ignore you!"
1190 FOR Z=1TO1500:NEXT
1200 ENDPROC
1210 Q=3
1220 PRINT CHRS(129);CHRS(141);"
YOU "
1230 PRINT CHR*(129);CHR$(141);"
YOU "
1240 FDR Z=1TO1500:NEXT
1250 PROCend_of_the_world
1260 DEF PROCquagmire
1270 FOR 3=1 TO 100
1280 PRINT CHR$(128+RND(5))j"

O! "
1290 SOUND 2,-15,255-3,1
1300 NEXT
1310 PRINT”’TAB (5) ;CHR$(141) "You’re standin’

n a quagmire"
1320 PRINT TAB(5)jCHR$(141);"You’re standin’
a quagmire"
1330 PRINT” ’ CHR$ (128+RND (5)) "

ker "
1340 FOR 3=1 TO 254
1350 SOUND 0,—15,J,1
1360 NEXT
1370 Q=3
1380 PROCend_of_the_world
1390 REM**************
1400 DEF PROCgold
1410 FOR 3=1 TO 1000 STEP 5
1420 SOUND 1,-15,3/4,1
1430 SOUND 2,-15,3/5,1
1440 PRINT CHR$(128+RND(5))" . .

OLD............... ";
1450 NEXT
1460 FOR 3=1 TO 1000 STEP 17
1470 SOUND 1,-15,3/4,1:SOUND 2,-15,3/5,2
1480 PRINT TAB(14,10);CHRS(128+RND(5));CHRS(141
);"Gold!"
1490 PRINT TAB(14);CHR*(128+RND(5));CHR*(141);"

Gold!"
1500 NEXT
1510 FOR 3=1TO40:PRINT:FDR Z=1TD60:NEXT:NEXT
1520 PRINT TAB(0,6);CHR$(128+RND(5))"You have f

ound one of the fabled"
1530 PRINT ’’CHR$(128+RND(5));"lost gold mines

of Romland!"

“a No Exit"
121

1900 FDR Z=1TD500:NEXT
1910 SOUND 1,-5,30*J,1
1920 NEXT
1930 CLS
1940 FOR J=1 TO 40
1950 PRINT TAB<0,9);CHR$(128+RND(5))"Somewhere

near you is
I960 IF L=255 PRINT

1540 K=RND(100)+50
1550 PRINT’’CHR$(128+RND(5));"You have found go

Id worth '";K;"!!!!"
1560 G=G+K
1570 FOR J=1TO100
1580 SOUND 1,-15,154+J,1
1590 SOUND 3,-15,100+J/2,1
1600 NEXT
1610 CLS
1620 ENDPROC
1630 DEF PROCclues
1640 L=46
1650 IF ACE—1 1)046 THEN L=A(E-11)
1660 IF A(E—10)<>46 THEN L=A(E-10)
1670 IF A (E—9)046 THEN L=A(E-9)
1680 IF ACE—1)046 THEN L=ACE-1)
1690 IF ACE+DO46 THEN L=ACE+1)
1700 IF A(E+9)<>46 THEN L=ACE+9)
1710 IF ACE+10)<>46 THEN L=ACE+10)
1720 IF ACE+1DO46 THEN L=A(E+11)
1730 IF L=46 THEN 2040
1740 F0RJ=lTO7
1750 FOR Z=1TO500:NEXT
1760 SOUND 1,-15,20*J,3
1770 NEXT
1780 IF RNDC3)>1 THEN 1880
1790 FOR J=1TORNDC9)
1800 PRINT ’CHR$C128+RNDC5))"Stand by, intrepid
traveller "
1810 PRINT CHR$(128+RND(5))"Here’s a clue comin

’ up..."
1820 SOUND 0,—15,RND(3),3:S0UND1,—15,RND(3),3
1830 FOR Z=1TO500:NEXT
1840 NEXT
1850 FOR J=1TO500STEP10
1860 SOUND 3,-15,J/2,1
1870 NEXT
1880 FORJ=7 TO 1 STEP -1
1890 PRINT CHR$C128+RNDC5))"Clue clue clue!

II

122

"a magic tunnel“
"a RAM beastie"
"a quagmire"
"a gold mine"

1970 IF L=63 PRINT
1980 IF L=66 PRINT
1990 IF L=81 PRINT
2000 IF L=71 PRINT
2010 PRINT TAB(0,13);CHR$(128+RND(5))j"Who woul

d believe it?"
2020 SOUND RND(3),—15,RND(128)+127,RND(3)
2030 NEXT
2040 ENDPROC
2050 DEFPROCend_of_the_world
2060 CLS
2070 IF Q=9 THEN 2100
2080 PRINT’*CHRS(128+RND(5))"You just blew it,

buddy ! "
2090 PRINT CHR$(128+RND(5))"You are remarkably
dead..."
2100 A(E)=72
2110 PRINT CHR$(128+RND(5))"You survived for
H;" hour";
2120 IF HOI PRINT"s" ELSE PRINT
2130 IF G>0 PRINT CHR$(128+RND(5))"and found go

Id worth '" ;G
2140 PROCmap
2150 FOR Z=1 TO 500 STEP 30
2160 SOUND 1,-15,Z/3,1
2170 NEXT
2180 IF Q=0 ENDPROC
2190 GOTO 2150
2200 DEF PROCmap
2210 PRINT TAB(11,8); CHR$(136)j"Romland"
2220 PRINT TAB(11);CHRS(141);"*******“
2230 FDR J=0 TO 90 STEP 10
2240 M=A(J+1):N=A(J+2):0=A(J+3):P=A(J+4):Z=A(J+
5):R=A(J+6):S=A(J+7):T=A(J+8):U=A(J+9):V=A(J+10)
2250 PRINT TAB(7)jJ;CHR$(128+RND(5));CHRS(M);CH
R$(N);CHR$(O);CHR$(P);CHR$(Z);CHR$(R);CHR$(S);CH
R$(T);CHR$(U);CHR$(V)
2260 SOUND 3,-15,255-3,2
2270 NEXT
2280 FOR T=1TO9000:NEXT
2290 ENDPROC

Models A and B

Gomoku
The Game
This Gomoku, adapted from a program written by Graham
Charlton, puts up a strong defence and will give you a good game.
The aim of the game is simple - try to get five of your pieces (the H,
for human) in a row or diagonally, while trying to block the
computer ('C’) from doing the same. The computer, of course, is
trying to block your pieces while trying to build up its own row of
five in any direction.

You move by entering the number along the side of the board
(eg. 6) and then the number along the top (eg. 4) as one number (ie.
64). The piece will appear in position, and there is a brief pause
while the computer works out a devastating response.

Note that if you keep on making bad entries the screen scrolls.

The Program
10 Title.
20 Sends action to the initialisation procedure.
30 Sends the computer to the procedure which prints out the first
board.
50-110 This is the master REPEAT/UNTIL loop which controls the
whole game.
130-190 This procedure, 'check’, is called while the computer is
considering its moves (from lines 590, 610, 790, 1090 and 1110) and
also when it is checking to see how many in a row you have.
210-360 This procedure prints out the board, with line 290
determining which colour will be used for which piece.
380-490 This procedure accepts your move. Line 390 clears the
buffer, and line 400 makes a brief sound so you know it is time for
your move. Line 440 moves the print position up one line (using
CHR$(11)) and then overprints the words 'Please enter your move’
with a line of spaces. Line 460 checks if the move is legal and, if it is
not, sends the program back to line 410 to ask for a new move.
520-1000 This is the heart of the program, in which the computer
looks at the board and decides on its move. Starting from where
you last placed a piece (G), the computer searches around this
location, calling up the 'check’ procedure. If it finds (line 640) five

123

1 2 3 4 5 6 7 8"

124

in a row, it sends the computer to the 'you_win* procedure. The
rest of the procedure determines which move is best and, having
made a decision, signals this to you with a short sound (line 990).
1020-1150 The computer checks its latest move, to see if this has
completed a line of five in any direction and, if it has, sends the
computer to the procedure ’i win’.
1170-1600 This is the initialisation procedure. Line 1190 turns off
the cursor, line 1200 sets up the arrays for the board (A) and the
directions around a particular square (X). Lines 1300 to 1320 play
three chords to start the game off, and lines 1360 and 1370 allow you
to choose whether you will go first. If you want first move, line
1390 sends the computer to the end of the procedure (line 1450). If
not, the computer chooses at random from 12 good opening moves
(represented by the DATA statements in line 1460), generating a
little bit of sound (line 1410) while doing so.
1480-1520 The procedure triggered when you win.
1540-1600 The procedure triggered when the computer wins.

Suggestion for improvement
• An option to start a new game or 'gracefully’ exit.

The Listing
10REM**GOMOKU»*
20PROCinitialise
30PRDCboard
40REM****«*******
50REPEAT
60PROCplayer_move
70PROCboard
80PROCmove
90PROCboard
100PROCmove_two
11©UNTIL FALSE
120REM**»**********
130DEF PROCcheck
140E=A
150E=E+N
160IFA(E)OZ THEN19©
170K=K+1
180GOTO150
190ENDPROC
200REM***************
210DEF PROCboard
220PRINT CHR*(30)’’’
230PRINTCHR*(128+RND(6));"
240PRINTCHRS(128+RND(6));"

12345678

125

250FORA=1TO8
260PRINTCHR* (131);A;
270FORB=2TO9
280M=A(A*10+B)
290F=—130*(M=67)-133*(M=72)-134*(M=46)
300 PRINTCHRS(F);CHR*(M);
310NEXTB
320PRINTCHRS(131);A
330NEXTA
340PRINTCHR*(128+RND(6));"
350PRINTCHR$(128+RND(6));"
360ENDPROC
370REM**************«
380DEF PRDCplayer_move
390*FX 15,0
400SOUND2,-15,RND(50)+25,1
410PRINT’CHR$(128+RND(6));"Please enter your

move";
420INPUTS
430SOUND3,-15,RND(10)+128,2
440PRINTCHRS(11);"
4506=8+1
460IFG<12 OR G>89 OR A(G)OASC"." THEN 410
470PRINT TAB(22,11);CHRS(128+RND(6));"Please

stand by"
480Z=ASC"H"
490A(G)=Z
500ENDPROC
510REM******************
520DEF PROCmove
530PRINT TAB(22,11);“
540A=G
550L=0
560FORX=1 TO 4
570K=0
580N=X(X)
590PROCcheck
600N=-N
610PROCcheck
620IFK>L L=K
630NEXT X
640IFL>3 PROCyou_win
650T=1
660IFTO2 Z=ASC"C"
670IFT=2 Z=ASC"H"
680G=0
690H=0

THEN900

126

700L=0
710FORA=12TO 89
720M=0
730IFA(A)<>ASC" . "
740FORX=1 TO 4
750K=0
760N=X(X)
770PROCcheck
780N=—N
790PROCcheck
800IFK>L H=0:L=K
810IFLOK THEN860
820IFT=1 AND L<4 THEN860
830IFT=2 AND L<2 THEN860
840IFT=3 AND L<2 THEN860
850M=M+1
860NEXTX
870IFM<=H THEN900
880H=M
890G=A
900NEXTA
910IFHO0 THEN980
920T=T+1
930IFTC>4 THEN660
940A=1
950G=RND(77)+12
960IFA(G)=ASC" . " THEN980
970A=A+1:IFAC400THEN950
980A (G) =ASC,,C"
990SOUND3,-15,RND(20),2
1000ENDPROC
1010REM*************
1020DEF PROCmove_two
1030Z=ASC,’C,‘
1040A=G
1050L=0
1060FORX=1TO4
1070K=0
1080N=X(X)
1090PRDCcheck
1100N=-N
1110PROCcheck
1120IFK>L L=K
1130NEXTX
11401FL >3PROCi _wi n
1150ENDPROC
1160REM***«************
1170DEF PROCinitialise

AND Q$O"Y" THEN 1360

;CHR$(11)

127

1180CLS
1190VDU23;8202;0;0;0
1200DIMA(100), X (4)
1210FORA=1TO8
1220FORB=2TO9
1230A(A*10+B)=ASC" . "
1240NEXTB
1250NEXTA
1260FORQ=1TO4
1270READF:X(Q)=F
1280NEXTQ
1290DATA 1,9,10,11
1300SOUND1,-15,29,8:S0UND2,-15,13,8:S0UND3,-15

,41,8
1310SOUND1,-15,5,8:S0UND2,-15,21,8:SOUND3,-15,

33,8
1320SOUND1,-15,29,8:S0UND2,-15,13,8:S0UND3,-15

,41,8
1330PRINT’’’’CHR$(131),"SOMOKU"
1340PRINT”’CHR$(129);"Do you want the First

move?"
1350PRINTTAB<12,12);CHRS(133);"Y or N"
1360Q$=GET»
1370IFQ$<>"N"
1380CLS
1390IF MID$(Q$,1,1)<>"N" ENDPRDC
1400FORJ=1TORND(12)
1410SOUND3,—15,256/12*J,3
1420READZ
1430NEXTJ
1440A(Z)=ASC"C“
1450ENDPROC
1460DATA34,35,36,44,45,46,47,54,55,56,57,66
1470REM**********«****«
1480DEF PROCyou_win
1490REPEAT
1500PRINTCHRS(12B+RND(6))j"You win!";CHRS<11)
1510UNTIL FALSE
1520END
1530REM*»****»*********
1540ENDPROC
1550DEF PROCi_win
1560REPEAT
1570PRINTCHR$(128+RND(6)) j " I win!"
1580UNTIL FALSE
1590END
1600ENDPROC

The Game
In this game, you are on safari in Darkest Africa. A herd of
elephants charge at you. In your terror your only thought is to
avoid their oncoming grey mass - you do not consider killing them.

In real life (that is, in computer terms) you are a little asterisk
in the centre of the screen, and can move right and left with the
cursor right and left keys. The oncoming elephants appear as blobs
which roll up the screen towards you. As you flee, you leave a line
of asterisks in your wake. This line undulates rather satisfactorily
with every move.

A suitable message is printed at the centre of the screen when
you are hit by an elephant; the screen flashes violently. A message
telling you your degree of staying-power follows this.

The Program
20 Sets the computer to mode 4. Model B owners could alter the
program to run in mode 0, which gives a bigger playing area.
30 Calls PROCinit, which carries out general housekeeping such as
turning off the cursor and setting variables which govern the
difficulty of the game.
40 Sets up the main REPEAT loop of the game.
50 Checks for a key press. The variable 'time_limit’ was set in
PROCinit so, by altering this value, you can change the speed of
the game.
60 Clears the keyboard buffer, to ensure that no spurious
characters are picked up; these could slow down the speed of the
game.
70 Calls PROCmove, which moves the asterisk in response to any
keys which may have been detected in line 50.
80 Calls PROCroad, which creates a new row of elephants. It is
called ’road’ because the row looks more like a section of pot-holed
road in the final version than like a herd of elephants.
90 Increments 'goes’, which is a variable containing the number of
goes you have had; in other words, the number of opportunities
you have had to move.
100 Carries out the above operations again, until a hit is
registered. The variable 'hit’ is set in PROCmove.
110 Prints a cry of anguish for your demise.

128

Models A and B

Safari

129

120 Restores the speed of repeating on the keyboard to normal. See
the chapter on *FX calls in the User Guide.
130 Restores the cursor control keys to their normal functions.
140 Turns the cursor back on again.
150-200 Form a FOR loop which flashes the screen on and off. The
calls to PROCdelay slow the flash down.
210 Clears the screen ready to print out the message describing
your standard of evasion.
220 Switches the screen to blue writing on a green background.
230, 240 Print the message.
250 Ends the game.
270 Starts the definition of PROCinit.
280 Initialises the variable 'position’, which is the displacement of
the asterisk from the left-hand side of the screen.
290 Initialises the variable 'difficulty’, which gives the difficulty of
the game, in terms of the number of elephants charging during each
scroll.
300 Initialises the variable 'time_limit’, which is the argument of
the INKEYS statement, and so governs the speed of the game.
310 Changes the cursor control keys to the mode where they give
codes rather than just move the cursor about.
320 Stops the delay between a key being pressed and the key
repeating.
330 Turns off the cursor.
340 Re-defines character 255 to be a block with rounded edges.
350 Changes the foreground colour to red, and the background
colour to yellow.
360 Initialises the variable 'goes’ to 0. This variable counts the
number of moves you have made.
370 Ends PROCinit.
390 Starts the definition of PROCroad. This procedure prints out a
new row of elephants and scrolls the screen.
400 Sets 'counter’ to be a local variable.
410 Positions the cursor at the very bottom left of the screen.
420 Starts a loop, with 40 iterations, to print either elephants or
spaces.
430 If a random number between one and 'difficulty’ is one, prints
an elephant; else, prints a space.
440 Ends loop.
450 Ends PROCroad.
470 Starts the definition of PROCmove.
This procedure moves you in response to the key-press detected in
line 50.
480 If the cursor left key is pressed, moves left by decrementing the
variable 'position’.
490 If the cursor right key is pressed, moves right by incrementing
the variable 'position’.

130

Suggestions for improvement
• The game as it stands has no sound effects. Maybe a blood­
curdling roar would help to put you in the right frame of mind.
• You can use the character definition program on page 133 if you
would like to make the elephants look a little more menacing.
• Modify the program to exit or restart 'gracefully’ and also flush
the key buffer.
• Change the colours to suit your eye.

500 If you move off the right-hand side of the screen, places you on
the last position on the right.
510 If you have moved off the left-hand edge of the screen, this
places you on the first position on the left.
520 This line checks to see if the character at the place you want to
move to is an elephant. This is done by using the routine given in
the chapter on *FX calls in the User Guide. If the character is an
elephant, the variable 'hit’ is set to true. You will remember that
this variable is used in line 100 to sense when the game has
finished.
530 This line prints the asterisk at the required place. Because the
screen has been scrolled since this routine was last called, there is
no need to rub out your old position.
540 Ends PROCmove.
560-630 Make up PROCreadch (X, Y). This routine is documented
in the User Guide, in the chapter on *FX calls.
650 Starts the definition of PROCdelay, which gives a tenth of a
second delay.

The Listing
10 *KEY 0 "*FX 12!M*FX 4!M"
20 MODE 4
30 PRDCinit
40 REPEAT
50 A$=INKEY$(time_limit)
60 *FX 15,0
70 PROCmove
80 PROCroad
90 qoes=goes+l
100 UNTIL hit
110 PRINT TAB(5,20);"

Arghhhhhhhhhhhhhhhhhhhhhhhhhh!!!!"
120 *FX 12
130 *FX 4,0
140 ! 8cFE00=& 10670A
150 FOR T=1 TO 10
160 VDU 19,0,3,0,0,0,19,1,5,0,0,0

steps,
"were trampled...

C

THEN position=0

131

THEN position=position-1
THEN posttion=position+1

350 VDU 19,1,1,0,0,0,19,0,3,0,0,0
360 goes=0
370 ENDPROC
380 REM *************************************

390 DEF PROCroad
400 LOCAL counter
410 PRINT TAB(0,31);
420 FOR counter=l TO 40
430 IF RND (di-f-f i cul ty) =1 THEN VDU 255 ELSE

VDU 32
440 NEXT counter
450 ENDPROC
460 REM *************************************

470 DEF PROCmove
480 IF A$=CHR$(136)
490 IF A$=CHR$(137)
500 IF position>39 THEN position=39
510 IF position<0
520 hit=FNreadch(position,16)=255
530 PRINT TAB(position,16);
540 ENDPROC
550 REM *************************************

560 DEF FNreadch(X,Y)
570 LOCAL A7.,C

170 PROCdelay
180 VDU 19,1,3,0,0,0,19,0,5,0,0,0
190 PROCdelay
200 NEXT
210 CLS
220 VDU 19,1,4,0,0,0,19,0,2,0,0,0
230 PRINT You took “Jgoes;"

before you"
240 PRINT
250 END
260 REM *************************************

270 DEF PROCinit
280 position=20
290 difficulty=10
300 time_limit=3
310 *FX 4,1
320 *FX 11,1
330 VDU 23;8202;0;0;0;
340 VDU 23,255,&7C,&FE,&FE,&FE,&FE,&FE,&FE,&7

132

580 VDU 31,X,Y
590 A7.= 135
600 C=USR(&FFF4)
610 C=C AND &FFFF
620 C=C DIV &100
630=(C MOD 32)+224
640 REM *************************************

650 DEF PROCdelay
660 TIME=0
670 REPEAT UNTIL TIME>10
680 ENDPROC
690 REM *************************************

130
140
160
170
180
190
200
210

30
40
50

Models A and B

Character Definition
The Program
This program allows you to re-define characters 224 to 255, building
up a character on the screen using the cursor control keys. Full
instructions are included in the program.
In this version, the program re-defines the character you
requested, and then ends. You may find it more convenient to have
it actually print out the VDU statement required, which you can
then copy down and include in the PROCinit part of our games in
this book, to enhance the displays we’ve used. Your own programs
may well benefit from such re-definition as well.

Remember, you cannot redefine characters in Mode 7.
Starts a REPEAT loop to get a valid character for re-definition.
Clears the screen to Mode 7.
Calls PROCask_questions, which displays instructions; and asks

you which character you wish to re-define. This character is
returned in the variable 'character’.
60 Ends the REPEAT loop when the character falls within an
accepted range.
70 Calls PROCdraw character, which draws a blank character grid
on the screen, ready to be used as a template for the new character
design.
80 Starts a REPEAT loop for the main program.
90 Gets a key press from you.
100 Calls PROCact_onkey_pressed, which does just that.
110 Ends the loop when TAB is pressed.
120 Calls PROCassemble, which has nothing to do with assembly
language but reads the character from the screen and sends the
correct codes via the VDU statement to redefine character
'character’.

Returns the cursor control keys to their normal function.
Ends the program.
Starts the definition of PROCask_questions.
Gets the actual character for re-definition.
Prints the instructions.
Requests you to press a key.
Gets the key pressed.
Ends PROCask_questions.

133

470

134

290
300
310
320
330

340
360
370
380

490
500
510
520
530
540

230 Starts the definition of PROCdrawcharacter.
250 Clears the screen, to remove the text generated by PROCask_
questions.
260 Moves the cursor down the screen. The number of lines it is
moved is crucial to the operation of the program.
270 Starts a loop for each of the eight character rows to be printed.
280 Prints eight full stops preceded by three spaces for each of the
eight rows.

Ends the loop.
Prints instructions for ending the program.
Initialises the x starting position of the cursor.
Initialises the y starting position of the cursor.
Changes the cursor control keys so that they generate codes

rather than shift the cursor around.
Ends PROCdraw character.
Starts the definition of PROCact_onkey_pressed.
Sets the LOCAL variables.
Initialises valid$, which contains all the valid key presses with

codes under 128. This is used to ensure that any key can be used to
make a pixel light up.
390 Sets a Boolean variable 'on_template’ to be TRUE or FALSE,
depending on whether the cursor is on the template at the moment.
400 If the Space Bar was pressed, the next statement uses the
variable 'ontemplate’ to decide whether to print a full stop or a
space, and the x co-ordinate of the cursor is incremented.
410 If the key pressed was RETURN, and the cursor is not on the
bottom line of the display, then returns the cursor to the start of
the next line and adjusts the co-ordinates of the cursor accordingly.
420 If the key pressed had an ASCII code less than 128 and was not
a space or a RETURN character, either prints a space or a white
block, depending on whether the cursor is on the template or not.
All co-ordinates are similarly adjusted.
430 If the key pressed was 'cursor left’ then moves the cursor left
and adjusts the x co-ordinate of the cursor.
440 If the key pressed was 'cursor right’ then moves the cursor
right and adjusts the x co-ordinate of the cursor.
450 If the key pressed was 'cursor down’ then moves the cursor
down a line and adjusts the y co-ordinate of the cursor.
460 If the key pressed was 'cursor up’ then moves the cursor up and
adjusts the y co-ordinate of the cursor.

Ends PROCact_onkey_pressed.
Starts the definition of PROCassemble.
Sets all the LOCAL variables needed.
Sends the first part of the required VDU statement.
For each of the eight rows in the character ...
works out the start address of that row ...
resets a counter ...

start of

135

550 and for each of the eight bits in the row ...
560 increments the counter if necessary ...
570 then ends the bit count...
580 sends the right byte to the VDU driver ...
590 and gets the rest of the rows.
600 Ends PROCassemble.

Suggestions for improvement
• The modifications for a print-out of the required VDU
instruction are as follows:
510 PRINT TAB(0, 15);”The required instruction is:
VDU 23,”;character;”,”;
580 PRINT? temp;”,”;
595 VDU 127, 13

The Listing
10 REM Re-defining characters.
20 REM *************************************

30 REPEAT
40 MODE 7
50 PROCask_questions
60 UNTIL character>223 AND character<256
70 PROCdraw_character
80 REPEAT
90 key_pressed$=GET$
100 PROCact_onkey_press
110 UNTIL key_pressed$=CHR$(9)
120 PROCassemble
130 *FX 4,0
140 END
150 REM *************************************

160 DEF PROCask_questions
170 INPUT TAB(0,5)“ Enter the number of the

character to be re-defined ? "character
180 PRINT ’" Use the cursor keys to move

the cursor around the character. Pressing any
keyexcept space will make a dot white,
pressing space will blank out a dot.
Return’ will move the cursor to the
the next line."

190 PRINT TAB(0,24);CHR$(132);"*** Press ’
space’ to continue ***";

200 A$=6ETS
210 ENDPROC
220 REM *************************************

THEN VDU 9:

AND yposition<2

136

230 DEF PROCdraw_character
240 LOCAL row
250 CLS
260 PRINT ’’
270 FOR row=l TO 8
280 PRINT H "
290 NEXT row
300 PRINT TAB<0,24);CHR$(132)j"*** Press ’

tab’ to -finish ***";TAB(O,10);
310 xposition=0
320 yposition=10
330 *FX 4,1
340 ENDPROC .
350 REM *************************************

360 DEF PROCact_onkey_press
370 LOCAL valid$,on_template
380 valid$=" ,,+CHR$(13)
390 on_template=xposition>2 AND xposition<ll

AND yposition>2 AND ypositionCll
400 IF key_pre5sed$=" " THEN PRINT CHR$(ASC("
")—on_template*14);:xposi ti on=xposi ti on + 1
410 IF key_pressed$=CHR$(13) AND yposition<24

THEN PRINT:yposi ti on=yposi ti on+1:xposi ti on=0
420 IF key_pressed$<CHR$(128) AND INSTRC

valid$,key_pressed$)=0 THEN VDU 32—on_template*
223:xpositi on=xposi ti on+1

430 IF key_pressed$=CHR$<136) THEN VDU 8:
xposi ti on=xposi ti on—1

440 IF key_pressed$=CHR$(137)
xposi ti on=xposi ti on + 1

450 IF key_pressed$=CHR$(138)
4 THEN VDU 10:yposition=yposition+1

460 IF key_pressed$=CHR$(139) AND yposition>0
THEN VDU 11:yposition=yposition—1
470 ENDPROC
480 REM *************************************

490 DEF PROCassemble
500 LOCAL origin,row,bit,temp
510 VDU 23,character
520 FOR row=0 TO 7
530 origin=&7C7B+(charactei—224)*8+row*40
540 temp=0
550 FOR bit=7 TO 0 STEP -1
560 IF ?forigin+7—bit)=255 THEN temp=temp+2

'"bit
570 NEXT bit

137

580 VDU temp
590 NEXT row
600 ENDPROC
610 REM *************************************

Graphic Displays

138

We now come to a series of demonstrations which show off the BBC
microcomputer’s graphics splendidly. The descriptions for these
programs are not as extensive as for some of the others but are
detailed enough for you to understand how the programs work, and
- more importantly - how you can modify them to create your own
graphics demonstrations.
Note You can also improve the programs by doings such as exiting
'gracefully* and putting the computer into Mode 7.

Model B

String Art
String art patterns are created by bouncing two points around the
screen and continually joining the points together with straight
lines. It is a simple idea but it produces startling results. This
particular program allows for random colour changes, and changes
of direction, without having the dots actually bounce off the edge
of the screen. Also, only a limited number of lines are kept on the
screen at a time. For every line drawn, another is erased.

Line 10 dimensions an array to hold the starting and finishing x
and y co-ordinates of up to 200 lines. Line 20 sets the number of
lines that will be kept on the screen at a time. Lines 30 and 40
choose random end-points for the first line. Line 50 chooses white
as the first drawing colour. Line 60 calls PROCnew_velocities,
which assigns different velocities to each end of the line in the x
and y directions. It also chooses the number of lines that will be
drawn using these velocities. Line 70 puts the computer in Mode 1.
Model A owners could run this program in Mode 5, although it is
not as effective as running it in Mode 1. Then colour 3 is changed
to blue. The call to PROCnew_colour chooses a random plotting
colour and also the number of lines that will be drawn using that
colour.

Line 100 starts the main REPEAT loop of the program. This is
an 'UNTIL FALSE’ loop, so it executes for ever. First a loop is set
up through all the available lines. Lines 120 and 130 erase the line
defined by the current element of the array. If the loop is executing
for the first time, the array will be filled with zeros, so all this line
will do is put a black spot at co-ordinates (0, 0). Lines 140 and 150
draw the current line, then the start and finishing points of this
line are copied into the array at lines 160 to 190. Lines 200 to 230
compose a simple test to stop the pattern going off the edge of the
screen. Tests like these are always very important.

In line 240 and 250 the two variables decremented are the
number of lines drawn with the current velocities and the number
drawn in the current colour, respectively. Lines 260 and 270 update
the line co-ordinates, according to the current velocities. Lines 290
and 300 get new colours or velocities, if necessary. The FOR loop
then ends, and the UNTIL FALSE line takes over.

Lines 340 and 350 are set out to enable you to change the
139

140

maximum velocity. Just make U% equal to the maximum velocity,
and V% be twice U%.

The Listing
10 DIM MX(200,3)
20 HZ=50
30 XZ=RND (1280) -1: YZ=RND (1024) -1
40 LZ=RND (1280) -1 : MZ=RND (1024) -1
50 C0LZ=3
60 PROCnew_velocities
70 MODE 1
80 VDU 19, COLZ,4,0,0,0
90 PROCnew_colour
100 REPEAT
110 FOR UZ=1 TO HZ
120 MOVE MZ(UZ,0),MZ(UZ,1)
130 PLOT 7,MZ(UZ,2),MZ(UZ,3)
140 MOVE XZ,YZ
150 DRAW LZ,MZ
160 MZ(UZ,0)=XZ
170 MZ(UZ,1)=YZ
180 MZ(UZ,2)=LZ
190 MZ(UZ,3)=MZ
200 IF AZ+XZ>1279 OR AZ+XZ<0 THEN AZ=-AZ
210 IF BZ+YZ>1023 OR BZ+YZ<0 THEN BZ=-BZ
220 IF CZ+LZ>1279 OR CZ+L7X0 THEN CZ=-CZ
230 IF DZ+MZ>1023 OR DZ+MZ<0 THEN DZ=-DZ
240 NZ=NZ-1
250 COLNZ=COLNZ-1
260 XZ=XZ+AZ:YZ=YZ+BZ
270 LZ=LZ+CZ:MZ=MZ+DZ
280 IF NZ=0 THEN PROCnew_velocities
290 IF COLNZ=0 THEN PROCnew_colour
300 NEXT UZ
310 UNTIL FALSE
320 DEF PROCnew_velocities
330 LOCAL UZ,VZ
340 UZ=20
350 VZ=40
360 AZ=UZ—RND< VZ):BZ=UZ-RND(VZ)
370 CZ=UZ—RND(VZ):DZ=UZ-RND(VZ)
380 NZ=RND(30)+20
390 ENDPROC
400 DEF PROCnew_colour
410 COLNZ=RND(30)+10
420 IF COLZ=1 THEN ENDPROC
430 GCOL 0,RND(COLZ)
440 ENDPRDC

Models A and B

Cat o’Six Tails

141

This program draws psychedelic curves on the screen, with a
musical accompaniment of sorts. It runs on a Model A or a Model B,
and is intended more to inform than impress.

PROCCHANGE at line 160 changes the background and
foreground colours of the screen, randomly, but with a test to
ensure that the colours are not the same. PROCNOTE at line 260
uses the SOUND statement to play a nearly identical note through
each of the three tone channels. The effect of this is to give a richer
sound than the tones your computer normally produces. '16’ has
been added to each channel number to ensure all the sound queues
are cleared before the note is played.

The rest of the program is made up of a loop through all the
horizontal points on the screen, followed by some lines to draw
lines whose lengths are proportional to the SINE of X. Line 140
calls PROCCHANGE every second to alter the screen colours.

The Listing
10 REM Cat’o’six tails
20 MODE 4
30 TIME=0
40 FOR X=0 TO 1279 STEP 4
50 Y=SIN(RAD(X))*X/4
60 PROCNOTE(SIN(RAD(X))*180+50)
70 FOR G=—200 TO 1000 STEP 200
80 MOVE X,Y+G
90 DRAW X,Y+6+(1279—X)/6.4
100 IF TIME>100 THEN PROCCHANGE
110 NEXT G
120 NEXT X
130 REPEAT
140 IF TIME>100 THEN PROCCHANGE
150 UNTIL FALSE
160 DEF PROCCHANGE
170 LOCAL C,D
180 C=RND(6)
190 REPEAT
200 D=RND(6)

142

210 UNTIL COD
220 VDU 19,0,C,0,0,0,19,1,D,0,0,0
230 TIME=0
240 ENDPROC
250 DEF PROCNOTE(N)
260 SOUND 17,-15,N,255
270 SOUND 18,-15,N+l,255
280 SOUND 19,-15,N+2,255
290 ENDPROC

143

10
20
30
40
50
60
70
80
90

100
110
120

Model B

Chess Art
This program is written to run on a Model B in Mode 1, but could
be run on a Model A in Mode 5. It generates string art patterns -
with a twist.

The screen is first filled with a chessboard pattern in colours 1
and 0 (PROCSTRIPE); then colour 1 is turned to black using the
VDU 19 statement in line 150. Then a normal string art pattern is
drawn, except the plotting colour is *1,2’. This means 'OR the colour
specified with the colour already there’. The upshot of this is that if
a spot, previously over a section of the screen which was colour 0, is
lit, it will now appear as colour 2; colour 1 will appear as colour 3.

The end result is that the fines drawn change according to their
position. If you wait long enough, the whole screen will fill up with
lines, showing an overall chessboard pattern. To make the drawing
start from a new position with new velocities, just press any key.
This version does not do any undrawing, so you’ll have to stop it
eventually.

The interesting routines from the point of view of programming
routines are PROCSTRIPE and lines 100 to 130. Lines 100 to 130
choose two (unequal) numbers between 1 and 7, and then use them
as the two plotting colours.

PROCSTRIPE uses GCOL with a number other than 0 as its
first argument to fill various graphics windows with colour. This is
much faster than using triangle drawing commands like PLOT 85.

The Listing
REM "Chess-art”
U=20
V=40
MODE 1
VDU 19,0,0,0,0,0,19,1,0,0,0,0
GCOL 1,2
REPEAT
COLOUR 128
CLS
REPEAT
AA=RND(7)
BB=RND(7)

144

290
300

130 UNTIL AAOBB
140 PROCSTRIPE
150 VDU 19,0,0,0,0,0,19,1,0,0,0,0
160 VDU 19,2,AA,0,0,0,19,3,BB,0,0,0
170 REPEAT
180 AA=RND(7)
190 BB=RND(7)
200 UNTIL AAOBB
210 X=RND(1280)—1:Y=RND(1024)—1
220 L=RND(1280)—1:M=RND(1024)—1
230 A=U—RND(V):B=U—RND(V)
240 C=U-RND(V):D=U—RND(V)
250 REPEAT
260 MOVE X,Y
270 DRAW L,M
280 IF X+A>1279 OR X+A<0 THEN A=-A

IF Y+B>1023 OR Y+B<0 THEN B=-B
IF L+O1279 OR L+C<0 THEN C=-C

310 IF M+D>1023 OR M+D<0 THEN D=-D
320 X=X+A:Y=Y+B
330 L=L+C:M=M+D
340 UNTIL INKEY (1)0-1
350 *FX 15
360 UNTIL FALSE
370 DEF PROCSTRIPE
380 GCOL 0,129
390 FOR T=0 TO 1023 STEP 256
400 VDU 24,0;T;1279;T+128;
410 CLG
420 NEXT T
430 GCOL 3,129
440 FOR T=0 TO 1279 STEP 256
450 VDU 24,T;0;T+128j1023;
460 CLG
470 NEXT T
480 VDU 26
490 ENDPROC

Models A and B

Prison Bars

145

This program is the forerunner of 'Chessart’. It draws 'moire’
patterns, with a foreground achieved in the same way as 'Chessart’.
Model A users can modify lines 30, 100 and 210 to run this program.

The moire patterns are created by using the inverse line
drawing commands. A point is chosen, then lines are inverted out
from it to the edge of the screen. The completed pattern looks as if
it was drawn using curved lines, which can be puzzling for those
who do not know the method by which it was done.

The program runs continuously, clearing the screen after each
pattern, then choosing new colours and a new starting point.

The Listing
10 REM *** Prison bars ***
20 REM Model ’B’ version
30 MODE 1
40 VDU 19,1,0,0,0,0
50 REPEAT
60 CLS
70 X=RND(12801-1
80 Y=RND(10241-1
90 COLOUR 129
100 FOR T=4 TO 34 STEP 10
110 VDU 28,T—4,31,T,0
120 CLS
130 NEXT T
140 COLOUR 128
150 VDU 26
160 REPEAT
170 A=RND(71
180 B=RND(71
190 UNTIL AOB
200 VDU 19,2,A,0,0,0,19,3,B,0,0,0
210 FOR T=0 TO 1279 STEP 8
220 MOVE T,1023
230 PLOT 6,X,Y
240 PLOT 6,1280—T,0
250 NEXT T

146

260 FOR T=0 TO 1023 STEP 4
270 MOVE 0,T
280 PLOT 6,X,Y
290 PLOT 6,1279,1024-T
300 NEXT T
310 TIME=0
320 REPEAT UNTIL TIME>100
330 UNTIL FALSE

Models A and B

Eight o’clock

The Listing

147

This program draws eight circles, connected together in the middle
of the screen, using straight lines. When this has been done, the
whole screen tosses back and forth, like the effect at the end of the
'Rain Catcher’ program.

The basis of the routine is the procedure at line 190. This draws
a filled-in circle with its centre at X, Y and with radius R.

The lines from 80 to 170 throw the screen around. Alter line 120
to change the speed at which this happens.

10 REM "Eight o’clock"
20 MODE 4
30 S=400:D=50
40 FOR A=0 TO 315 STEP 45
50 MOVE 640,512
60 PROCCIRCLE(SIN(RAD(A))*S+640,COS(RAD(A))*

S+512,D)
70 NEXT A
80 REPEAT
90 FOR T=0 TO 39
100 VDU 23,0,13,T,0,0,0,0,0,0,0,0,0,0
110 TIME=0
120 REPEAT UNTIL TIME>3
130 NEXT T
140 FOR T=39 TO 0 STEP -1
150 VDU 23,0,13,T,0,0,0,0,0,0,0,0,0,0
160 NEXT T
170 UNTIL FALSE
180 UNTIL FALSE
190 DEF PROCCIRCLE(X,Y,R)
200 LOCAL step,angle
210 step=5
220 FDR angle=0 TO 360—step STEP step
230 DRAW X,Y

148

240 MOVE SIN(RAD(angle))*R+X,COS(RAD(angle))*
R+Y

250 PLOT 85,SIN(RAD(angle+step))*R+X,COS(RAD(
angle+step))*R+Y

260 NEXT angle
270 ENDPROC

A)

A)

149

The following two programs draw flower-shaped patterns. Number
one is for Model A and Model B owners; number two may only be
run by Model B owners. The programs have a heavy mathematical
colouring but this is not the place to discuss polar plotting.

If you alter the multiplying factor in line 90, you will get a
different number of petals. If you’re feeling really adventurous, you
can even alter the function in line 90 altogether. The function
should compute in the range 0 to 500 as X varies from 0 to 360. The
best way to alter it is by trial and error. If the pattern goes off the
edge of the screen, just reduce the multiplying factor.

70 NEXT A
80 END
90 DEF FNF(X)=500*SIN(RAD(X*8))

Models A and B / Model B

Polar Plotting

The Listings
10 REM Polar plot —
20 MODE 4
30 VDU 29,640;512;
40 MOVE 0,FNF(0)*500
50 FOR A=0 TO 360
60 DRAW SIN(RAD(A))*FNF(A),COS(RAD(A))*FNF(

70 NEXT A
80 END
90 DEF FNF(X)=500*SIN(RAD(X*8))

10 REM Polar plot —
20 MODE 2
30 VDU 29,640;512;
40 MOVE 0,FNF(0)*500
50 FOR A=0 TO 360
55 MOVE 0,0
56 GCOL 0,RND(7)
60 DRAW SIN(RAD(A))*FNF(A),COS(RAD(A))*FNF(

mark 1

mark 11

Model B

Cartwheel

150

This is strictly for Model B owners, since it runs in Mode 2.
A solid circle is drawn, occupying nearly the whole screen. The

circle is coloured in segments, going from colour 1 to colour 15 and
back to 1 again. Each segment is 10° wide, so there are 36 of them.
When all the segments have been drawn, all the 15 colours used are
turned to black, using the VDU 19 statement. Then, in rotation,
each colour is changed to blue, and back to black again. The total
effect is like a cartwheel rotating extremely fast, much faster than
could be achieved by using repeated PLOT 85 statements.

If you adjust the number in line 40, you can alter the speed at
which rotation takes place.

The Listing
10 REM This program generates a cartwheel

effect in Mode 2
20 MODE 2
30 step=6
40 time=10
50 FOR angle=0 TO 359 STEP step
60 MOVE 640,512
70 MOVE SIN(RAD(angle)>*500+640,COS(RAD(

angle))*500+512
80 BCOL 0,((angle/step) MOD 15)+1
90 PLOT 85,SIN(RAD(angle+step)>*500+640,COS(

RAD(angle+step))*500+512
100 NEXT angle
110 FOR colour=l TO 15
120 VDU 19,colour,0,0,0,0
130 NEXT colour
140 REPEAT
150 FOR colour=l TO 15
160 VDU 19,colour,4,0,0,0
170 TIME=0
180 REPEAT UNTIL TIME=time
190 VDU 19,col our,0,0,0,0
200 NEXT colour
210 UNTIL FALSE

Models A and B

Quadrant String Art

i n

151

This program is a further variation on the string art theme. It
draws common-or-garden patterns, but only uses one quarter of the
screen. The other three quarters contain reflections of the first
quarter. There are also some refinements in the picture control
over the other versions: pressing any key brings you into 'hold
mode’, where no drawing takes place. You can come out of this
mode by either pressing TAB to make the drawing start again from
a CLS, with new starting positions and new velocities; or any other
key to just restart drawing where it left off.
Note You should put the computer in a suitable graphics mode
before running.

The only noticeably clever part of this routine is the procedure
at line 240. This procedure joins X, Y to L, M, using PLOT K. It
does this in all four quadrants of the screen, using a couple of loops.
Bear in mind that the origin has been moved at line 110 to the
centre of the screen.

(X+AX0 A=—A
(Y+BX0 B=-B
(L+CX0 C=-C

140 IF
150 IF
160 IF

The Listing
10 REM String art pattern generator,

four quadrants of the screen.
20 REM This will run in any graphics mode,

but modes 0 and 4 are best.
30 REPEAT
40 A$=""
50 CLS
60 U=20:V=40
70 X=RND(640)—1:Y=RND(512)—1
80 L=RND(640)—1:M=RND(512)—1
90 A=U—RND <V):B=U—RND(V)
100 C=U-RND(V):D=U—RND(V)
110 VDU 29,640;512;
120 REPEAT
130 PROCDRAW(X,Y,L,M,5)

(X+A)>639 OR
(Y+B)>511 OR
(L+C)>639 OR

(M+DX0 D=—D

THEN A$=SET$

152

170 IF (M+D)>511 OR
180 X=X+A:Y=Y+B
190 L=L+C:M=M+D
200 IF INKEY$(0)<>""
210 UNTIL A$=CHR$(9)
220 UNTIL FALSE
230 REM *************************************

240 DEF PROCDRAW(X,Y,L,M,K)
250 LOCAL ones,twos
260 FOR ones=—1 TO 1 STEP 2
270 FOR twos——1 TO 1 STEP 2
280 MOVE ones*X,twos*Y
290 PLOT K,ones*L,twos*M
300 NEXT
310 NEXT
320 ENDPROC

Model B

Oval

The Listing

153

This program will only run on a Model B, since it runs in mode 2.
It draws two sets of ovals, side by side on the screen. These ovals

are in different colours, each being made up of colours 2 to 15,
overlapping and getting smaller towards the centre. The colours
are in a different order for the two ovals - the one on the right has
them going in ascending order from the outside, and the one on the
left has them in descending order.

Once the two ovals have been set up, the remainder of the
program is much like 'Cartwheel’, in that the colours are switched
from black to another colour and back again.

10 MODE 2
20 P=5
30 C=4
40 FOR T=14 TO 1 STEP -1
50 FOR G=0 TO 1
60 IF G=0 THEN GCOL 0,T ELSE GCOL 0,15-T
70 PROCci rcle(320+640*G,512,T*30)
80 NEXT G
90 NEXT T
100 VDU 19,15,1,0,0,0,0
110 VDU 5
120 GCOL 0,15
130 MOVE 200,512
140 PRINT "BBC Computer"
150 REPEAT
160 FOR T=1 TO 14
170 *FX 15,0
180 SOUND 1,—15,T*10+100,255
190 SOUND 2,—15,T*10+101,255
200 SOUND 3,—15,T*10+102,255
210 VDU 19,T,C,0,0,0
220 TIME=0
230 REPEAT UNTIL TIME>P
240 NEXT T

154

250 FOR T=14 TO 1 STEP -1
260 *FX 15,0
270 SOUND 1,-15,T*10+100,255
280 SOUND 2,—15,T*10+101,255
290 SOUND 3,—15,T*10+102,255
300 VDU 19,T,C,0,0,0
310 TIME=0
320 REPEAT UNTIL TIME>P
330 VDU 19,T,0,0,0,0
340 NEXT T
350 C=1+RND(6)
360 UNTIL FALSE
370 DEF PROCcircle(xco,yco,radius)
380 LOCAL angle,step
390 step=15
400 FDR angle=0 TO 360 STEP step
410 MOVE SIN(RAD(angle))*radius/2+xco,COS(

RAD(angle))*radi us+yco
420 MOVE SIN(RAD(angle+step))*radius/2+xco,

COS(RAD(angle+step))*radius+yco
430 PLOT 85,xco,yco
440 NEXT angle
450 ENDPROC

Models A and B

Goodbye

155

This program is our final fling. There are no line-by-line notes, no
suggestions for improvement. Key it into your model A or B, type
RUN; sit back. We think you will be surprised at the result.

10 MODE 7:VDU 23; 8202; 0; 0; 0; : R7.= 128+RND (5) :
FORT7.=0TO23: VDU31,0, TV., R7.: NEXTT’Z

20 DATA AA,AA,41,41,88,88,14,14,88,08,41,41,
A0,82,50,04,AA,AS, 55, 00

30 DATA AA, 80,55, 00,2A, 80, 15, 40, 0A, A0, 05, 50,
02,AB,01,14,02,22,04,41,AA,A0

40 DIMC7. (17, 21 > : FORY7.= 1T021: FORT7.=0TO 1:
READAS: A7.=EVAL (,,&,,+AS) : FORG7.=0TO7

50 IF (A7.AND2'"G7.) < >0THENC7. (T7.*8+8-G7., Y7.) =1
60 NEXTG7., T7-: IF (Y7.MOD2) =1THENC7. (17, Y7.) =1
70 NEXTY7.: FORT7.= 1TO357: REPEATX’Z=RND (17) : Y7.=

RND(21) :UNTILC7. (X7-, YX)<>2
80 IFC7. (X 7., Y7.) = 1 THEN VDU31, X 7.+10, Y7.+2 , 255
90 07. (X 7. , Y7.) =2 : TIME=0: REPEATUNTI!_TIME>10:

NEXTT7.: A7.= INKEY (1000) : CLS: CH=&BF00
100 PRINT TAB(0,24);CHRS(132);"Wait a little.
11 5
110 FORT=0TO14:READA:X=(T MOD 5)*8:Y=(T DIV 5

)*B
120 FS=CHRS (128): BS=CHRS (1284-RND (5)) : CS=CHRS (

A) : FORR=0TO7: VDU31, X , Y4-R
130 FORC=7TO0STEP-1:IF(?(CH+ASC(OS)*8+R)AND2

^0=2^0 PRINTFS;ELSEPRINTBS;
140 NEXTC,R,T:PRINTTAB(0,24);STRINGS(39," ");

:REPEAT:X=RND(40)-1:Y=RND(25)-1:REPEAT:L=S6N(
RND):M=SGN(RND)

150 UNTILL< >0ANDM< >0: REPEAT: P=HIMEM+Y*404-X : T=
?P:?P=42:TIME=0:REPEAT

160 UNTILTIME >3:IFT=128THENT=255
170 ?P=T: X=X4-L: Y=Y+M:UNTILX<0ORY<0ORX>39ORY>2

4:UNTILFALSE
180 DATA 32,84,104,101,32,32,111,119,108,32,1

14,117,108,101,115

156

Typing in Program Listings
• When you type in a statement, press the RETURN key only
when you come to the end of the complete statement line, not when
you come to the end of a line on the printed page.
• If the statement line is simply a message and you do not type it
in exactly as you see it (for example, you do not preserve the
number of spaces between words), the program will still run though
the message will not look very pretty.
• Sometimes spaces are vital in BASIC words. For example, the
first bracket after TAB must follow on immediately without a
space. When in doubt, consult the User Guide.
• Where a 'picture’ is being drawn on the screen using symbols
such as ' + ’, it is important to type in what you see accurately but
not literally. Spaces are very important here, and you can count
them with the aid of the character count scale on page 157, which
may be cut out fox’ use to make it portable.

45

Character Count Scale (cut out to use)

“TTTTTTTm, 5 I > IS 20 25 30 35 JO

NOTES

158

NOTES

159

£3.75pSOFT

entertaining programs for the BBC microcomputer.
All are discussed and documented. Careful
explanations allow you to modify or extend the
programs and are also helpful tutorials on practical
programming. Many of the programs run on both
Models A and B. Play such classics as Reversi,
Gomoku and Eliza-, word and number games;
adventure games and graphic programs. See the
computer write 'Franglais’ or compose poetry in its
inimitable way! Simply type in each program, save
it, then run it and enjoy yourself.

BBC

