ASSEMBLY
L ANGUAGE

PROGRAMMING

forthe

lan Brmbaum

3C

MICROCOMPUT!

R

Assembly Language Programming
for the
BBC Microcomputer

Macmillan Compnting Books

Assembly Language Programming for the BBC Microcomputer
Ian Birnbaum

Advanced Programming for the 16K ZX81 Mike Costello
Microprocessors and Microcomputers — their use and
programming Eric Huggins

The Alien, Numbereater, and Other Programs for Personal Computers -
with notes on how they were written John Race

Beginning BASIC Peter Gosling

Continuing BASIC Peter Gosling

Program Your Microcomputer in BASIC Peter Gosling
Practical BASIC Programming Peter Gosling

The Sinclair ZX81 ~ Programming for Real Applications
Randle Hurley

More Real Applications for the Spectrum and ZX8! Randle Hurley
Assembly Language Assembled — for the Sinclair ZX8! Tony Woods
Digital Techniques Noel Morris

Microprocessor and Microcomputer Technology WNoel Morris
Understanding Microprocessors B. S. Walker

Codes for Computers and Microprocessors P. Gosling and
Q. Laarhoven

Z80 Assembly Language Programming for Students Roger Hutty

Assembly Language Programming
for the
BBC Microcomputer

Ian Birnbaum

© Ian Birnbaum 1982

All rights reserved. No part of this publication may be reproduced
or transmitted, in any form or by any means, without permission.

First published 1982 by

THE MACMILLAN PRESS Ltd
London and Basingstoke
Companies and representatives
throughout the world

Printed in Great Britain by Unwin Brothers Limited,
The Gresham Press, Old Woking, Surrey.

ISBN 0 333 34585 1

Dedicated to Theresa

The paperback edition of this book is sold subject to the condition that it
shall not, by way of trade or otherwise, be lent, resold, hired out, or
otherwise circulated without the publisher’s prior consent in any form of
binding or cover other than that in which it is published and without a
similar condition including this condition being imposed on the
subsequent purchaser.

Contents

Page
Preface
Chapter 1 Preliminary ideas 1
1.1 What is a computer? 1
1.2 How is memory organised in a computer? 2
1.3 How is the 6502 microprocessor organised? 6
1.4 Machine code and assembly language 8
1.5 Compilers and interpreters: Why use 9
assembly language?
Exercise 1 n
Chapter 2 Assignments 12
2.1 The accumulator 12
2.2 What is the assembly language equivalent of 12
LET NUMTI = 177
2.3 More on the immediate, absolute and zero 14
page addressing modes
2.4 What is the assembler equivalent of 15
LET KUMZ = NUM1?
Exercise 2 16
2.5 MWhere to put machine code programs in the 17
BBC Computer
2.6 How to input assembly language programs 19
into the BBC Computer
2.7 Storing numbers larger than 256 in assembly 21
language
Chapter 3 Addition and subtraction 23
3.1 The arithmetic unit 23
3.2 What is the assembly language equivalent 24
of some simple BASIC statements involving
addition?
3.3 The importance of carry 25
Exercise 3.1 26
3.4 Adding numbers which are greater than 256: 26
Muitiple precision arithmetic
Exercise 3.2 28
3.5 Subtraction 28

3.6 The function of the carry flag in subtraction: 30
Multiple precision subtraction

Exercise 3.3 31

3.7 Positive and negative numbers: signed N
arithmetic

Exercise 3.4 34

3.8 Logical operations 34

Exercise 3.5 36

3.9 A new addressing mode: implied addressing 36

Chapter

Chapter

Chapter

Decision-making in assembly language
The processor status register
Decision-making using the microprocessor
The assembly Tanguage equivalents of some
BASIC conditional statements: I: Use of
the N and Z flags
Exercise 4.1
4.4 The assembly language equivalents of some
BASIC conditional statements: I[I: Use of
the CMP ipstruction
Exercise 4.2
4.5 Comparing numbers greater than 255
Exercise 4.3
4.6 Typing in assembly language programs with
labels into the BBC Computer
4,
4,

g LN g
G ro —

7 Relative addressing
8 Using branching in the addition and
subtraction of unsigned numbers:
INC and DEC
Exercise 4.4
4.9 Monitoring problems of sign using branching
Exercise 4.5

5 Loop structure in assembly language

5.1 Loop structures

5.2 Index registers: some new instructions

5.3 The assembly language equivalent of a
FOR..... NEXT Toop

Exercise 5.1

5.4 FOR..... NEXT loops of more than 256 cycles

Exercise 5.2

5.5 The equivalents of a REPEAT..... UNTIL and a
REPEATWHILE..... ENDWHILE Tloop

5.6 Arithmetic and logical operations concerning
the X and Y registers

Exercise 5.3

5.7 Some example programs using loop structure

Exercise 5.4

6 Indexed addressing

6.1 Moving a section of memory

6.2 Improving the program

Exercise 6.1

6.3 The range of instructions for which indexed
addressing is available

6.4 Arrays

Exercise 6.2

6.5 A fundamental data structure: the queue

Exercise 6.3

6.6 The assembler equivalent of PRINT

Exercise 6.4

6.7 The assembler equivalent of GETZ, INKEYZ and
INPUTS

Page

37
37
38
K+

43
43

46
47
49
49

51
53

55
55
57

55
58
58
58

62
63
65
65

66

69
69
72

73
73
74
76
76

76

80
86
86
a9
50

Chapter

Chapter

Chapter

Exercise 6.5

6.8 Macros, conditional assembly and tables:
simplifying VDU statements

Exercise 6.6

7 Indirect indexed addressing

7.1 Moving a section of memory

7.2 A better method

Exercise 7.1

7.3 Inputting a series of strings of varying

Tengths
7.4 Sorting a series of fixed length records
Exercise 7.2
7.5 Sorting a series of 32 bit signed integers
Exercise 7.3
7.6 Sorting a serijes of variable Tength strings
Exercise 7.4
7.7 Indirect jumps and jump tables
Exercise 7.5

Multiplication and division
A simple multiplying algorithm for decimal
numbers
A corresponding algorithm for binary numbers
Programming a 4-bit microprocessor to
perform the multiplication algorithm
A program to model the multiplication
algorithm
A more efficient algorithm for multiplication
More efficiency still: Accumulator addressing
rcise 8.1
An interlude: Outputting numbers using Binary
Coded Decimal
Exercise 8.2
8.8 A second interlude: A pseudo-random number
generator
8.9 A third interlude: Copying the high-resolution
screen to a printer
8.10 Division
Exercise 8.3
8.11 A second approach to division
Exercise 8.4

[

B W

X

Mmoo o o0 [0 Ju o] 0o oo
. F . . P N

~I{D Oy N

9 The stack: Subroutines and interrupts

9.1 The concept of a stack

9.2 The stack and nested subroutines

9.3 Interrupts

9.4 Passing parameters to and from subroutines
8.5 Two important subroutines

Exercise 9.1

9.6 Further uses of the stack

Exercise 9.2

Page

95
95

98

99
99
102
105
105

107
110
110
113
113
17
117
119

120
120

120
121

124

125
127
128
128

131
131

133

139
14
142
144

145
145
147
150
155
159
167
167
169

9.7

Timing

Exercise 9.3

9.8

Chapter 10

10.
10.
10.
10.
10.
10.
10.

~EO B D N~

Screen scrolling: how
Exercise 9.4

Some utility programs

Introduction

Program 1: RETRIEVE
Program 2: INTSORT
Program 3: STRINGSORT
Program 4: REMSPACE
Program 5: MEMORYHUNT
Program 6: MC-MONITOR

Exercise 10

Answers to Exercises

Appendices

Appendix 1
Appendix 2
Appendix
Appendix
Appendix

Appendix
Appendix

Appendix

The user port
Some important zero page locations
Operating system differences

it operates

6502 Instruction Set
Full block diagram of 6502 architecture
3 Indexed indirect addressing
4 TFloating point representation
5 Flowchart symbals and conventions used
in this book
Appendix 6 Linking programs on the BBC Conmputer
7
8
9

Page

170
173
173
176

177
177
177
180
183
187
191
195
207

209

257
278
279
283
286

287
230
303
304

Preface

Every BBC Mierocomputer, whether Model A or Model B, comes
equipped with an immensely powerful and very fast assembler. What
is more, assembly language statements and BASIC statements can be
freely mixed, hugely increasing the programmer's potential control
over the machine.

This book shows you how to establish that control. It assumes
that you are proficient in BASIC, for if you are not this is prob-
ably not the best time to learn assembly language. But it assumes
no knowledge of assembler at all, taking you step by step from the
basiecs to their complex implementation.

Since every uscr of the BBC Microcomputer assembler will have a
working knowledge of BASIC, it is possible to use that knowledge
to motivate and illustrate the ideas in assembly language. This
book takes that approach, and this should help you to master
assembly code, for you will always be acquainted with the funda-
mental concepts by seeing their connection with BASIC,

I had three types of readers in mind in writing this book.
Firstly all curreant owners of BBC Microcomputers who want to
extend their knowledge into machine code. To help them with self-
instruction, this book contains a considerable number of exercises
and & full golution is provided for every one. Secondly, the
teacher or student of Computer Science who wants to use this text
in a structured course. The book is the result of many years’
teaching experience, and it is designed according to a teaching
strategy which the author has found to be very successful.

And thirdly, those people, already experienced BASIC program-
mers, who are wondering whether to buy the BBC Microcomputer, when
there seems so much competition from cheaper and seemingly compar-
able computers, This book should help to convince them that the
BBC Micro is worth the extra expense, Quite apart from its superb
BASIC, the Micro possesses an assembler which turns it into a
potential 6502 development system in its own right! It also
possesses an operating system which is designed to mesh with
assembly language programming in an extraordinarily simple way.
One of the aims of this book is to show you how to exploit these
features to the full.

The book contains 73 listings of programs, many of which will
be found to be useful utilities in their own right, quite apart
from their value in teaching you assembly language. In particular

it contains a full machine code monitor, a suite of machine code
sorting programs which you can use on BASIC variables, a high
resolution screen copy to the Epson printer and a program compac-
tor. There arc two companion tapes available with the book if you
do not feel you want to type in the programs yourself. Each tape
also contains two extra programs: the first, a universal graph
plotter and a 6502 disassembler which displays in standard 6502
mnemonics., The second contains two utilities for programming:

a machine code program which will find the locations of any segment
of code in a BASIC program (equivalent to the FIND command found
in some utility packages); and another machine code program which
will replace any segment of code in a BASIC program by any other
segment; so, for example, you can change any variable's mame in
the whole program in an instant.

The book is completely self-contained: full information on the
6502 instruction set is provided throughout and summarised in an
Appendix. Other Appendices cover floating point and the user port,
and there is a section on combining programs in the BBC Computer
using PAGE and *LOAD.

Thanks are due to Mrs Barry who typed up a very untidy manu-
script quickly and efficiently, and with very few errors.

Tan Birnbaum
Needingworth
May 1982

Chapter 1 Preliminary ideas

1.1 WHAT IS A COMPUTER?

In its simplest form, a computer can be censidered in four
sections: input, cutput, microprocessor, internal memory.
Figure 1.1 shows the interrelationship:

Microprocessor I———[DulputJ
I Mermaory (internal) l

Figure 1.1: Simpiified diagram of a computer

Most input is through the keyboard, but other input devices and
channels include: casette tape system, disc system and sensor
devices connected to an input port.

Most output is through the TV or monitor (the VDU), but other
output devices and channels include: casette tape system, disc
system, printer and control devices connected to an output port.

Notice that the cassette and disc systems are both input and
output devices. These are sometimes referred to as backing store.
Printers and suchlike are sometimes referred to as peripherals,
things outside the main system.

A1l input must pass through the microprocessor, at least at
some time or another. It may reside temporarily in some internal
memory (often referred to in this context as a buffer or latch),
but the microprocessor will deal with it when it can. Similarly
all output will be directed by the microprocessor and all will
pass through it., The microprocessor is the 'brain' of the system,
and this book is concerned with how to program it directly. There
are also other 'lesser brains' to be found in a computer, but
these are not usually under our control and correspond roughly,
following the metaphor, to the autonomic nervous system.

Internal memory can be divided into two parts: RoM (read only
memory) and RAM (misleadingly called random access memory - read/
write memory is a better name). ROM contains information which is
fixed: the microprocessor is unable to modify it., Usually it con-
tains instructions and data which the microprocessor will need in
the same form when a specific task is demanded. In particular, in
the BBC micro it contains the Operating System (0S) and the BASIC
Interpreter. A considerable advantage of ROM is that information
in it does not disappear when the computer is switched off.

Information in RAM will, by contrast, disappear if power is
removed., It has the advantage, however, of allowing information to
be modified. It is in RAM that all the programs and data we input
will reside.

Some RAM is given a special function. Some, for example, will
be used by the microprocessor as a sort of 'scratch pad' (this is
called the stack and is covered in Chapter 9). Cther parts are
reserved for the 05 or the BASIC Interpreter in which to store
results and information. And some parts are connected to input/
output channels. RAM used in this way is often referred to as
memory mapped. For example, the BBC micro has a memory-mapped VDU,
each character on the screen corresponding to a specific portiemn
of memory which is fixed for each graphics mode chosen (this is
not strictly true, as we shall see in Chapter 93).

There are some specialised chips in the computer that act as
RAM, though they are not usually referred to in this way. The best
example of these are the input/output chips, going under a variety
of names (Pro - programmable input/output, PIA - peripheral inter-
face adapter, VIA - versatile interface adapter). PIO is the most
descriptive: the chip consists of a series of memory locations in
which data passing in or out can be latched; certain locations
contain information on whether a particular channel is to be con-
ceived as input or output, and this information can be changed by
the microprocessor. Although these chips contain more than just
memory (for example some contain a timer, results of which are
available at a specific location), they are most conveniently
thought of as RAM because they are addressable, an idea to which
we now turn.

1.2 HOW IS MEMORY ORGANISED IN A COMPUTER?

If we want to refer to a specific location of memory, it will
need to have a name. Since we may want to refer to any part of
memory at some time, we must make sure that memory is organised in
such a way that every location has a name and that this name is
unique.

When computers are built they are wired up in such a way that
the microprocessor can refer to a specific location by outputting
a series of pulses called an address. The set of wires through
which they pass is called the address bus.

Since each wire will either have a pulse or not have a pulse

there are two states which we may label 1 (pulse) and 0 (no pulse).
A microprocessor is a digital device because it always understands
things and communicates with other parts of the computer in this
two-state way. Thus: a switch is either on or off; an element
either has a positive or negative field etc.

The microprocessor in the BBC micro can accept 16 wires on its
address bus. Since each wire can either be 1 or 0 this gives a
total of 218 = 65536 addresses, that is from 0000000000000000 to

11111311111111111. Hence there can be at most 65536 locations of
memory.

Now writing 16 ones and/or zeros like this is very hard to read,
and so we will adopt a notation that makes it easier. We will
divide our 16 digits into four groups of four. So for example in
9111101101000010 the four groups are:

0111 1011 0100 0010

Now each group of four can have one of sixteen different forms,
from 0000 to 1111 (2“). We can use the numerals 0 to 9 for the
first ten; after that we will use A, B, C, D, E, F. Table 1.1
gives the details. In that table we can conceive of the four
digits on the left as the display on a rather odd car odometer
(the meter measuring the distance covered). Each cog on the dial
has just two numerals, 0 and 1. As the cog revolves through one
revolution it pushes the next one on half a turn. In this way,
the first sixteen numbers (0-15, decimal) are generated in the
order shown.

Table 1. 1: Relationship between.binary and hexadecimal

Binary Hexadecimal
0000
0001
0010
0011
0100
0101
0110
om
1000
1001
1010
101
1100
11
1110
111

o

MmO O m P O @O D B R =

Using this notation we can write the number above as 7B42. The
number 0010010101000000 will be written 2540, but this is rather
misleading because it looks like two thousand five hundred and
forty, which it isn't. So to prevent confusion, we precede these
hexadecimal numbers, as they are called, by the ampersand sign
(&). Thus we write them as &7B42 and &2540 (some computers use
the dollar sign, §, but not the BBC micro).

You will notice in Table 1.1 the terms binary and hexadecimal.
Binary means two (there are two possible numerals, 0 and 1} and
hexadecimal means sixteen (there are sixteen possible numerals
0 to F). In the same way decimal, our usual system of represent-
ing numbers, means ten {(numerals 0 to 9).

Many books spend ages explaining how to convert from one system
to another, but this is a complete waste of time. Your BBC com-
puter will do it for you.

For example, type into your computer

P. &7B42

and see what you get. This is the decimal equivalent of &7B42.
Similarly, type in

P. ~14321

and see what you get. This is the hexadecimal equivalent of 14321,

_If you wish you can write a program to convert either way but
it is hardly worth it; you might as well operate in direct mode,
as gbove., It is worth experimenting a little with various numbers
to see the equivalence operating for yourself.

—] —

It should be clear to you by now why it is convenient for the
computer to work in binary and why it is convenient for us to work
in hex {the usual abbreviation for hexadecimal). From now on we
will think of all the memory locations in terms of hex.

Now in order to make the wiring as simple as possible, a simpli-
fying concept called pageing is used. The 65536 addresses of
memory are conceived as a series of pages. The page number is
given by the top two digits of the hexadecimal number; the bottom
two digits give the locatiom in that page. The best image is that
of a book with 256 pages, each page having 256 lines, each line
being a memory location. Rather eccentrically, the book's first
page is labelled zero, and is called zerc page. It is a very
important area of memory as we shall see in the next chapter.
Figure 1.2 should make the idea clear, Thus address &F1B2Z refers
to locatiom 178 in page 241; that is, address number 61866. We can
think of this in the following way: the high byte &F1 accesses all

4

the locations in page 241; then the low byte &B2 picks out a
particular location in that page, location 178. The top half of
the address bus is thus wired up to access pages, and the lower
half to access one of 2560 locations in any page.

locationzero | &0000
location one 0001
] 1
Page zaro , .
{E600xx) ' :
! 1
! 1
lacation 255 &00FF
Iocation zero | &0100
locationone | &0101
f 1
]]
Page one ' 1
(E01xx) | 3
| i
1 1
iocation 265 &01FF
1
1
1
1
1
1
i
1
'
|
'
]
1
1
1
1
1
1
|
1
1
1
1
]
location zero | &FFGO
location one | &FFQ1
1
Page 255 |
(&FFxx) |

location 265 | &FFFF

Figure 1.2: Pageing

When referring to memory en masse it is conventional to work in
units of 4 pages and refer to this as a K of memory locations.
Thus the microprocessor in the BBC micro can address 64K of memory
locations; your machine will either have 16K of RAM (model A) or
32K of RAM (model B).

So far we have talked rather vaguely about a memory location;
we must now ask what we can put in such a location.

As we have already said, the microprocessor only outputs ones
or zeroes and can only understand ones and zeroes. Hence it comes
as ne surprise to find that what exists in these locations is a
series or ones and zeroes.

The microprocessor in the BBC machine communicates with the
contents of a memory location through a set of eight wires called
a data bus. Since there are eight wires, this allows any one of 28
or 256 different numbers in one location i.e. from &00 to &FF.

We have referred so far to an 8-wire data bus and a 16-wire
address bus, but the term usually used is bit not wire (bit stand-
ing for binary digit). Thus the data bus is 8-bit and the address
bus 16-bit. A bit is simply either a 1 or 0. With their usual good
humour, computer scientists have called a memory location consist-
ing of eight bits a byte (you will meet the nybble later, so be
warned!)

Thus a byte consists of 8 bits in sequence. These bits are
usually numbered from right to left, zerc to seven, the seventh
being called the most significant bit (MSB) and the zeroeth the
least significant bit (LSB}; see Figure 1.3.

7 6 5 4 3 2 1 0

I

Most Least
significant significant
bit it

Figure 13: Diagram of @ memory facation, a byte,

We can say, then, that the microprocessor can address 64K
bytes, but that the memory contains 512K bits. The memory is
therefore byte-addressable (i.e. each byte can be addressed) but
not bit-addressable [(i.e. an individual bit cannot be addressed
except by addressing the byte of which it is a member).

1.3 HOW IS THE 6502 MICROPROCESSOR ORGANISED?

The microprocessor in the BBC micro is a 6502 manufactured by
MOS Technology. It is an 8-bit microprocessor in that it can only
accept and transfer 8 bits of data at a time,

The diagram in figure 1,4 is a very simplified block diagram of
the organisation or architecture, as it is usually called, of the
6502 microprocessor.

Address
ADL Bus

ADH

Program Counter E'
Other £
PCL | PCH Registers s
I 3
L 14 . P

Data
<\ Bus

Figure 1.4: Partial block diagram of 6502 architecture

In future chapters the box labelled 'Other Registers' will be
opened out to reveal further aspects of the architecture when they
are needed. By Chapter 9 all the architecture will have been
revealed. For now, we should note the difference between a register
and a RAM location. The essential point is that a register is
internal to the microprocessor and can be accessed without having
to output an address on the address bus. As a consequence access-
ing registers is relatively faster than accessing other memory
locations.

We shall focus on the program counter at this stage. In order
to operate, the microprocessor needs a sequence of instructions te
follow. These instructions will reside in memory either in ROM or
in RAM, If they are in ROM they will have been deposited there by
the Computer's designer (in the BBC micro's case, Acorn); if they
are in RAM they might well have been put there by you.

The computer needs to know where the first instruction is to be
found, The address of the memory location where this instruction
lies is put in the program counter: in PCL goes the low byte of
the address and in PCH the high byte. These bytes are sent out on
the address bus and back comes the instruction on the data bus.

But what does an instruction lock 1ike? We have already said
that all that can be sent on the data bus are a set of 8 bits. As
long as the microprocessor expects to get an instruction it will
decode the particular 8§ bits in a special register (the instruc-
tion register and decoder) and respond to the instruction accord-
ing to the instruction set details fixed in the circuitry of the
microprocessor. It is these instructions we will be looking at in
the rest of the book,.

After it has decoded the first instruction it will know what to
expect next. The program counter will automatically increment by
one and put out the next address in sequence on the address bus.

7

Back will come the mext byte on the data bus., How this byte is
interpreted will depend on the instruction previously decoded, as
we shall see in later chapters.

The function of the program counter, then, is to fetch, one by
one, a sequence of bytes from a section of memory, the starting
address of which is put in the program counter initially. You may
be wondering how this initial address gets there, since the micro-
processor nceds an instruction to put it there in the first place!
The answer is that there is a special line connected to a pin of
the microprocessor called a reset line. When a pulse is sent to
this line, as it is when the computer is turned on, the micro-
processor is pre-programmed to obtain an address from a fixed
location (&FFFC for PCL and &FFFD for PCH) in which the first
instruction is to bc found. These addresses are in ROM in the BBC
micro (as they must be) and the designers of the computer have
written a special start-up program, the first instructien of which
is at the address contained in &FFFC and &FFFD. A reset is also
generated if the 'break' key is pressed.

Notice finally that the program counter is connected not only
to the address bus but to the data bus. This is because the
counter nceds to be set initially and on occasion may need to be
saved in memory. We shall have more to say about this in Chapter 9.

1.4 MACHINE CODE AND ASSEMBLY LANGUAGE

We have seen that a microprocessor can only understand a set of
ones and zerces; that is, information at its level is expressed in
bits. We have also seen that an instruction is received through the
data bus as a set of 8 bits, a byte. A sequence of bytes, stored
consecutively in memory, can be accessed by the microprocessor
using the program counter and constitutes a program. This program
is said to be in machine code, since it is in the form directly
comprehensible to the microprocessor,

It is not directly comprehensible to humans however. &8D as an
_ instruction does not mean much to us; we would have to continually
look up tables or else commit the entire set of instructions to
memory. And this would lead to errors,

In the early days of computing a brilliant but now commonplace
insight occurred: why not write a program which would allew humans
to communicate with computers in a more accessible way. This gave
rise to the idea of assembly language. Each instruction is given a
mnemopic, an 'aide memoire', and the programmer can work solely
with these mmemonics. So, for example, &8D becomes STA, which is
easy to remember. It means 'store a copy of the accumulator some-
where', an idea we will meet in the next chapter.

Thus a program already written and stored in ROM in the
computer, called an assembler, translates each mnemonic into its
machine code equivalent. Some assemblers are more powerful still
and allow the programmer to use variables as in Basic; the BBC

micro's assembler is like this. In the following chapters we will
be learning to program in this assembly language.

There are a few concepts connected with assembly language which
it is worth mentioning now. We have already met the idea of a
mnemonic. The instruction this represents often meeds to act upon
some information contained in the next byte (or sometimes the next
two bytes). In such cases, the next byte (or bytes) is called the
aoperand field or usually just the operand. (This is an ugly
Latinate word, and not one I particularly like, but it is in common
usage and so needs to be known,) In effect it means that a byte or
bytes are being understcod by the microprocessor as an item of
data or as an address of where some data is stored, rather than as
an instruction. We will expand upon this idea in the next chapter.

We have already mentioned that a program written in assembly
language needs to be translated by the assembler. It is usual to
call the program to be translated (i.e. the one written in
assembly language) the source code and the machine code program
corresponding to it {i.e. the one produced when the assembler
makes the translation) the object code. The object code is thus
just the machine code program corresponding to our assembly
language program. Figure 1.5 should make this clear.

Source code Assembler, E::’:; tt:gd *
writtenin =% | gimadyin % | yanslated
assembly ROMin form of the
language machine code source code

Figure 1.5 Translation of source code into object code by the assembler

1.5 COMPILERS AND INTERPRETERS: WHY USE ASSEMBLY LANGUAGE?

Assembly language is a vast improvement on machine code but it
is still a very low-level language. By this we mean that each
mnemonic in assembly language corresponds to one and only one
machine code instruction. By contrast, if we write in a high-level
language, each high-level instruction will correspond to a whole
set of instructions in machine code,

High-level language translators fall into two groups: compilers
and interpreters. A compiler takes the source code written in the
high-level language and translates it in object code. This object
code may be itself machine code or may be what is called a pseudo-
code which will itself be translated intc machine code, The
important point here is that once the object code is produced the
source code is no longer necessary for the running of the program.

9

By contrast, an interpreter cannot dispense with the source
code. A program written in BBC BASIC for example, meeds to reside
in the computer memory while the program is being run. If BBC
BASIC were a compiled language, once the translation was over, we
would remove the BASIC program and use the object code instead.
This is because in a compiled language translation and execution
take place at quite separate times. In an interpreted language,
however, each statement is first translated and then executed.
Thus every time the interpreter meets the statement GOTO 100 it
needs first to translate this into machine code before executing
it. The advantage which an interpreted language has over a
compiled language is that it is much easier to edit and debug
programs. The disadvantage is that programs run more slowly.

The advantage of high-level languages in general over assembly
languages is that it is easier to learn a high-level language and
writing a program is both simpler and quicker to do than in
assembly language. Also, assembly is specific to the microprocessor
used: the 6502 assembly code you will learn in this book will not
work on a Z80 microprocesser for example. High-level languages are
generally portable between machines, although different machines
will need different compilers or interpreters.

Why then use assembly language at all? There are four principal
reasons: programs written in assembly language will generally be
more efficient and shorter than those written in a compiled
language; they will be very much faster to execute than those
written in an interpreted language like BBC BASIC; working with
assembly language gives you great insights into the operations of
a computer and allows you to exploit some of its special features
not easily accessible at high-level; and, last but not least, it
is fun!

However, one must not underestimate the difficulties of writing
even medium-sized programs in assembly language. For this reason,
while it is fun to write in assembly language, it is not worth
attempting a medium-sized project entirely in assembly language
unless one or both of the two middle reasons above are of particu-
lar importance in your chosen application. This is because the BBC
computer allows you to mix BASIC and assembly language in a parti-
cularly easy way. This means that you can use assembly language to
do things which need to be done quickly or which cannot be realis-
tically accompiished by BASIC or which will need to be accomplished
when the BASIC interpreter is not in use, and that you can use
BASIC to do all those things for which assembly language is
unnecessary.

There is nothing to be gained in using assembly language when
BASIC will do (except perhaps a rather peculiar one-upmanship}.
Nevertheless, for pedagogical reasons, I have used some examples
in this book which could be programmed in BASIC without too much
loss; and again for pedagogical reasons I will use BASIC state-
ments to motivate the introduction of new instructions in the
6502 instruction set. But, where possible T mix BASIC and assembly
language in programs in proportion to their relevance to the

10

particular task. Indeed the great advantage of the BEC micro lies
in this frcedom to mix the two languages; and one of the aims of
this book is to show you how to exploit that freedom.

Exercise 1

1. The follewing concepts have been introduced in this chapter.
Try to write a brief description of each one:

ROM; RAM; memory-mapping; PI0; addressable memory; address bus;
two-state device; binary numbers; hexadecimal numbers; pageing;
zero page; data hus; bit; byte; 64K bytes; bit- and byte-address-
ability; register; program counter; reset; machine code; assembly
language; mnemonic; operand; assembler; source code; object code;
low-level language; high-level language; compiler; interpreter.

2, Why is it that a memory-mapped VDU cannot be in ROM and that
the address of the start-up instruction cannot be in RAM?

3, If it is generally regarded as a disadvantage to have an
8-bit data bus instead of a l6-bit data bus, can you think of
reasons why the 6502 microprocessor was not designed with a 16-bit
data bus?

4, Referring to figure 1.4 explain why the data bus is bi-
directional (i.e. data can pass in both directions) but that the
address bus is unidirectional.

5. Why 1s a program executed under an interpreter slower than
one compiled and then executed?

11

Chapter 2 Assignments

2.1 THE ACCUMULATOR

The first and the most important of the 'Other Registers' in
figure 1.4 we will consider is the Accumulator. This is an 8-bit
register, like all the 'Other Registers', and communicates with
both the address bus and the data bus. The principal feature of
the accumulator is that all arithmetic and most logical operations
must take place using it. So, for example, if two numbers are to
be added, one of them must be in the accumulator. The result of
this addition will also be placed in the accumulator.

We will cover these arithmetical and logical operations in the
next chapter, but in this one we will concentrate on the other
function of the accumulator: as a temporary storage location used
when moving data from one memory location to another. The 6502
does have other registers for this purpose as we shall see in
Chapter 5, but the accumulator is the most important of these.

We can view the accumulator, then, as an interim storage location
inside the microprocessor, being the place through which movements
of data pass and where intermediate results are stored.

Let us look now at some of the simplest assignment statements
involving the accumulator. To motivate ideas in this and some of
the later chapters we will try to find assembly language equivalents
to some common BASIC statements,

2.2 WHAT IS THE ASSEMBLY LANGUAGE EQUIVALENT OF LET NUM1 = 177

In BASIC, this statement directs the computer to put the
number 17 into a storage location labelled NUML. What is the
equivalent in assembly language? Consider the following statements
in assembly code:

LDA #17

STA NUM1

This does not quite suffice, as we shall see in a moment, but let
us first examine what this code does.

LDA is an instruction which means 'load the accumulator' and
#17 means 'with the number seventeen!',

12

STA is an instruction which means 'store a copy of the accumu-
lator' and NUMI is the name of the storage location where it is to
be stored. So taken together, these statements store the number 17
in a location labelled NUM1, via the accumulator.

The problem is, however, that we need to tell the computer
where this storage location called NUM1 is. In BASIC this is not
necessary: the interpreter, a complex machine code program already
in the computer, sorts this out for us. We don't need to tell the
computer where NUM1 should go; and it doesn't need to tell us
where it has put it, (In fact it puts it into five bytes, not one,
but this need not concern us now.)

In assembler things are different, however. Without a directive
from us, the computer will not know where NUML is. As it stands,
then, the computer will give us an error message telling us that
the label NUMI is undefined.

We define it by preceding the first line with:

NUM1 = &ODFF

The computer will now store 17 in the location 80DFF. We must be
careful in our choice of memory location that it cannot be con-
taminated by other operations in the computer. If necessary we may
have to protect the area of memory by suitably redefining portions
of memory. We will have more to say about this later in this
chapter.

Even with this protection, it may well be that our cheice for
NUMl is not the best. The 6502 is designed to give special prefer-
ence to memory locations in page zerc (which, as we saw in the last
chapter, is between &0000 and &30FF). To understand how this gains,
we need first to understand how our simple program is stored in
the computer.

We have to tell the assembler where the first instruction will
go. We do this by writing

P% = &0DOD

at the beginning (again making sure this is a protected area).
When we now get the assembler to translate our mnemonics into
machine code, the very first instruction goes into memory location
&0DOD, Let us see what the machine code translation looks like,

LDA #17 takes up two bytes: &A9 in &0DOC and &11 in &0DO1. &AD
is the Op Code, as it is called, for LDA when the number to be
loaded is contained in the next byte. This is signified by the
symbol # in the assembly code, and ts called, for obvious reasons,
immediate addressing. The number to be loaded is immediately avail-
able; it doesn't need to be fetched from another part of memory
first.

13

When NUM1 = &0DFF, STA NUMI1 takes up three bytes: &8D in &QODO2,
&FF in &0D03 and &0D in &0D04. Notice that the lower byte of the
address is stored first; fortunately the assembler does this auto-
matically so we need not worry too much about it now. This sort of
addressing, where a two byte address indicating where the contents
are to be found follows the instruction, is called absolute
addressing.

By contrast, when NUM1 = &70, say, STA NUMl takes up only two
bytes: &85 in &0D02 and &70 in &0DO3, Only the lower byte, &70, of
the address needs to be supplied; the computer knows that the
higher byte is &00. Note that the Op Code, &85, is different from
48D, the one above. This reflects the different mode of addressing.
Here, the addressing mode is called zero page addressing. Fortun-
ately again, the assembler sorts all this out, so we do not need
to change the mnemonic code in any way for zero page addressing.
STA NUM1 is coded &8D, &FF, &0D if NUML = &0ODFF, and &85, &70 if
NUMI = &70, quite automatically by the assembler.

Hence by using a zero page location we save one byte of memory.
This can be crucial in large programs. Even more importantly, the
zeTo page operation is faster than the absolute one; and again
this can be crucial.

So to summarise: if our symbolic code is this:

P% = &0000
NUM1 = &0DFF
LDA #17
STA NUM1

it goes into memory thus:

Location &0D00 &0001 &0D02 &0D03 &0D04
Contents A9 1 8D FF oD

If we change line two to NUM1 = &70, it goes into memory as:

Location &0D0O0 &0D071 &0D02 &0DO3
Contents A9 11 85 70

2.3 MORE ON THE IMMEDIATE, ABSOLUTE
AND ZERO PAGE ADDRESSING MODES

In the last section we met three modes of addressing. These

ideas are so important that it is worth elaborating upon them
further.

14

We have seen in Chapter 1 that when the microprocessor first
receives a byte which it expects to be an instruction, it decodes
it and then acts upon it. Whether it interprets the next byte as a
piece of data, a zero page address or the least significant byte
of a non-zero-page address depends on the particular instruction
it has received. Thus, the address moede information is contained
in the Op-Code of the instruction. This is a crucial aspect of the
6502's operation and it must be thoroughly grasped.

The assembler obscures this fact somewhat, since the same
mnemonic is used for all the address modes. Thus LDA #17, LDA
&0070, LDA &0ODFF all use the mnemonic LDA. The # in the first case
means irmediate addressing (op code &A9) where the next byte is to
be treated as data. In the second case (LDA &0070), because the
address is in zero page it will be coded as zero page addressing
{op code 8A5), and the next byte is treated as a zero page address.
In the last case {LDA &0DFF), the address is not in zero page so
it will be coded as an absolute address {op code 8AD) and the next
byte will bc the lower byte of this address. In this case the
following byte will be interpreted as the higher byte of the
address; by contrast, in the first two cases this following byte
will be interpreted as a new instruction.

The use of a single mnemonic for different address modes is a
relief to our human memories but we must be aware that depending
on the operand it is encoded in different ways in the computer's
memory .

2.4 WHAT IS THE ASSEMBLER EQUIVALENT OF LET NUM2 = NUM1?

We assume that a value has already been put into NUMl, a zero
page location. We code this further statement in assembler as
follows:

LDA NUM1
STA NUM2

0f course we need to tell the assembler the address of NUM2.
If we can, we should again choose zero page, say &71. Putting
everything together we have:

P% = &0D0D
NUM1 = &70
NUM2 = &71

LDA NUMI
STA NUM2

When translated into machine code by the assembler, the
following is produced:

Location &0DO0 &ODO1 &0DO2 &0D03
Contents AS 70 85 il

15

Notice that LDA is coded as &A5 and not 8&A9 as before. This
reflects the change in addressing mode, here zero page, before,
immediate. In this case the number to be loaded, 17, has to be
fetched from the memory location &0070. The computer puts the
address &0070 out onto the address bus, and back comes the con-
tents, 17, on the data bus. All this is initiated automatically by
the Cp Code 8AS.

There is an ambiguity in the BASIC statement which needs to be
resolved. When we write LET NUM2 = NUM1 we usually regard NUMZ and
NUM1 as the name of variables, just as we do in algebra. Hence it
is often conceptualised as equivalent to let y = x, but this is
not in fact what it means, The precise meaning of this statement
is: assign to memory location NUM2 the contents of memery location
NUM1, This may seem to be splitting hairs, and in many practical
applications of BASIC perhaps it is, but when using assembly lan-
guage the distinction is crucial, although the ambiguity remains.
So, LDA NUM1 means load the accumulator with the contents of
memory location NUM1, whereas STA NUM1 would mean store a copy of
the contents of the accumulator into memory lecation NUML. The
same label is used in two different ways: in the first case NUML
refers to the contents of a memory location, in the second NUM1
refers to the address of a memory location. There is no reai
ambiguity here, however, since the wnemonics LDA and STA provide
the distinction is meaning.

A useful way to resolve real ambiguities though is to put
brackets round a label if we mean to refer to its contents: thus
(NUM1) refers to the contents of the memory with address NUML.
When we wish to make this distinction clear in our discussion of
the various instructions we are quite free to use the convention,
and this we will do. Moreover, the 6502 assembler does use the
convention itself on certain occasions, as we shall see later, but
it makes very specific use of it and so we are not free to put
brackets round our labels when writing assembly language.

Note finally that we do mot have to use labels like NUM1 and
NUMZ at all. We could instead write directly:

LDA &70
STA &71

At this stage it does not matter, but as our programs become
more complex, the use of labels becomes more convenient and
important.

Exercise 2

1. State which form of addressing is used in each case, Assuming
the first instructien in each statement begins at &0D00, show how

16

the assembler would translate each statement into machine code.

(a) LDA #14 (£) LDA #8&12
{(b) LDA &7F40 (g) STA &0002
(c) LDA 820 (h) LDA 14
(d) STA &7A72 (i) STA 1024
(e) STA &0

2. If we combine the two programs in Sections 2.2 and 2.4 into
a single program, explain why LDA NUMI can be omitted.

Write out the program in assembly code, and show what the
machine code translation would be.

3. Code this BASIC program into assembly language {assume NUMZ
and NUM3 already have values).

LET NUMi = NUM3
LET NUM3 = NUM2
LET NUMZ = NUM1

2.5 WHERE TO PUT MACHINE CODE PROGRAM IN THE BBC COMPUTER

We have already seen that we have to tell the assembler where
our first instruction will go: we do this by setting the variable
P% equal to some value. There are principally six ways of doing
this:

(a) Putting the machine code above the BASIC program

As we shall see in a moment, assembly language programs are
entered into the machine in BASIC programs. We could put the
machine code translation of the program above this program. There
are four ways to do this:

(i) P2 = TOP + 1000. TOP is a BASIC function which gives the
location following the last memory location occupied by the pro-
gram text. By adding 1000 to it we reserve adequate space for any
dynamic variables used in the program.

(ii) LOMEM = LOMEM + 250, LOMEM is a BASIC ‘'pseudo-variable!
which controls where the first dynamic variable is to be placed.
By setting it to 250 above its default value (which is TOP), we
reserve 250 bytes for our machine code program. This statement
must precede all references to dynamic variables (i.e. any except
a% and A% - Z%). We can then write P% = TOP.

(iii) DIM P% 250, This reserves 250 bytes in the dynamic

variable region above the program text and automatically sets P%
equal to the address of the first location of this reserved block

17

(iv} HIMEM = HIMEM-250. HIMEM is a BASIC 'pseudo-variable’
which specifies the highest point in memory available to any
program., Usually it is set to the first location of screen memory
(e.g. &3C00 in Mode 7 on a Model A). BASIC programs use the top of
memory to store information about procedures and functions etc.,
50 we cannot just put a machine code program at the top of memory.
However, by resetting HIMEM, we reserve 250 bytes at the top of
memory for our program. This statement should be the first one in
the program. Note that changing from a smaller to a higher resolu-
tion mode (e.g. MODE 7 to MODE 4) will destroy the machine code
program,

(b) Putting the machine code below the BASIC program

(i) PAGE = PAGE + 256, PAGE is a 'pseudo-variable' which con-
trols the starting address of a BASIC program. It is always a
multiple of 256 (reference to Section 1.2 will remind you why),
and its default value is &E00 on the ordinary model A or B (i.e.

a system without discs etc.), This instruction should be performed
before loading the program. We can then safely set P% to PAGE-256
in the progranm,

(ii) Using memory below &E00: The locations from &900 to &AFF
are used by the cassette system when the OPENIN and OPENOUT com-
mands are used but not by the system to save and load programs.
They are also used if the RS423 port is in operation on a model B.
Hence, in certain circumstances these locations may be safe,

The locations &C00 to &CFF are reserved for programmed
characters (ASC1l codes 223-255 inclusive). If you do not expect
to use these at the same time as a machine code program then this
area is free.

Finally locations &D00 to 8DFF seem to be untouched by the
operating system, at least in the standard models A and B. This
means that this area is safe for machine code programs on the
standard models.

Other areas are best left alone. &B0OO to &BFF, for example, is
used for the programmable keys, and even if you do not intend to
use them, accidentally pressing one with machine code in this area
can have strange effects. Even stranger things happen if you put
code into the sound buffer at &800 to &8FF!

0f these six options for machine code location, (a)(iii) is
useful when a machine code program is to be used in conjunction
with a BASIC program, since they are kept together in a simple
way, Wherever the BASIC program is loaded into memory, the machine
code will run. Moreover, unlike most other micros, the BBC micro
allows us to store many programs in memory at the same time, using
the PAGE command. Hence, we can use a machine code program con-
tained in ome BASIC program in a second BASIC program (see
Appendix 6 on the use of PAGE).

18

{b) (ii) is most useful for stand-alone machine code programs.
Clearly &D00-&DFF is the safest area, but in many cases if more
than 256 bytes are needed &C00-&8DFF is reasonable. The only dis-
advantage here might be the effects when non-standard model B's
are used (with discs etc.).

In this book option (a)(iii) will be followed in the earlier
chapters, where BASIC and machine code are often linked, usually
for pedogogical purposes. In later chapters, and especially
Chapter 10, option (b)(ii) with &D00 will be used. The one excep-
tion to this is the Monitor program which requirtes &330 bytes: in
this case option (a)(iv) will be used.

Finally in this section, note that the designers of the BBC
computer have reserved 32 zero page locations for assembly program
use. This is very useful, for we have already seen the saving
involved in using zero page. These locations are from &70 to &8F
inclusive.

2.6 HOW TO INPUT ASSEMBLY LANGUAGE
PROGRAMS INTO THE BBC COMPUTER

Listing 2.1 shows how to input the solution to Q.2, Exercise 2,
into the computer. Put it in and run it. Try different numbers and
convince yourself it works; press ESCAPE when you have tried a few.

LISTING 2.1

TOMUME =870 NUPME=87 1 5 RHME=2, 73
ZOLIM PY SO0

EOUAFPTE

40, SYART

SOLDA NUME

HOBTHA NLML

FOLDA NLUM2

BOSTA MUM3I

2OLDA NUIMI

1OGSTH NUMZ

1TE0RTE:]

120REFEAT
1Z0INFUT "Cantents of NUMZ", 7NUM2
140INFUT"Contents of NUPME" *NUMZ
15GCALLSTART

1&OFRINT ?NUML , PNLMZ, TNUM3E
170UMTIL FALSE

Let us look at the listing in detail. In line 10, we give zero
page addresses to the three labels we shall use, In line 20 we set
the program counter as recommended in the last section. As a rule
of thumb, allow 3 bytes for every instruction. This will always be
ample, and will usually give some room for any editing and inser-
tion required later. There is no need to count the instructions,
though; a rough estimate is all that is required, and rounding up
to the nearest fifty will do. Line 30 is the beginning of the

19

assembly code: the open square bracket, [, tells the interpreter
that. OPT3 is what is called a pseudo operation: it is not
strictly part of the 6502 assembly language. Its function is to
specify whether and how the translation into machine code will be
listed on assembly. In this case, 3 indicates that the translation
will be listed, and any errors displayed (the possible errors at
this stage are syntax error or unknown label].

In line 40 we begin with .START. This label will avtomatically
be given the address into which the first instruction will be put.
Any label will do, as long as it begins with a full stop, and
otherwise conforms to all the rules for BASIC variables. (Some
assemblers restrict the lemgth to six, but not the BBC micTo
assembler,} Clearly START is a sensible label, and we should en-
deavour to use labels as meaningful as possible. We shall have
much more to say about labels like these having the function of
referring to an address within the program, in Chapter 4.

The assembly program proper is in lines 50 to 110. The assembly
program is translated into machine code line by line through to
iine 110. In line 150 control is passed to the machine code pro-
gram, located at the address referenced by START. The function of
the new instruction RTS in 1line 110 is to return control to the
statement following this call, when the machine code program has
finished, Every assembly program must end with RTS. We shall have
much more to say about RTS in Chapter 9, but for now we regard it
as an essential terminator to the assembly program, The close
square bracket,], indicates to the interpreter that the assembly
program has finished (note the colon before it, essential if it
does not begin a line).

In lines 130 and 140 we put values into address locations NUM2
and NUM3 prior to calling the machine code program, and in line
160 we print out the values in the three address locations after
returning from the machine code program. The query operator ?
means the 'contents of the memory location whose address is the
value of the variable attached'. Thus P.?NUM2 prints the contents
of the memory location with address NUMZ i.e. the contents of &71,

It is possible to extend the notation to a binary function and
write NUM?1 instead of ?(NUM+1), but this is less readable, in my
view- and saves very little.

Using the query operator, we can pass values to the machine code
program and output results from that program. It is possible to do
this directly from the machine code program - essential if speed
is an important factor - but the details of this must wait until
Chapter 9.

It is important to understand that when lines 10 to 118 of the
program are run all that happens is that the assembly code is
translated into machine code and placed in memory above the
BASIC program text. The machine code program itself is not
executed during this process. To execute the program, we must
CALL it, as in line 150. Hence assembly (i.e. translation) and

20

program execution are two distinct processes: we assemble the
mnemonics into machine code and then, if required, execute that
machine code afterwards.

The REPEAT... UNTIL in lines 120 and 170 is a standard way of
producing an infinite loop., Notice that we need only assemble the
program once: after that we use the technique of passing values to
the machine code program using the query operator. It is good pro-
gramming practice always to design our programs in this way: we
should never have to reassemble a program to give it new values to
work omn.

This last point brings us to the subject of saving programs on
tape. Since we should not need to assemble a program more than
once into machine code, it is possible in principle to save the
machine code on tape, using the instruction *SAVE. Then we need
only save lines 120 to 170 of the BASIC program. However it is not
generally convenient to store programs in two parts like this. We
shall, in general, recommend saving the unassembled program, e.g.
all of listing 2.1, and assembling it once each time we load it.
This is not likely to be unreasonably slow, and is very much more
convenient.

Moreover, this method results in automatically 'relocatable
programs' which can be amended in exactly the same way as any
other BASIC program, All we need to do is to adjust PAGE prior to
loading the program (see Appendix 6). This is a very powerful
feature of the BBC computer.

Even if we are producing a stand alone machine code program
which we will load with the *LOAD command, we should still keep a
copy of the program in assembly language. If we need to add,
delete or change a line it then becomes almost as easy as with a
BASIC program.

In using an assembler as comprehensive as this one, we do not
need to worry very much about what the machine code translation
looks like. We can be sure that if our assembly language is
correct, the machine code translation will be correct. It follows
that if our program fails to work, we should try to mend the
assembly language version and not try to delve into the machine
code. (We will have more to say about 'debugging' in Chapter 10.)
You will have noticed that OPT3 provides us with a listing which
includes the machine code translation. This is of some pedogogical
interest, and occasionally in this book we will consider the
machine code representation of assembly instructions to deepen our
understanding. But, in general, our main focus should be at the
assembly language level,.

2.7 STORING NUMBERS LARGER THAN 256 IN ASSEMBLY LANGUAGE
Listing 2.2 illustrates how to load the hex number &D5C3

(decimal 54723) into memory. We need two bytes for this and we use
the labels NUML for the low byte and NUMH for the high byte. It is

21

conventional on the 6502 microprocessor to put the low byte in a
lower memory location than the high byte and to store them
consecutively.

LISTING 2.2

1TONUML =870 NUMH=%7 1
ZODIM PR SO
FOLOFTZR

40. 5TaRT

SOLDA #%C3
SOBTA NUML
TOLDA #DS
SO5Ta NUMH
FORTS: 3
100CALLETART
11078 T72=01?873=0
120PRINT 'NUML,

Lines 110 and 120 need some explanation. Line 120 prints out
the number represented by the four bytes in &70, &71, &72 and &73,
with &73 being the most significant. Since zero is in &72 and &73
(allocated in line 110), the number is &0000D5C3, and line 130
will print out this in decimal. This 'pling' operator {l} is a way
of referencing four consecutive memory locations at one go, and we
will find it useful later. We could, of course, have printed out
the number by writing 256*?NUMH + INUML, but listing 2.2 serves to
introduce the ! operator.

Finally, there is a useful symbolic convention we can introduce
now. NUML and NUMH should really be taken together, since they
present one number, and we can usefully write these locations as
NUMH;NUML. The semicolon between the two serves to separate two
ordered bytes, the first being the higher byte and the second the
lower byte. We can refer to the contents of these locations, and
50 to the number they jointly represent, as (NUMH;NUML) using the
bracket notation we introduced in 2.4. As a decimal number,
(NUMH;NUML)} is 256* (NUMH) + (NUML). Remember, though, that this
notation is to be used for the purposes of discussion: it is not
part of the 6502 instruction set, and should not be used in the
assembly programs themselves. ’

22

Chapter 3 Addition and subtraction

3.1 THE ARITHMETIC UNIT

At the beginning of the last chapter we mentioned that all
arithmetic must take place using the accumulator. The part of the
microprocessor used to perform the arithmetic is called the
Arithmetic Logic Unit (Arithmetic Unit or ALU for short).

Figure 3.1 shows the simplified architectural details,

S
ADL A N Address Bus
7
ADH
Qther N
I; PCL PCH

ﬂ’]\ Ay

Status Register P |

by | I;I | :

A
DATA BUS 4l
N

Figure 3,1 Partial block diagram showing the ALU and Status Register

Notice that the ALU has two inputs: one from the accumulator
and one from the data bus. (In certain internal operations, one of
the program counter bytes is used as an input instead of the
accumulator, but in order not to complicate things, this is not
shown on figure 3.1.) The output from the ALU always passes back
to the accumulator (again, with certain internal operatiomns, the
output can pass directly to the address bus but this need not con-
cern us now). From the accumulator it can go out on the data bus
to a memory location whose address is on the address bus.

23

Also included on figure 3.1 is a new register, the Processor
Status Register, usually labelled P. The function of this register
will become clear in this and the next chapter.

3.2 WHAT IS THE ASSEMBLY LANGUAGE EQUIVALENT
OF SOME SIMPLE BASIC STATEMENTS INVOLVING ADDITION?

(a) Consider first LET SUM = 14 + 29,

As usual, we will assume that SUM has already been given a
specific memory location in zero page, for example SUM = 870. Thus
we require the result of adding 29 to 14 to be put in memory loca-
tion &70 which we have labelled SUM,

The assembly coding is:

LDA #14
(R

ADC #29
STA SUM

The first statement is familiar by mow: put the number 14 into
the accumulator. The next one, CLC, means 'clear carry'; we shall
come back to the meaning of this later. ADC #29 means add 2% to
the contents of the accumulator storing the result in the accumu-
lator. STA SUM stores a copy of this result in SUM.

Notice again the potentially ambiguous use of the label SUM in
the BASIC statement. It is very tempting to think of SUM as being
equal to 43, whereas it is the contents of SUM that is equal to 43
(i.e. (SUM) = 43, using the convention discussed in 2.4). The
assembly code version is less ambiguous since the mnemonic STA
makes it clear that SUM refers to the address of a memory locatiom
and not its contents.

(b) Consider now LET SUM = NUM1 + NUMZ,

Again, we assume that SUM, NUM1 and NUM2 refer to already
specified locations, and that the contents of NUM1 and NUM2 have
already been assigned.

The assembly coding is:

LDA NUM1
CLC

ADC NUM2
STA SUM

Load a copy of the contents of NUML into the accumulator, clear

24

carry, add a copy of the contents of NUM2 to the accumulator and
store a copy of the result in SUM.

We can represent this process symbolically thus:

(NUMT) + (NUM2) ~ SUM

Thus the contents of NUMl and NUM2 are added and stored in the
memory location SUM. This symbolic representation is much less
ambiguous than the BASIC statement, and we shall be using it a

great deal. (Note that some authors reverse this notation i.e.
SUM « (NUM1) + (NUM2).

3.3 THE IMPORTANCE OF CARRY

In 3.2(b) we have implicitly assumed that the result of adding
(NUM1) and (NUM2) will not exceed 255 or &FF. This is because the
final result will not fit into the one byte SUM otherwise. Does
this mean that we are restricted to adding numbers whose sum is
less than 2567

Let us consider the situation when (NUM1} = 87 and (NUM2) = 194.
The result will be 281, but let us examine the arithmetical pro-
cess as it occurs in the microprocessor - in binary.

We have:
¢1010111 87
11000010 194
1] 00011001 25 7

The result is 25, which is of course wrong. What has happened
is that a carry occurred on adding the two mest significant bits.
Fortunately, however, this carry digit is preserved in one of the
bits of the Processor Status Register. This bit is referred to as
the carry flag, €. Hence, if after performing an addition the
carry flag contains 1, we know that a carry has occurred. If no
carry has occurred the carry flag will contain zero, regardless of
what it contained before the addition took place.

Now 281 in hex is 80119 i.e. 256 + 25. So if there is a carry
we need to store our result in two bytes, not one, the higher byte
containing 1. How can we access the carry bit however? The answer
is that the carry bit is automatically added in when we perform
the next addition.

Consider the assembly coding in lines 50 to 120 of listing 3.1.

The first four instructions are as before except that the result
is stored in memory location SUML. Then we put zero in the accumu-
lator, store zero in SUMH, and then add SUMH to the accumulator,
finally storing the result in SUMH. Why on earth should we want to
add zero to zero?

25

LISTING 3.1

TOMNUM L =270 NUMZ=5%7 1 : SUML=3 72 SLIMH=87 X
20DIM PY OS50

ZOLOPTE

40, 8TART

SOLDA NUML

BOCLE

FOADT NUMZ

BOSTA SUML

FOLDA #O

100BTA SUMH

112A0C SUMH

1208TA SUMH

1Z30RTS: 1

LAOREFEAT

1S0INPUT " First number to be added", PRUMI
1&OINFUT"Secand number to be added", PRUMZ
170CALLLSTART
1GOFPRINTPNUML+TNUMZ, 256 % ?SLUMH+2GUML
I190UIMTIL FALSE

The point is that we have done more than this. Look at the
mnemonic ADC - what is the C? ADC actually means add with carry.
So ADC M really means:

A+ (M) +C+ A

This always happens automatically. It follows that if we do not
want to add the carry we should set C to zeroc. This is the purpose
of the instruction CLC.

Notice that the second ADC (ADC SUMH) is not preceded by CLC.
This is quite deliberate: if there is a carry from the previous
addition we want it included in this addition.

The consequence of this is that if (NUM1) = 87 and (NUMZ) = 194,
SUML will contain &19 and SUMH will contain 1. Put listing 3.1
into your computer and try some values. Convince yourself that the
coding works and then press ESCAPE.

Exercise 3.1

Write a program to add three numbers together, each number
being less than 256. Remember that the final result may be any-
thing up to 765. Type in your program in the same way as in
Listing 3.1 and try it out.

3.4 ADDING NUMBERS WHICH ARE GREATER THAN 256:
MULTIPLE PRECISION ARITHMETIC

How would we program the microprocessor to add two numbers, at
least one of which lay between 256 and 655357

26

Consider for example 3929 + 52667 or in hex &0F59 + &CDBB. The
6502 microprocessor can only deal with a byte at a time so we con-
sider the lower bytes first. In binary and hex we have:

01011001 859
10111011 %8B
00010100 s[1]rs

We have generated a carry of 1, which we carry over to the
higher bytes. We then cbtain:

00001111 &0F
11001101 &co

1 1
1101110t &00

Thus the final result is &DD14 or 56596, which is correct, of
course.

To produce a general coding for this we will put the first
number in bytes NUMIH NUMIL, and the second in NUMZH NUMZL, The
result is stored in SUMH SUML. Listing 3.2 gives the details. As
before put it into your computer and convince yourself that it
works. Notice that we cannot print out (NUM1) and (NUMZ) by using
INUMIL and !NUM2L, since neither bytes 3 nor 4 of either of these
will be zero. We could if we wished output (SUM) by using !SUML as
long as &76 and &77 contained zeroes.

LISTING 3.2

TONUMILL=%70: NUMT H=87 1 s NUM2L =572 NUMPH=&7 52 SUML=%7 4 » SUMH=%7
20DIM FA S50

IOLOFTE

40, 5TaRY

SOLLA NUMIL

&OCLE

FOADC NUM2L

805TA SUML

FOLDA NUMLH

100ADE NUM2H

1108TA SUMH

120RTS:]

1Z0REFEAT

140INFUT"First number to be added", !NUMil

1SOINFUT"Second number to be added", 'NUM2L

1HOCALLESTART
FT7O0PRINTESSEKPNUMIHSPNUML L2586 ¥ PNUMZH+PNUMZL , 256X 7SUMH+TSUML
IBOUNTIL FALSE

27

You will have noticed that this coding is not quite general
enough. Tt is possible that the result will need three bytes, not
two, This will happen if we try to perform 57922 + 37130, for
example. However the coding is easily modified for this case, and
this is set as an exercise in Exercise 3.2,

Before doing that, let us extend the notation introduced in 2.7
a little, You will recall that we write NUMIH;NUM1L to denote a
two byte number. We can extend this to three or more bytes very
easily. In this example, if the result is stored in SUM2, SUM1 and
S5UMO we can express the whole thing symbolically as:

(NUMTH;NUMIL) + (NUMZH;NUMZL) =+ SUM2;SUMT; SUMO,

Exercise 3.2

1. Write a program to perform the operation described symbolic-
ally above.

2. Write a program to add together two four byte numbers.
Assume that neither number exceeds &7FFFFFFF so that only four
bytes are needed for the result.

Set up the addresses using arrays and a loop as follows:

10 DIM NUMI{3) , NUMZ(3), RESULT(3)
20 FOR 1% = 0TO3: NUMT(1%) = &70 + 1%
30 NUM2 {1%) = &74 + 1% :RESULT(I%) = &78 + 1% : NEXT 1%

Test the program by using on INPUT, !NUM1(0) and !NUM2{0).
Print out the result by using !RESULT(Q).

What is the symbolic representation of this process?

3.5 SUBTRACTION

Consider the equivalent assembly code to LET DIFF = NUM1 - NUMZ2,
where both numbers are less than 256 and NUML > NUMZ,
LDA NUMT
SEC
SBC NUMZ
STA DIFF

The two new instructions are SEC, set the carry flag, and SBC,
subtract.

You will be wondering why we need to set the carry flag in this
case, In order to understand this we need to understand how the
microprocessor subtracts,

28

In fact the microprocessor doesn't subtract at all - it adds!
Thus it treats 98 - 41 as 98 + {-41). The advantage of this is
that no additional circuitry is needed for subtraction.

But the problem now is how to represent -41. What we require of
the representation for (-41) is that (-41) + 41 = 0. Consider the
binary representation of 41: 00101001. Suppese we now reverse all
the ones and zeroes to get 11010110 - this is called the ones
complement, or often just the complement. [f we add 41 and its
complement we get:

00101001
11010110

(RRERREE

If we now add one to this we obtain:

[11oo00 0000

Hence, if we ignore the carry, we get zero. It follows that by
complementing 41 and adding one, we obtain a representation of -41
i.e. 11010111, This is because it performs just as -41 should per-
form (-41 + 41 = 0} as long as we ignore the carry obtained.

The process of complementing a mumber and adding one is called
finding the two's complement of a number.

Now the microprocessor gets the one it is to add on from the
carry flag - this is why we must set the carry flag to 1 before we
subtract. What happens if the carry flag is zero will be considered
in a moment.

Let us just convince ourselves that this works. In two's comple-
ment form 98 + (-41} is:

01100010 98
11010110 -41
[1] oo111000 57

D

and ignoring the carry, this is correct. All that has happened
here is that we have performed (57 + 41) + (-41); the last two
numbers added together give zero carry 1, and hence we obtain the
result.

Notice that the usual understanding of 11010111, namely as the
number 215, is replaced by its interpretation as -41. This change
in interpretation follows simply because we suppress the usual
meaning of the carry flag. If we understand the carry flag in the
usual way we would get &139, or 313, which is indeed the sum of 28

29

and 215. By not treating carry as the 'ninth bit' as we do in
addition, we can treat &D7 as -41.

If you have followed all this you will see that when the micro-
processor performs the subtraction 215 - 158, it will perform
precisely the same sum as above, but in reverse order. Thus 158 is
10011110, its complement is 01100001 and so its two's complement
is 01100010. We then get:

11610111 215
01100010 -158
0] 00111001 57

as before,

3.6 THE FUNCTION OF THE CARRY FLAG IN SUBTRACTION:
MULTIPLE PRECISION SUBTRACTION

We have just seen that the microprocessor obtains the one it
needs to perform the two's complement from the carry flag. But
what happens if zero is in the carry flag?

In this case instead of adding on one it adds on zero. It
follows that the number obtained will be one less than it would
otherwise have been (since if we add one to a negative number it
gets bigger, although it becomes numerically smaller). Thus the
effect of having the carry flag zero is to make the number sub-
tracted one greater. The result of the subtraction will thus be
one less than would otherwise have been the case,

It is in this way that the carry flag plays a crucial role in
multiple precision subtraction. Consider the sum, &732E - 86492,
As usual we need to consider the lower bytes first. So we have
82E - &92. The two's complement of &92 is &6E (since &92 + 836E =
&100}. So in binary we have:

00101110 &2E
01101110 + -492
[]] 10011100 8¢

Notice the crucial point: the carry flag is zero. When we
worked out 98 - 41 before, it was one. Hence, if we attempt to sub-
tract a larger byte from a smaller byte the carry flag is reset to
zero.

What do we make of the final result &9C? There are two ways to
look at it: one is to treat it as a nmegative number {we shall
return to this in a moment). The other way is to consider it as
the result we get if we have borrowed ome from the next column.

30

Thus:

&12E
92 -

& 9¢C

(remember &12 = 18 and 18 -~ &9 = &9),

This second way of treating things is what is required here.
The carry being reset to zero indicates that we have needed to
borrow. Now as we have seen, if the carry is zero this is equiva-
lent to subtracting a number one greater. llence when we subtract
the higher bytes we will 'pay the borrow back’. Thus, the one's
complement of &4 is 39B (44 + &9B = &FF), and this is the two's
complement of &65. We have themn:

473 473
&98 + &65 -

[1] &0 &0E

The final result is &0ESC, which is correct, of course.

Now, can we always be sure that when we try to take a larger
byte from a smaller one the carry flag will be reset to zero?
Indeed so. The two's complement of a number is 256 minus that
number. Hence V - U gives V + (256 - U). Now if U > V this must be
less than 256 since we can write it 256 - (U - V). Similarly if
V > U it must be more than 256 since we can write it 256 + (V - u).
1t always works.

Exercise 3.3

1. Write a program to perform two-byte multiple precision sub-
traction as described above.

The symbolic representation is:
(NUMTH;NUMTL) - (NUM2ZH;NUM2L) + DIFFH;DIFFL

2. Using the same labels as in Q.2, Ex.3.2 write a program to
subtract two four byte numbers.

3.7 POSITIVE AND NEGATIVE NUMBERS: SIGNED ARITHMETIC

We have seen that any byte can be considered as negative or
positive: the interpretation we (or the microprocessor) give to it
depends on how we obtained the number, and the various conditions
applying at the time.

31

Above we said that in &2EF - &92 = &9C, we could consider &9C as
a negative number. In that case it is -&63 or -99. But we would
have got &9C as an answer to 8ED - 451, and this time it would
have been positive i.e. +157, We know which is which because in
the first case the carry flag is reset to zero, and in the second
case it is set to one.

Now suppose that, instead of obtaining a negative number as a
result of a subtraction sum, we just wanted to input a negative
number straight away. In principle there seems to be no problem:
if we want ~17 we need the two's complement of &11 which is &CF
and we can use this; similarly if we want -150 we usc &A. As long
as we remember that in both cases the numbers are to be under-
stood as negative then there is no problem, it seems. Unfortunately,
this is totally impracticable. Almost all the time, we will want
to do arithmetic with such numbers, and it would defeat the ohject
of using a microprocessor if we had to work through all the sums
first so that we could tell the microprocessor whether a result is
to be understood as positive or negative! Thus, for example, the
micro may at ome point perform the sum &6A + &12 = &7C. Is this
124 or -132%7 The microprocessor has no clues, since it has taken
the byte &6A from memory and there is ne room for us to attach a
sticky label to the byte indicating that it is negative (if that's
what we require it to be)!

We are going to have to introduce a convention to deal with
this. If a number is going to be considered negative then its most
significant bit must be one; otherwise it is a positive number.
This means that using a single byte to represent a number, &00 to
47F are positive; and &80 to &FF are negative. This gives us a
range of -128 to +127., This convention is an easy one to use since
if a mmber is greater than 127 we need to subtract it from 256
and treat the result as negative e.g. 8AB is -8&55 i.e., -85. It is
usual to call the most significant bit in this case the sign bit.

Remember that this convention is only necessary if we want to
treat some numbers as negative from the outset) in all other cases,
there is other informatiom in the microprocessor {like the state
of the carry flag) to provide the clue as to the sign of the
result.

Let us consider a couple of examples:

(a) 70 + (-100}) 01000110
10100110 +

B —]

11101100

Since the MSB is a 1, the number is negative, viz -30,

32

(b) {-24) + (-58) 11101000
11000110 +

[]. 1ov0t110

Again the result is negative, viz -82. The carry flag here has
no significance. This is because we are effectively only dealing
with seven bits; any carry will go into the eighth bit, though
even then it may not always be relevant.

This last point leads us to a problem called overflow.
Consider

{c) 83 + 5k 01010011
00110110 +

10001001

The result is -119, which is plainly ridiculous. Moreover, the
microprocessor knows it is ridiculous too, since it has added two
positive numbers. It therefore flags the problem by setting
another bit in the status register called the overflow bit, and
labelled V {oVerflow).

It should be obvious that overflow can only occur when adding
two positive or two negative numbers i.e. when adding two numbers
of the same sign. In those cases, and only in those cases, can V
be set to one. Overflow is often erroneously thought of as a carry
taking place from bit & to bit 7, but a glance at example (b)
will show vou this is not so,

The cverflow flag is set to one by the microprocessor only if
the sign bit of the result is different from the sign bits of the
two numbers added (assuming, of course, that the numbers have the
same sign bit); in all other cases it is reset to zero. Overflow
can occur without there being any carry from bit 6 to bit 7
(consider for example (-65)} + (-65)).

What happens if V is set to 17 Then we know the result is
either greater than 127 or less than -128. Which it is will depend
on the value of the MSB: if it is one, the result is greater than
127; if it is zero, less than -128. We will consider how to deal
with these cases in the next chapter.

Let us end this section by considering how we c¢an represent
signed numbers in two bytes. Using two bytes we have &0000 to
&7FFF as positive (MSB = 0), and &B8000 to &FFFF as negative
(MSB = 1). This gives us a range of -2!% to 2!% - 1 i.e. from
-32768 to +32767. Let us consider as an example 18548 + {-25239).

33

In hex we have:

&48 &74
&9D + &69 +

4E5 &DD

The result is &E5DD, which is negative since the MSB = 1
{E = 1110), and this is -6691. A simple way to calculate this is
- (255 - &ES) * 256 - (256 - &DD) = -6691,0r -(&10000-&4ES00},

Notice that the arithmetic on the low bytes is interpreted
quite normally. The V flag will be set, but we choose to take no
notice of it because the sign bit is not bit 7 but bit 15, The
microprocessor will always set V when treating the bytes as single
byte signed numbers would resuit in overflow: it doesn't know
whether we are treating them this way or not in any particular
case. In this case it is the higher pair of bytes (&48 and &9D)
that are being considered this way, but in this case overflow
doesn't occur. Remember, then, that overflow is only a problem to
us when we are considering the bytes which contain the sign bit.
The microprocessor will always flag overflow when appropriate in
case the particular pair of bytes we have just added do contain
the sign bit: it is up to us to make the right interpretation in
the way we construct our programs, as we will see in the next
chapter.

Exercise 3.4

1, Show how the computer would perform the sums 24 - (-18) and
(-86) - 35. Under what circumstances would overflow occur in the
case of signed subtraction?

2. What is the range of signed numbers with 4 bytes?

3. What adjustments, if any, would you need to make to the pro-
gram of Q.2 in Exercises 3.2 and 3.3 to perform signed addition
and subtraction, assuming there is no overflow? Give a BASIC
statement to print out the result from the four bytes.

3.8 LOGICAL OPERATIONS

Suppose we have a number in the accumulator and we wish to
change its sign i.e. we want to perform the operation -A ~ A. One
way to do this is to subtract the accumulator from zero, but to do
this we need to put the accumulator into a memery location. The
coding is:

STA TEMP
LDA #0
SEC

SBC TEMP

34

where TEMP is the temporary memory locatiom.

It would be helpful to have a way of doing this which does not
need any temporary memory location; and indeed there is. We need a
new operation called the exclusive-OR, Actually this operation
exists in BASIC and indeed has the same mnemonic, EOR.

EOR operates only on the accumulator and the final result is
put in the accumulator. EOR M takes each bit of the accumulator
and exclusive-ORs it with the corresponding bit of (M), according
to the following table:

¥ 10 1

0|0 1

1 1 0

where ¥ is the symbol for EOR. Like bits give a zero, unlike bits
al.

It follows that to complement the accumulator we need only
write EOR #&FF: every zero in the accumulator becomes 1 and every
1 becomes zero. To give the two's complement we need to add 1. So
the full coding to perform -A -+ A is:

EQR #&FF
CLC
ADC #1

For completion now let us mention the other two logical opera-
tions the microprocessor can perform, both on the accumulator (and
both also present as BASIC operatioms).

First ORA M. This takes each bit of the accumulator and ORs it
with the corresponding bit of (M), according to the following
table:

where V is the symbel for OR. The final result is put in the
accumulator. Only two zeroes give a zero, all the other combina-
tions give one.

The main use of ORA is to set one or more bits to ome in the
accumulator without affecting the rest. For example, ORA #842 will

ensure that bits 1 and 6 are both 1, and that the others are
unchanged.

35

The final operation is AND M. This takes each bit of the accum-
ulator and ANDs it with the corresponding bit of (M), according to
the following table:

ALO 1
0|6 {0
1] 1

where A is the symbol for AND. The final result is put in the
accumulator. Only two ones give a 1, all the other combinations
give zero.

The main use of AND is to mask off one or more bits in the
accumulator, i.e, to sot them to zero, without affecting any other
bits. For example, AND #&ED will ensure that bits 1 and 4 are zero,
and that the other bits are unchanged. AND #&0F will ensure the
top four bits are zero, the bottom four remaining unchanged.

The uses of these operations will become more apparent in the
later chapters of this book,

Exercise 3.5

Write the coding to:

(a) set bits 3 and 7 to one and to mask bits 0 and 4, all other
bits remaining unchanged;

(b) reverse bit 7, set bit 6 to 1 and mask off all the rest of
the bits except bit 5.

3.9 A NEW ADDRESSING MODE: IMPLIED ADDRESSING

The instructions CLC and SEC illustrate a new form of address-
ing. All instructions must refer to some part of memory or to some
register, and this includes the instructions CLC and SEC. In this
case, it is the carry flag in the Processor Status Register that
is addressed and the value to be deposited in that flag is
included in the instruction. This is implicitly the case, however,
since we do not need to specify what is being addressed nor what
value is to be deposited, aside from writing down the instruction
itself, Instructions like these, where the address and contents
referred to are included implicitly in the instruction, are said
to use the implied addressing mode. All such instructions are
single byte, for no data is required to accompany the instruction,
Note that instructions like EOR are not implied: for whilst one of
the addresses is implicit - the accumulator - a second one is
needed, namely the memory location with whose contents the accumu-
lator will be EORed. Everything must be included in the instruction
for it to be implied addressing.

36

Chapter 4 Decision-making in
assembly language

4.1 THE PROCESSOR STATUS REGISTER

In the last chapter (Section 3.1) reference was made to a new
register: P, the status register, Figure 3.1 shows it in relation
to the rest of the architecture we have met so far. Each of the
eight bits of this register has a separate function: each operate
as flags, indicating that certain conditions have or have not
occurred. If the bit is 1, the flag is said to be set, if the bit
is 0, the flag is said to be clear (or sometimes reset)}. We have
already considered two flags: C, the carry flag, and V, the over-
flow flag., Figure 4.1 shows all the flags in the P register. There
are five new ones, N, B, D, I, Z, Of these, we will defer discus-
sion of B, D and I until later chapters.

(n[v] Tefofr]z]c}
I—Carryflag

Zero result flag

Interrup? disable

Decimal mode

Break (BRK)

Not used (reserved for future expansion}
Qverflow flag

Negative result flag

Figure 4. 1; Processor Status Register

The N flag is set to one whenever the most significant bit of
the result of any arithmetic or logical operation is one. It is
also set to one if data moved into the accumulator has an MSB of
one. (It is also affected by movements concerning the X or Y
registers, as we shall see in Chapter 5.} It is called the negative
flag because if a byte is to be interpreted as a signed integer,
then a negative integer will have an MSB of one, This concept of
negativity has no meaning outside of the signed integer represent-
ation, but the megative flag has uses outside signed arithmetic,
Since N = 1 when the MSEB of a result is one, and N = 0 when the
MSB of a result is zero, the N flag allows us easily to test
whether the MSB of a location is set or not, This has particular
uses in meonitoring input from an external device. In this context,

37

it is often used with the BIT instruction, which we will consider
in Chapter 9,

The Z flag is set to one whenever the result of any arithmetic
or logical operation is zero. It is also set to one if data moved
into the accumulator is zero (and if data moved into the X or Y
registers is zero, as we shall see in Chapter 5). Thus the Z flag
is affected by exactly the same operations as the N flag, but it
reflects a result of zero rather than an MSB of one.

One particular use of the N, V, Z and C flags is in the monitor-
ing of branching within the microprocessor, and this is the concern
of this chapter.

4.2 DECISION-MAKING USING THE MICROPROCESSOR

You will know from your work with BASIC that the real power of a
computer lles in its ability to take simple decisioms. This is
the conditional IF., ,THEN jump in BASIC - what corresponds to 1t
in assembly language? The gemeral concept involved is one of
branching.

Usually, the program counter moves consecutively through a
portion of memory. However, there are a series of instructions
which cause it to stop doing this and instead to jump forward or
backwards by a certain amount if a particular flag is set or
clear, These instructions are called the branch instructions, and
all their mnemonics have a first letter of B, for 'branch'. Here
they are:

BEQ branch if Z =1 (result EQual to zero)

BNE branch if Z = 0 ({result Not Equal to zero)
BMI branch if N =1 (data Minus; MSB = 1)

BPL branch if N =0 {data PLus; MSB = 0)

BCS branch if € =1 (Carry Set)

BCC branch if C =0 (Carry Clear)

BVS branch if ¥ =1 (oVerflow Set)

BVC branch if ¥ =0 (oVerflow Clear)

These instructions are all conditional: the branch only occurs
if the condition is true (i.e. if the relevant flag has the state
indicated). You will recall the GOTO statement in BASIC, which is
unconditional, since the jump is always made, A similar instruc-
tion exists in assembly language:

JMP jump to a new location in memory and commence
program execution from there

The program counter has its contents replaced by a new address,
and this in effect, causes a jump to a new section of the program.

38

Clearly all the above instructions need an operand: they all
need to have attached a reference which points to the location
where the branch or jump should go. In BASIC this is done by using
line numbers: in assembly language, the corresponding concept is
the label. We have already met this idea in Chapter 2 with .START:
this label marked the heginning of the program since it was put
next to the very first instruction. You will recall that a label
can be any BASIC variable, but that it must begin with a dot. It
is very useful to make these labels as meaningful as possible
{.START is better than .X2Y96T, though both would serve the same
purpose).

The best way to illustrate the concept of branching and of
labels is to see how we can translate simple BASIC statements into
assembly language.

4.3 THE ASSEMBELY LANGUAGE EQUIVALENTS OF SOME BASIC
CONDITIONAL STATEMENTS. I: USE OF THE N AND Z FLAGS

(a) IF NUM = 0 THEN GOTO 50

LDA NUM
BEQ ZERO

.2ERO .

There arc a number of points to make here. Notice first the way
the label, ZERO, is put in the first columm; the second column
contains the instruction and the third the operand. This is a
standard way to write down assembly language programs. Notice next
that the dot in front of the label is only necessary if the label
is put in the first column; when ZERO is an operand (as it is in
BEQ ZERQ) the dot is not required. As we will see later, the dot
is used by the BBC microcomputer to differentiate labels from
instructions; it is not a standard requirement of assemblers.
Indeed, very few assemblers use this convention. For this reason,
unless we are displaying a program which is to be typed directly
into the microcomputer, we will not include the dot notation
either. We shall have more to say about this in Section 4.6.

Notice the choice of label here: ZERO is a meaningful choice
since the branch is only made if the result is zero. Again, any
legal label will do, but we should try to find ones which indicate
to us what is going on. The program werks as follows: we load the
contents of the location with address NUM into the accumulator.
BEQ ZERO looks at the I flag and branches to the line with the
label ZERO if 2 = 1. If Z = 0, the branch is not made and the next

39

instruction is obeyed as usual. Thus this assembly program does
exactly the same as the BASIC statement.

In the program shown, the line labelled ZERO is further down in
memory than the branching instruction, but this is not essential.
Branches can occur backwards as well as forwards. In that case the

program would be:

ZERO

LDA NUM
BEQ ZERO

(b} IF KUM <> O THEN GOTO 50

LDA NUM
BNE NTZERQ

NTZERO

Here a branch is made to the line labelled NTZERC if Z = 0
(i.e. if (NUM) # 0). Again the labelled line could be earlier
Tather than later than the branching instruction: this is true of
all the branching instructions, in fact. Notice again the use of
the meaningful label. Remember that in some assemblers labels are
confined to a length of six symbols, but the BBC micro allows us
to use labels of whatever length we like.

(c) IF NUM < O THEN GOTO 50

LDA NUM
BMI NEGATIVE

NEGATIVE

This assumes, of course, that we are working with the signed
integer representation , otherwise it would not make sense to
test for a number to be less than zero. This and the next two
examples are valid only if numbers are in signed integer format.

40

(d) IF NUM >= 0 THEN GOTO 50

LDA NUM
BPL GTEQUAL

GTEQUAL

(e) IF NUM > O THEN GOTO 50

LDA NUM
BEQ ZERO
BPL POSITIVE
ZERD
POSITIVE '

In (d) we note that if a number is zero or positive, then N = 0,
and so BPL will result in a branch if (NUM} is greater than or
equal to zero. If we want the branch to occur only if (NUM) is
greater than zero, as here, we must first eliminate the case when
(NUM) equals zero. This is the function of BEQ ZERO. If we get
through to BPL PCSITIVE then either (NUM) is more than zero or
less than zero. If the former, then the branch to the line label-
led POSITIVE will occur; otherwise the mext instruction will be
performed and this, of course, is the one labelled ZERQO. Hence the
set of instructions beginning with the line labelled POSITIVE are
performed if (NUM) > 0; in all other cases, the set of instruc-
tions beginning with the line labelled ZERQ are performed.

(f) IF NUM = O THEN NUM = 1

LDA NUM

BNE NTZERO

LDA #1

STA NUM
NTZERO

Many IF... THEN statements in BASIC do not invelve jumps at all
In assembly language, however, conditional statements must always
be effected by a branch, as here. The most economical way to
encode this is to branch to what is in effect the next statement
(at NTZERO) if (NUM) # 0. Then, if no branch occurs (NUM) must be

41

zero, and then the second part of the conditional statement is
enacted. Here is another example.

{g) IF NUM < O THEN NUM = -NUM

LDA NUM

BPL NTMINUS

EOR #&FF

CLC.

ADC #1

STA NUM
NTMINUS

{h) IF NUM = Q THEN NUM1 = 3: NUM2 = 4 ELSE NUM] = 4: NuUMZ2 = 3

LDA NUM
BNE NTZERO
LDA #3
STA NUMI
LDA #4
STA NUMZ2
JMP OVER
NTZERO LDA #4
STA NUMI
LDA #3
STA NUM2
OVER

An IF... THEN... ELSE structure in BASIC can only be accom-
modated in assembly language by using an unconditional jump, for
this separates the THEN... from the ELSE... . Some authorities on
assembly language dislike the use of the JMP instruction and pre-
fer if possible to replace it by a branch instruction that always
branches. In the example here BNE OVER would do that, since the
accumulator always contains &04 which is non-zero. They have two
reasons for doing this: firstly, as we shall see later in this
chapter, the branch saves a byte of storage (though it executes
no quicker); secondly, as we shall also see later, the branch is
intrinsically relocatable, in that its addressing mode is relative,
whereas the jump uses an absolute address,

These points are valid, but must be offset against the unnatur-

alness of the coding. Using such '"tricks' as these needs very
careful documentation, otherwise disasters occur. If we use the

42

coding as a model and then try to implement IF NUM = O THEN
NUMI = 3:; NUM2 = Q..... , the branch will not work,
Exercise 4.1

Encode these BASIC statements using assembly language with
suitable labels (in all the questions (NUM1) and (NUMZ) occupy

single byte locations - in 1 assume signed integer representation).

1. IF NUM1 + NUM2 > 0 THEN GOTO 50.

2. IF NUMI - NUM2 <> 0 THEN NUM3 = NUM2: NUMZ = NUMI:
NUM1 = NUM3.
3. IF NUM1 + NUM2 > 255 THEN SUM = 0 ELSE SUM = NUMI + NUM2,

4.4 THE ASSEMBLY LANGUAGE EQUIVALENTS OF SOME BASIC
CONDITIONAL STATEMENTS. II: USE OF CMP INSTRUCTION

(a) IF NUM1 = 2 THEN GOTO 50

Here is the way to encode this using the instructions learnt
so far:

1.DA NUM1
SEC

SBC #2
BEQ EQUAL

EQUAL

This coding is fine if we do actually want to reduce (NUM1) by
2. But if our sole aim is to compare (NUM1) to 2 then putting the
result of subtracting 2 into the accumulator, as we have done here,
is a waste of time. What we require is an instruction which will
do the subtraction and set the appropriate flags without affecting
the accumulator. This is the function of the CMP instruction. The
coding using CMP is:

LDA NUM1
CHp #2
BEQ EQUAL

This is much neater and leaves (NUMI), unaffected, in the
accumulator. Notice that we do not need SEC here: CMP will set
carry automatically before doing the subtractioen.

{b) IF NUMI »= 6 THEN GGTO 50

Without the CMP instruction we would need to subtract 6 and see
if the result were greater than or equal to zero. Using CMP, we
can do the subtraction and affect the appropriate flags without
having the subtraction contaminate the accumulator. We have:

LDA NUM1
CMP #6
BCS GTEQUAL

GTEQUAL

CMP #6 subtracts 6 from the accumulator, sets the relevant
flags and then throws away the result of the subtraction: the con-
tents of NUM1 are still in the accumulator, quite unaffected.

You may be wondering why we have not used BPL GTEQUAL here as
we did in (d) of Section 4.3. To understand this, suppose that
(NUM1) = 135, We take away 6 and get 129, which is %81. The MSB
is one and therefore the result is negative! BPL can only be used
to test if bit 7 of some data is zero; in a few cases, like

"4.3(d), this can be interpreted as testing if a result is posi-
tive, but in most cases it cannot be used like this. Generally
speaking, do not use BPL or BMI with the result of a CMP instruc-
tion:s use BCS and BCC instead.

To understand why BCUS works here, recall what happens to the
carry flag when we subtract. If no borrow has occurred, C will
equal one (i.e. carry will be set); if a borrow has occurred C
will equal zerc (i.e. carry will be clear). In the former case,
the number subtracted cannot be greater than the number it is sub-
tracted from. So we have:

BCS Branch if result greater than or equal to zero

BCC Branch if result less than zero

This is not all that easy to remember, and the particular
mnemonic I use for BCC is 'Branch if result of Comparisen a
Complement'. This reminds me that BCC only branches if the result
is negative; by extension, BCS branches in all other cases.

44

(c) IF NUM < 35 THEN GOTO 50

LDA NUM
CMP #35
BCC LESS

LESS

Here the branch occurs if (NUM) - 35 is negative i.e., if
NUM < 35, Equality will mot give a branch.

(d) IF NUM »= -& THEN GOTO 50

\

LDA NUM

BPL GTEQUAL

CMP #&FA

BLS GTEQUAL (or BPL GTEQUAL)

GTEQUAL

We suppose here, of course, that NUM is to be interpreted as a
signed byte. We check first if NUM is positive or zero with BPL.
If not, then we make the comparison with -6, which is encoded of
course as &FA (the BBC assembler will not allow CMP #-6). Hence
&FF to &FA will give the branch (the result is 5 to 0) and &F9 te
480 will not (these give -1 to -122}.

Notice that LDA NUM
CMP &FA

BPL GTEQUAL

will not work. Consider for example NUM = 122, which results in
&80 or -1.

{e) IF NUM1 > NUMZ THEN GOTO 50

LDA NUMI
CMP NUM2
BEQ EQUAL
BCS GREATER
EQUAL
GREATER

The logic of this is similar to 4.3(e). Notice that we are not
restricted to the immediate addressing mode with CMP (although it
is often used like this in practice). In fact, CMP uses most of
the addressing modes available (of which we have so far met
Absolute and Zero Page - clearly Implied is not applicable). Tn
the case here, the contents of NUM2 are subtracted from the accum-
ulator, the result being thrown away.

It may help to summarise the cases follow a CMP.

Branch if Instruction SuggzZEEd (followed by: Inmstruction labell
Acc < memory BCC LESS
Acc € memory BEQ LESSEQ ; BCC LESSEQ
-Acc = memory BEQ EQUAL
Acc # memory BNE NTEQUAL
Acc 2 memory BCS GTEQUAL
Acc » memory BEQ EQUAL ; BCS GREATER

Exercise 4.2
Encode these BASIC statements into assembly language.
1. IF NUM > 15 THEN NUM = 0,

2, IF NUM <= -10 THEN INDIC = NUM ELSE NUM = 0: INDIC = 1.

3. IF NUM1 = NUM2 THEN NUM2 = NUM3 ELSE IF NUM4 > 16 THEN
NUMZ = NUM4 ELSE NUM2 = Q: NUM4 = O,

46

4.5 COMPARING NUMBERS GREATER THAN 255

Consider first how we can test if (NUM1H; NUMLIL) = (NUM2H;
NUM2ZL). Here is the assembly code:
LDA NUMIL
CMP NUMZL
BNE NTEQUAL
LDA NUMIH
CMP NUMZ2H
BEQ EQUAL
NTEQUAL

EQUAL

The idea here is to establish first whether the lower bytes are
equal: if they're not, we can jump straight to NTEQUAL. If they
are, we compare the higher bytes, and if they're equal, then both
two byte numbers are equal.

Consider now how we test for (NUMIH; NUMLL) » (NUM2H; NUM2L).
The easiest way to do this is to perform a subtraction and see if
the result is non-negative. The coding for this is straightforward.

LDA NUMIL
SEC

SBC NUMZL
LDA NUMIH
SBC NUMZH
BCS GTEQUAL

GTEQUAL

The idea here is that if no borrow is required when subtracting
the high bytes (i.e. if € = 1 after this subtraction} then the
first two byte number must be at least as large as the second one.
Notice that any borrow required from subtracting the low bytes is
'paid back' automatically in the second SBC instruction.

Now, an inspection of this code points to a way of shortening
it. All we use from the first three lines is the carry flag: if
set to one, therc is no borrow, if zero, there is a borrow. We are
not interested in the result of the subtraction. So we can replace
the first three lines by two, involving CMP as follows:

LDA NUMIL
CMP NUM2L
LDA NUMIH

SBC NUMZH
BCS GTEQUAL

.

GTEQUAL

The carry flag is affected in just the same way, but we save a
line since we do not need to set carry initially with SEC when
using CMP,

Consider finally how to test for (NUMIH; NUMIL) > (NUM2H;
NUM2L), This may seem identical to the last case, but a little
reflection will show you why it is not. We have no way in the last
piece of coding of deciding whether the numbers are indeed equal.
Tt does not suffice to know that the high byte difference is zero,
since this would occur with, for example, &1A86 - &1A52 and with
4549 - 85BA3,

Can we in some way combine the first two tests econcmically?
‘Clearly if we compare the lower two bytes and they are not equal
then we cannot have equality. So let us focus on the case when the
lower bytes are equal. Consider (a) &149A - &I3%A and (b) 81494 -
&149A. Now in (a), if we pretended that there were a borrow from
the lower byte subtraction, then the result of the higher byte
subtraction would still be non-negative, whereas in (b) it would
be negative. This provides the clue: if the lower bytes are equal
we shall engineer a borrow before subtracting the higher bytes.
Here is the coding:

LDA NUMTL
CMP NUMZL
BNE NTEQUAL
CLC

NTEQUAL LDA NUMIH
SBC NUMZH
BCS GREATER

GREATER
48

CLC at line 4 engineers the borrow we require.

Exercise 4.3
Encode into assembly language, tests for:
1, (NUM1H; NUMI1L) < (NUM2H; NUM2L).
2. (NUMIH; NUMIL) ¢ (NUMZH; NUMZL).

3. (NUML(3); NUML(2); NUMI(1); NUMI1(0)) » (NUMZ2(3); NUM2(2);
NUM2 (1) NUMZ(0)).

4, Can you find an economical way to test if {NUM({3); NUM(2};
NUM(1); NUM{0)) = 0? (Hint: Use ORA.)

4.6 TYPING IN ASSEMBLY LANGUAGE PROGRAMS
WITH LABELS INTO THE BBC MICROCOMPUTER

Listing 4.1 illustrates how to put labelled assembly programs
inte the BBC microcomputer. There are a number of new features
here. First notice that the whole program from line 30 to 90 is
assembled twice., On the first pass, as it is usually called, we
use OPTO: this suppresses both listing and errors. On the second
pass, we use OQPT3 which gives both the listing and the errors.

The reason we suppress the errors on the first pass is that an
error is bound to happen. When the assembler gets to line 50, it
does not know what value to give to the label ZERO because it
hasn't met it yet; ZERO doesn't appear until line 80. Therefore,
it treats this as an undefined label error and leaves it un-
assigned. On the second pass, however, it has already met ZERO (in
line 80 on the first pass) and can therefore assign a value to it.
This two-pass idea must always be used if there are forward refer-
ences in a program. A forward reference is the use of the label as
an operand in a branch or jump instruction which has not yet been
met: that is, the branch or jump is te a higher line number.

LISTING 4.1

TONUM=270: DIM STAKT 50

2O0FO0OR Ix=0 TO T STEFZ:FL=8TART
SOLOFTI%

40LDA NUM

SORER ZERD

S60ADC #5

TOSTA NUM

B0, ZERD

FORTS: INEXTI

When we have to make two passes we need to change the way we
allocate memory using the DIM statement. We cannot use DIM P% as
before, because on the second pass a new set of memory locations
will be allocated. What we require to happen is that the transla-

49

tion from the second pass goes into the same locations as those
from the first pass. If this does not happen, the values of the
labels from the first pass will not apply to the second. To ensure
this, we give the address of the first location te the variable
START using DIM START. Now on both passes, P% = START will put the
start of the machine code in the same place. This method also dis-
penses with the need to use a label .START to mark the beginning
of the program.

Listing 4.2 shows that two passes are not always required when
using branches and jumps. Here, the branch at line 80 is defined
on the first pass since BACK is defined in line 50. However, in
more complex programs involving labels it is sometimes tedious to
ascertain whether or not forward references are made. It does no
harm, therefore, to use the two-pass method in listing 4.1 if in
doubt, even if it turns out that two-passes weren't in fact neces-
sary. You can discover if two passes are necessary by using
FOR I% = 1 TO 3 STEP 2 and seeing if all labels are assigned on
the first pass (OPTL gives a listing but suppresses errors).

LISTING 4.2

1ONLIM=E 702 DIM STERT D0
ZOPS=BTART

FOLOPTE

40L.DA NUM

S0 BACK

a0A0HC #35

TOCMP #200

BORCC BACKE

FORYS: 1

Notice that in both listing 4.1 and 4.2 the coding is not
arranged in three columns. Thus if a label is used it is put in a
line on its own, as in line 80 of 4.1. This is why a dot is re-
quired for columm one labels on the BBC computer, for otherwise
the assembler could not differentiate between a label and a
mnemonic. It is possible to put the label on the same line as the
instruction (e.g. ,NOOVFLOW BPL NTNEG) but if we do this the column
structure is destroyed and rcadability greatly impaired. We could
preserve columns by indenting all the other lines by 10 spaces,
but this would be exceptionally tedious. Hence, putting column one
labels on single lines is the best solution, since it preserves
columns two and three. This method is unique to the BBC assembler:
other assemblers will allow simple formatting inte three columns.
But the advantage with the BBC compu:er is that labels are of un-
restricted length, a feature missing from most assemblers.
Programs on paper should still be written in three columns, but
when typed into the computer the two column format with column one
labels on a single line should be used.

One final point. It is possible to use multi-line statements if
required, For example, we could compress listing 4.1 into listing
4.3 if we liked. There are two problems with this: firstly, edit-
ing is more difficult; and secondly, the program is harder to read

50

since the column structure is lost., It is a matter of preterence,
but in this book listings will use single line statements most of
the time.

LISTING 4.3

TORLIM

ETOrDIM START S

ZOF0OR Ih=t0 T I STEE X

FQUOFTILLDG MUM: BER ik
LEERD RTS: INEXTIEZ

ST AR T
ARG A5 STA NUM:

4.7 RELATIVE ADDRESSING

Look again at the assembly listing for Listing 4.1, and focus
in particular on the machine code translation of line 50. It is
F0 04, F0 is the opcode for BEQ, but what does the operand, 04,
mean?

The mode of addressing used here is called relative addressing.
The branch is made to an instruction located 4 bytes further on
from that pointed to by the present contents of the program
counter. That is, if Z = 1, four is added to the contents of the
program counter, and this achieves the branch, Figure 4.2 shows
this in more detail. The top location represents the beginning of
the program, whose address is &0E93 the value of START, and so the
PC is set initially to &0E93, The microprocessor thus loads the
accumulator with the contents of location &70 and the PC is now
set at &0E95. Now the next byte, F0, is fetched and decoded as 2
BEQ instruction; meanwhile the next byte is fetched, 04, and this
is understood as the displacement if the branch occurs. At this
stage the PC is at &0E97, the address of the next instruction
(ADC). Hence, if the branch occurs, the displacement is added to
the address of the next instruction. This is quite complicated to
work out, and if we had to do it mistakes would be common. Fortu-
nately, the assembler allows us to use labels and it does the
calculations for us.

LDA EOE
&70 &0EOG
BEQ £OE95
£104 EOED6
ADC &0E9?
5 &0E9S
+4 STA &0E99
70 HOESA
RTS &0E9B

Figure 4.2: A forward branch

Look now at the assembly listing for Listing 4.2, and focus on
line 70. The translation is 90 FA. 90 is the opcode for BCC, and
FA is interpreted as a signed integer i,e. as -6. So if the branch
occurs (i.e. if C = 0), 6 is taken from the contents of the PC.
Figure 4.3 shows the details.

LDA &0Es2

&70 HOEBI

ADC S50E34

5 S0E85

CMP B0OEBG

-6 sce B0ER7
BCC &0ESS

EFA &0ES9
ATS SOEBA

Figure 4.3: A backward branch

Hence the displacement to be added to the contents of the PC is
always understood as a signed integer. This means that the maximum
forward branch that can be made is +127 from the instruction after
the branch i.e. +129 from the branch instruction itself. Similarly,
the maximum backward branch is -128 from the instruction after the
branch i.e. -126 from the branch instruction itself. Figure 4.4
shows this diagrammatically.

+129

el

Figure 4.4: The maximum range for & branch

If we try to make a branch beyond this, the assembler will give
us a 'branch out of range' error. Now most of our branches will be
within this range, but what happens if we wish to go heyond it?
Suppose that in line 50 of listing 4.1 the label ZERO refers to an
address more than 120 from &0ES5, the address of the BEQ instruc-

52

tion. We can recode it thus:

BNE NOJUMP
JMP ZERO
NOJUMP

Similarly in line 70 of listing 4.2, if the branch is out of range
we can recode

BCS NOJUMP
JMP BACK
NQJ UMP

Hence we solve the problem by not branching if the condition we
require holds and then jumping to the desired place.

This solution is mnot ideal since it uses 5 bytes of storage
instead of two, but it should not be required too often. We could
in fact try to do it in four bytes by having as the original
branch, BEQ PIVOT in listing 4.1, where PIVOT is an intermediate
point where a BEQ ZERO is located, ZERO being the final destina-
tion, This will work if the branch is within 256 bytes. The first
solution, however, is universally applicable and does not require
us to insert extra lines at points relatively isolated from the
flow of the program. Hence, from a general point of view, the
first solution is to be preferred. Nevertheless, the second solu-
tion has the merit of being relocatable, and for stand-alone
machine code programs this might be important., Which solution we
use depends on our needs at the particular time. (Relocatability
is discussed in more detail in Chapter 9.)

Relative addressing is justified because most branches are
short, and the two byte instruction which relative addressing
allows results in an improvement in speed and a reduction in pro-
gram size. The reason for the term 'relative' should be obvious
now. A branch is made x bytes relative to the present position of
the program counter, Hence x is added or subtracted from the PC.
By contrast, the addressing mode of JMP is absolute: the contents
of the PC are replaced by the operand of JMP. Notice again how the
address is stored in the form low byte, high byte in the operand.
This is not so confusing if you remember that the second storage
location is higher than the first in memory. We are most fortunate
though that we have an assembler which sorts all this out for us,
relieving our memories of unnecessary burdens.

4.8 USING BRANCHING IN THE ADDITION AND SUBTRACTION
OF UNSIGNED NUMBERS: INC and DEC

Let us first introduce two new instructions: INC and DEC.
INC MEMLOC takes the contents of MEMLOC adds one to it and stores
the result in MEMLOC. If (MEMLOC) = 255, INC MEMLOC produces 0 in

53

MEMLOC. DEC MEMLOC takes the contents of MEMLOC subtracts one from
it and stores the result in MEMLOC. If (MEMLOC) = ¢, DEC MEMLOC
produces 255 in MEMLOC, The mnemonic INC stands for INCrement and
DEC for DECrement.

Now armed with these two new instructions let us reconsider the
coding we used in listing 3.1 to add two single byte numbers to-
gether when the result may exceed 255. Here is an alternative
using INC and a branch:

LDA #0

STA SUMH

LDA NUMI

CLC

ADC NUM2

STA SUML

BCC NOCARRY

INC SUMH
NOCARRY

The idea is if there is no carry, € = 0 and a branch occurs to
line NOCARRY. Otherwise NUMH is incremented by 1. Now a comparison
of the assembled form of these two programs will show that we have
saved one byte (type this one in in the same way as listing 3.1
but with a two-pass assembly and check). But we do better still if
we wish to encode the sum

(NUMIH; NUMI1L) + (NUM2) - NUM1H; NUMIL

Using the ideas inm Section 3.3 we obtain this program:

LDA NUMIL
CLC

ADC NUM2
STA NUMIL
LDA #0
ADC NUMITH
STA NUMIH

54

Using the new ideas here, we have instead:

LDA NUMIL

CLC

ADC NUM2Z

STA NUMIL

BCC NOCARRY

INC NUMIH
NOCARRY

a saving now of three bytes (type in both programs and check). We
also, on average, save time in execution using this second method.

Exercise 4.4

Encode (NUM1H; NUMIL) - (NUM2) - NUM1H; NUM2H into assembly
language {a) using similar ideas to Section 3.6, and (b) using DEC
and a branch. How many bytes are saved using (b)?

4.9 MONITORING PROBLEMS OF SIGN USING BRANCHING

Consider the simple BASIC statement LET DIFF = NUM1 - NUM2
where NUM1 and NUMZ are positive integers less than 255. In assem-
bly code we have, of course:

LDA NUM1
SEC

SBC NUMZ
STA DIFF

But is this really correct? What happens if (NUM1) < (NUM2)7
Clearly we should get a negative result, and to accommodate this
we need to treat DIFF as a signed integer. We need to take
remedial action, however, if the range falls outside -128 teo 127,
The first thing we need to do is to assign two bytes for the
difference, DIFFH, DIFFL, where (DIFFH, DIFFL} is considered a
signed integer giving us a range now of -32768 teo +32767, which is
easily enough for our purposes.

Now there is no problem if NUM1 » NUM2; we store the result in
&00; DIFFL, which is positive. What happens if NUMI < NUM2? Let us
consider an example: &83 - &C8. This gives &BB, which is to be
interpreted as -69, -69 using two-byte signed integer precision is
8FFBB (since &FFBB + &45 = (1)0000, and &45 is 69). It follows
that the result is stored as &FF; DIFFL,

It should be clear now that the following coding will do the
trick:

LDA #0
STA DIFFH
LDA NUM1
SEC
SBC NUMZ
STA DIFFL
BCS NTNEG
DEC DIFFH
NTNEG

This is very similar to the coding of the answer to Exercise
4.4, This sort of similarity is what makes the two's complement
representation so useful,

Consider again the BASIC statement with which we began, but
suppose now that NUM1 and NUM2 can be signed integers. Tf NUM1 and
NUM2 have the same sign, them there is no overflow. If they were
always the same sign we would, in fact, only need ome byte to
store the answer. This is mnot always the case if the signs do not
agree, however. Consider 52 - (-92): here we will get overflow,
since the answer will be &850 which is negative in single byte
precision signed integer.

We need somethlng similar to the solution above. The flag we
-need to monitor is the overflow flag. If this is not set, the sign
of the answer is glven by the MSB of the answer; if it is set, the
sign of the answer is given by the opposite of the MSB of the
answer.

LISTING 4.4
LONUML=%70: NUMZ2=%71: DIFFL= L7 2 : DIFFH=473t ?%74=0: ?%75=
20DIM START_S0
SOFOR_I%=0 TQ 2 GTREF 2:P%L=8TART
AOLOPTIZ
SOLDA #O
&0O5TA DIFFH
FOL DA NUML
SOSELD
FASEC NUMZ
100sSTa DIFFL
11OBYE NOOVFLOW
120E0R #580
130, NODVELOW
130BPL NTREG
150DEC DIFFH
180, NTNES
170RTS: INEXTI%
180REFEAT
1FOINPUT"First number”, X IEX THEN X=25&
SO0INPUT"Second rium mber " :I ﬂ THEN Y=25 b+Y
Z102NURI=X¢ PHUM2=:Y EALLé
SR i
%221 QNSK}&?EFF THEN ANSL—ANSL*&iDOOO
2ZIPRINTANSY
2EOUNTIL FALSE

56

(

The coding is in listing 4.4. Notice that in line 30 we use
1% = 0 and 2 giving us OPTD and OPT2 in line 40. This suppresses
the assembly translation listing completely and results in much
quicker assembly. Unless we are specifically interested in seeing
the translation, we should use this formulation, and we will do so
from now on in this book.

EOR #&80 in line 120 Teverses the MSB of the result if overflow
has occurred. Notice here that we use BPL and not BCS: the carry
flag has no meaning in single-byte precision signed arithmetic.

Put this program in your computer and test it with the follow-
ing pairs of values for NUMI and NUM2: -85, -18; -85, -110; -85,

30; -85, 60; 50, 20; 50, 80; 50, -30; 50, -80. Confirm that the
results you get for (DIFFH) and (DIFFL) are correct.

Exercise 4.5

1. Encode the BASIC statement IF(NUM1 - NUM2) > NUM3 THEN GOTO
50 where all are unsigned integers.

2. Write the assembly cede to perform
(NUM1H; NUMIL) - (NUM2H; NUM2L) - DIFF2; DIFF1; DIFFO
where the first two numbers are to be considered as unsigned
integers but where (DIFF2; DIFF1; DIFF0) is a triple-precision

signed integer.

3. Write the assembly code equivalent to LET NUM = NUM1l + NUM2
where NUM1 and NUMZ are integers between -128 and 127.

4, Repeat Q.2 if the first two numbers are to be considered as
signed integers.

5. Write the assembly code to perform
(NUM1H; NUMIM; NUM1L) - (NUM2H; NUM2L) ~ NUM1H; NUMIM; NUMIL

where the first number is a negative integer but the second is not
signed, Include a check for overflow.

6. Repeat Q.3 if NUML and NUMZ are integers between -32768 and
32767 whose sum may lie outside this range without an error being
signalled.

7. Write the coding to branch if NUM1 > NUM2 where both are
signed integers.

8. Repeat Q.1 if NUMl and NUM2 can be signed integers, but
where NUM3 remains unsigned.

9. Repeat Q.1 if all the numbers are signed integers.

10. Repeat Q.7 if the numbers are each two-byte signed integers.

57

Chapter 5 Loop structure in
assembly language

5.1 LOOP STRUCTURES

BBC BASIC has two loop structures: the FOR... NEXT loop and the
REPEAT... UNTIL loop., These structures are essential components of
most realistic programs in BASIC, and the same is true of assembly
language., However, in assembly language the structures do not come
ready made as in BASIC, so we need to develop methods of building
them up from the component instructions available. In doing this,
we will also create a third important structure, regrettably miss-
ing in BBC BASIC: this structure we will term the REPEAT WHILE
loop. The difference between REPEAT,.. UNTIL and REPEAT WHILE is
that the former will always be executed at least once, since the
exit 1s at the end; the latter meed not be executed at all, since
the exit is at the beginning.

The most important instructions needed to create loop structures
in 6502 assembly language are connected with the X and Y registers,
and to these we now turn.

‘5.2 INDEX REGISTERS: SOME NEW INSTRUCTIONS

There are two further registers in the 6502 microprocessor
which can act as temporary storage locations of data: the X regis-
ter and the Y register, Their relationship to the rest of the
architecture can be seen in the diagram in Appendix 2.

Data can be loaded into them from memory: the mnemonics are LDX
and LDY. Data can be stored from them into memory: the mnemonics
are STX and STY. There are also instructions identical in opera-
tion to CMP: CPX M compares the contents of X with (M) and sets
the appropriate flags; similarly CPY M.

A very important feature of the registers is that they can be
incremented and decremented directly: the mnemonics are INX, INY,
DEX, DEY. These are one-byte instructions utilising implied
addressing and so they save space over a corresponding INC M or
DEC M instruction (which is at least two bytes long). More import-
antly, they operate at least 2% times as fast as the corresponding
INC M and DEC M operations. This is very telling in loops, as we
shall see.

No arithmetic or logical operations can take place on the X and
Y registers: there is no equivalent to ADC, SBC, ORA, EOR or AND.

58

Hence to add a number to X or ¥ we must first transfer X or Y to
the accumulator, perform the addition or subtraction, and then
transfer back, For this reason, there are special instructions
allowing us to make these transfers: the mnemonics are TXA
(transfer contents of X to A), TYA, TAX (transfer contents of A to
X), TAY. All are one byte instructions.

5.3 THE ASSEMBLY LANGUAGE EQUIVALENT OF A FOR... NEXT LOOP

(a) FORX =1 T040 NEXT

How can we implement this structure in assembly language?
Here is the coding:
LDX #1
LoOP

INX
CPX #41
BNE LOOP

We begin by setting the X register to 1. Then the first c¢ycle
of the loop is performed; that is, any instructions down to INX
will be obeyed. On reaching INX, X is incremented and compared to
41; if the result is not zero the next cycle of the loop will be
performed., Altogether there will be 40 cycles through the loop,
and you should convince yourself of this.

(b) FOR X = 40 to 1 STEP =1 NEXT

This is more complicated in BASIC but easier in assembly
language:
LDX #40
LOOP

.

DEX
BNE LOQP

There is a saving of two bytes and a corresponding saving of
time. This is because the decrement operation affects the Z flag
(so too does the increment operation - as X or Y passes from 255
to 0 again - and both operations also affect the N flag). Hence
there is no need for a CPX #0 after DEX.

59

Saving time is much more important in leops than in parts of a
program which will only be performed once. If possible, then, we
should try to organise our loops to count backwards as here,
rather than forwards as in (a). And we should always use the X (or
Y) register as the loop counter, since INX and DEX operate very
much more quickly than INC and DEC.

(c) FOR X = 0 TO NUM coeo NEXT

LDX #0
LOOP

INX

BEQ OUT

CPX NUM

BCC LOOP

BEQ LOOP
ouT

Here X is compared with NUM, and the loop is performed if X is
less than NUM (BCC LOCP). This will give (NUM) cycles of the loop,
and one more is gained when X equals (NUM) (BEQ LOOP). Notice that
we do not use BMI LOOP, tempting though it may be: if (NUM) is 130
or more, the loop would only be performed once! Finally, the pur-
pose of BEQ OUT: without it, if (NUM) = 255, the loop would cycle
" indefinitely.

(d) FOR X = NUM TO 0 STEP -1 oo NEXT

As before, this is more efficient than the forward loop, but
for a different reason,
LDX NUM
LOGP

DEX
CPX #&FF
BNE LOOP

This time we still need a CPX, but we cannot use CPX #0: BCS
LOOP since this will give us an infinite loop! Again, trying to do
without the CPX and writing just BNE LOOP will miss out the last
cycle of the loop (when X = 0). Hence we need to compare X to one

60

less than zero i.e. &FF, But we save two bytes on needing only one
test instead of two,

You might be wondering why we cannot write

LDX NUM
LGOP

DEX
BPL LOOP

since DEX affects the N flag, and so save ourselves two more bytes.
The problem is similar to that discussed in (c}: if NUM is greater
than 128, the loop will only be performed once.

Comparing the programs in (b) and (d) we see that it is more
efficient to count down to 1 than to zero. Hence, if we can, we
should try to organise our loop to count backwards to 1 rather
than to zero.

(e) FOR X = NUM1 TO NUM2 NEXT
If we assume NUM2 = NUM1 we can write:

LDX NUM1
LOOP

INX

BEQ OUT

CPX NUMZ

BCC LOOP

BEQ LOOP
ouT

What happens here if NUM1 < NUM2? Clearly, the loop is per-
formed once. Most BASICs, including BBC BASIC, are like this.

61

() FOR X = NUM1 TO NUM2 STEP NUM3 ,......... NEXT

LDX NUM1
Loop

TXA
cLe

ADC NUM3
TAX

BCS OUT

CMP NUM2
BCC LOOP
BEQ LOOP

ouT

To add on (NUM3) we need to transfer X to the accumulator (TXA),
perform the addition and transfer back (TAX). We can now use CPX
NUMZ2 or CMP NUM2, it does not matter. The statement BCS OUT guards
against a case like FOR X = 6 TQ 251 STEP 5, where X returns to
zero before it can exceed 251,

Note that all of (a) to (f) will work equally well if Y
replaces X.

Exercise 5.1

1, Will the programs in (e) and (f) need any amendment if we
interpret the numbers as signed integers (i.e. NUMl, NUM2 and NUM3
lie between -128 and 127)7

2. Assuming we are dealing with unsigned integers write in
assembly language:

(a) FOR X
(b) FOR X

NUM2 TO NUM1 STEP -1, NEXT
NUM2 TO NUM1 STEP - (NUM3) NEXT

Take care if NUM1 = 0 in (a), and guard against something similar
to 5.3f in (b).

3. Amend the program in {f) in line with the suggestions in the
answer to Q.1 if the numbers are signed integer.

62

5.4 FOR... NEXT LOOPS OF MORE THAN 256 CYCLES

(a) FOR N =1 to 1000 .,........ NEXT

To implement this in assembly language we need to use both the
X and the Y counters. In general we choose for X the largest whole
number less than 257 which will divide into the cycle count. Here
we take 250 for X and 4 for Y as follows:
LDY #0
LOOP1 LDX #1

Loop2 -

INX

CPX #251
BNE LOOP2
INY

CPY #4
BNE LOOP1

The inner loop, LOOP2 to BNE LOOP2 is performed 250 times for
each of the four values of Y (0, 1, 2 and 3).

To obtain the value of N, contained in two bytes of course, we
would have to evaluate 250 * Y + X, We will show how to do this in
Chapter 8.

(b} FOR N = 1000 TG 1 STEP -1 NEXT
Once again, the backwards loop is quicker.
LDY #4

LOOP1 LDX #250
Loor2

DEX
BNE LOOP2
DEY
BNE LOOP1

This time N is 250 * (Y - 1) + X. It follows that if the value
of N is required on each cycle of the loop, then there is less

63

saving in moving backwards through the loop. Having to subtract 1
from Y cancels out some of the time otherwise saved in the imple-
mentation of the loop. We can in this case alter the program so
that N is 250 * Y + X. Alter the first line to LDY #3 and the last
to BPL LOCOPl., This is not a general solution but will work if the
initial content of Y is less than 129,

(¢) To generalise this for N = 0 TO (NUMH; NUML} we will need to
use a different method. In any specific case we can examine the
number of cycles and write the program as in (a} (er (b}). But, if
we want to accommodate any number of cycles up to 65536, it is
tricky to incorporate these factor type calculations in the pro-
gram. An easier method is to separate the loop into two parts:

N =0 TO {(NUMH) - 1};FF and N = (NUMH);00 TO {(NUMH; NUML}.

The first loop is achieved by cycling on X 256 times for each
value of Y = 0, 1, 2... (NUMH) - 1; the second by cycling on X
for 0 to (NUML).

Here is the program:

LDX #0
LDY #0
LOOP 1

INX

BNE LOOP1

I NY

CPY NUMH

BNE LQOP1
LoopP2

I NX
BEQ OUT
CPX NUML
BCC LOOP2
BEQ LOOP2
ouT

X in LOOP1 goes from zero back to zero, giving 256 cycles; Y
goes from 0 to (NUMH) - 1, one for each complete loop of X. Then
in LOOPZ, X goes from zero to NUML. At any stage N = (Y; X).

64

It may seem rather wasteful to have two separate loops like
this, but as we shall see in Chapter 9, if a lot of code is ve-
quired within the loop then a subroutine can be used. In this way,
the memory overhead is not so great {though the subroutine solu-
tion will add a time cost).

This method is quite general: if we want to perform N

=ATO B
we use instead N = 0 TO (B - A), and compute N as (Y; X) + A,

Exercise 5.2

1. What happens to the program in {(c¢) if NUMH is zero? Write
some code to correct this.

2. Write the program in {c) using a 'backwards' loop,
N = (NUMH; NUML) TO 0 assuming (i) that N will not need to be com-
puted (se that no strict order on N is necessary) and (ii} that N
needs to be computed on every loop in the correct coding order.
Are both programs an improvement over the forward loop?

5.5 THE EQUIVALENTS OF A REPEAT... UNTIL
AND A REPEAT WHILE... ENDWHILE LOOP

{a) REPEAT UNTIL SUM > 200
There are two ways of coding this:
(i) REPUNTIL : (i) REPUNTIL .
LDA SUM LDA #200
CMP #200 CMP SUM
BCC REPUNTIL BCS REPUNTIL

BEQ REPUNTIL

Clearly the second is more efficient, and illustrates a general
principle: if possible, arrange the program so that a branch will
occur when the value in the accumulator is greater than or equal
to the value compared (or alternatively when the value in the
accumulator is less than the value compared). Try to avoid
branches on 'greater than's' or on 'less than or equal to's'. The
same is true if we want to compare a value in the X or Y register
with a value in memory or in immediate mode. Nevertheless, do not
attempt to distort the flow of logic to achieve this, since you
will end up with a less efficiently organised and hence slower
program, Only if the choice of comparison can be made without any
real alteration to the natural flow in the algorithm, should you
contemplate it.

65

{b) REPEAT WHILE SUM < 200 ENDWHILE

As mentioned this structure does not exist in BBC BASIC, but it
should be clear what it does. ENDWHILE marks the end of the group
of instructions to be repeated while sum remains less than 200.

In assembly code:

REPWHILE LDA #200
CMP SUM
BCC ENDWHILE

.

JMP REPWHILE
ENDWHILE

In practice it may be possible to use a branch rather than a
jump here (see 5.7c, for example). Notice the meaningful label
names chosen. It is possibly good practice to stick to these names
in all your programs, adding numbers if necessary to differenti-
ate. So for example, you may have the labels REPUNTIL1, REPUNTILZ,
REPWHILEl, ENDWHILE1, REPWHILEZ, ENDWHILE 2, LOOP1, LOOP2, LOOP3
in one program. Remember the BBC assembler allows you to have
label names of any length.

5.6 ARITHMETIC AND LOGICAL OPERATIONS
: CONCERNING THE X AND Y REGISTERS

This section looks at some special techniques concerned with
performing arithmetic on the X and Y registers. In all cases,
where X is referred to, the same will hold for Y.

(a) (MY +X->M

Recall that this means that the contents of the memory location
whose address is M is added to the X register (X needs nmo brackets
round it for its address is implicit and so X can unambi guously
refer to the contents of the register). The result is to be put in
the location with address M,

TXA
cLC
ADC M

STA M

We use TXA to econemically transfer X to the accumulator where
the arithmetic is performed.

66

(b) (M) - XM

We cannct use the last method for this, since it would produce

X - (M). It may seem that we need a temporary location te do this,
thus:

LDA M

LOX TEMP

SEC

SBC TEMP

STA M

but this is unnecessary, in fact.

Instead we can write:
LDA M
STX M
SEC
SBC M
STA M

Once we have put the original value of (M) into the accumulator
the location M can be used as a temporary store for X.

(c) A+ XA

Here it would seem that we have no alternative to a temporary
location:
STX TEMP
CLC
ADC TEMP

However, if the program is writtenm in RAM, as all the BBC pro-
grams you write will be, we can use the area of program itself as
a temporary location, so economising on locations needed. The
coding is:

STX MEMLOC +1

cLC
MEMLOC ADC #Q

MEMLOC +1 is the address of the location where the value 0 is cur-
rently stored (this value of zero is a dummy value and could be
any number between 0 and 255), Hence the value of X is stored as
the operand of ADC ‘immediate’ as required. (Note that MEMLOC +2,

67

MEMLOC +10 or even MEMLOC +I are possible too, if we need them:
indeed any expression can be used as an operand and will be evalu-
ated by the same arithmetic routines as the BASIC interpreter
uses.) The main problem with this method is that it results in non
relocatable code (see Chapter 9}. Se if you wish a particular
stand-alone machine code program to be relocatable you will have
to use a temporary location. A second problem is that we lose the
benefits of zerc page storage, and this gives a small time cost.

(d) X = A A

Using the idea in the last section, we can do without a tempor-
ary location extermal to the program:
STA MEMLOC +1
TXA
SEC
MEMLOC SBC #0

The value in the accumulator becomes the operand of SBC#, since
it is stored in location MEMLOC +1, the address of the value zero.
Then X is transferred to the accumulator and the old value of A is
subtracted from it.

{e) A @ X?

This notation may be new to you. It means that A is to be com-
pared to X, and a decision is to be made depending upon this com-
parison. In the context of assembly language, X is taken from A
and the appropriate flags are set; the contents of A and X remain
unchanged.

We can again use the ideas in (c):

STX MEMLOC +1
MEMLOC CMP #0

This compares the accumulator to the X register as required.

(f) Exchange X and Y without affecting A
or any other external memory locations

Unfortunately there is no 6502 instruction to do this important
task. Nevertheless, we can again use the ideas in (¢} to produce a
compact solution:

STX MEMLOC2 +1

STY MEMLOCT +1
MEMLOC1 LDX #0
MEMLOCZ LDY #0

68

Exercise 5.3

1, Write assembly code to perform the following operations as
economically as possible:

{a} X - M)+ M
(b} A - X = A
() X - (M) =+ X
(d) A - X+ X
(e) X + Y+ A
(fy X -Y+A
(g) X : A?

{(h}) X : ¥Y?

(i) exchange X and A

2. Write code to perform X + (M} -+ M which at the end of the
operation leaves the contents of A and Y unchanged.

3. Rewrite (¢) and (d) of Q.1 leaving the contents of A and Y
unchanged at the end.

4. Write code to perform X + Y + X, leaving A and Y unchanged
at the end.

5.7 SOME EXAMPLE PROGRAMS USING LOOP STRUCTURE
We consider now some examples utilising the foregoing ideas.

{a) To find the sum of the numbers from (NUMI) to (NUMZ) inclusive
(0 ¢ (NUMT) < (NUM2) < 256).

We use the structure discussed in 5.3e. The result of the addi-
tion is stored in SUMH; SUML (two bytes will be adequate since the
sum must be less than 2567). The program is in listing 5.1.

LISTING B.1

1ONUM1 =270 NUMZ=271 ; SUML=%72: SUMH=%&73: ?&74=0: ?%75=0
20DIM START S0

TOFOR IY=0 TO 2 STEP 2:PX=5TART
AOQCOFPTIY

SOLDA #G

LH08TA SLUML

705TA SUMH

BOL.DX NUM1

0. L.00F

100TXA

110CLC

120ADC SUML.

1305TA SUML

69

14GBCC NOCARRY
1S0INGC SUMH

1460, NOCARRY

170TNX

1BOEREG QUT

190CPY MNUMZ2

SOOGRCC LOOF

210BEQ L.ODP

220, T

wE0ORTS: INEXTIY
240CLSs REFEAT
23QINFUT"Sum from", PNUM
LHOINFUT" To" , TNUME
2FOCALLSTART
SHBOFRINT ! SUML
2FOUNTIL FALSE

{b) To find how many natural numbers from 1 must be added together
for the sum to exceed {STOTAL) {0 < (STOTAL) < 255).

We use the structure in 5.5a and the program is given in
listing 5.2. The number of numbers required will be contained in
X, the interim result in SUM. Notice the importance of line 140:
without this line, if (STOTAL) = 255, for example, there would
never be an exit from the loop.

LISTING 5.2

10SUM=870: 5TOTAL=%71

20DIM START S5Q

SOFOR I7%=0 TO 2 STEFP 2:FU=5TART
AO0LOFTIY

SOLDA #O

HOS5TA BUM

FOTAX

BO.REFPLINTIL

FOINY

1O0OTXA

11OCLE

I20ADE BN

1708TA SUM

140608 OUT

1S0CME STOTAL

{1&0BLE REPLINTIL

170BER REPLUNTIL

i80.0UT

190RTS: INEXTI%

2O0CLES REFPEAT

Z10INPUT"Maximum total,?STOTAL
ZR20PRINT ((USRBTART aND ZOFFFFFFFIMOD 210000) DIV &1i0C
ZTOUNTIL FALSE

Line 220 isolates the second byte from the left of USRSTART,
which is the contents of the X register. The purpose of AND is to
magke sure the MSBit is zero; if it is 1, the technique will not

70

work. An alternative way of isolating bytes in the USR function is
given in 6.5.

Unlike CALL, USR always returns a value and must either be
printed out or put equal to another variable. Its principal func-
tion is to return one or more of the registers' values, The value
returned consists of four bytes in fact, PYXA, most significant to
least significant, where P is the processor status register. We
will have more to say about USR in Chapter 6.

(c) To find the greatest number of natural numbers from 1 which
can be added together with their sum not exceeding {STOTAL)
(0 ¢ (STOTAL) g 255).

In this case, we need the structure in 5.5b, since if (STOTAL)
= 0 we do not want to perform the loop at all. Listing 5.3 contains
the progranm,

LISTING 5.3

10SUM=%70: STOTAL=%71

20DIM START S0

TOFOR I%=0 TO 2 STEP 2:PYL=START
AQLOFTIY

SOLDA #O

&HOSTA S5UM

70TAX

80.REFWHILE

QUCMF STOTAL

100RER ENDWHILER

110BCS ENDWHILEL

2OINX

130TXA

1400LCL.C

180ADE SUM

1608TA SUM

170BCS ENDWHILEL

180RCC REFPWHILE

190 ENDWHILEL

Z200DEX

ZLOENDWHILES

ZR0ORTS: INEXTIY
2F0CLS 1 REFPEAT
240INFUT"Maximum total',?STOTAL
PHOPRINT ({LISRSTART AND LOFFFFFFFIMOD %10000) DIV 2100
20UNTIL FALSE

Notice that there are two exits to the loop: ENDWHILEL and
ENDWHILE2., We exit to the former if (SUM) exceeds (STOTAL): in
this case we must reduce X by 1, since we require the sum of the
X's not to exceed (STOTAL)., We exit to the latter if (SUM) equals
(STOTAL): in this case, we have not exceeded (STOTAL) and so¢ X
does not need to be decremented.

71

Exercise 5.4

1. Write a program to obtain the sum of 1 + 2 + 4 + 7 + 11+ ..,
to NUM (g 256) terms. Put the result in SUM3; SUM2; SUMI1. Store
gach term of the series in TERMH; TERML.

2. Write a program to find how many terms (< 256) of the series
in Q.1 must be added together for the sum to exceed STOTAL3;
STOTAL2; STOTALI.

3. Write a program to find the greatest number of the terms

(< 256) of the series in Q.1 which can be added together with
their sum not exceeding STOTAL3; STOTALZ; STOTALL.

72

Chapter 6 Indexed addressing

6.1 MOVING A SECTION OF MEMORY
Consider the following fragment of a BASIC program:

100 FOR X = (NUMBER - 1} TO 0 STEP - 1
110 7 {NEWLOC + X) = ? (OLDLOC + X)
120 NEXT

Its purpose is to transfer a number of bytes from one section
of memory to another. The starting location of the bytes to be
moved is OLDLOC and the first location of the point to which they
are to be moved is NEWLOC., Altogether, NUMBER bytes are trans-
ferred.

It would be very useful if we could write a program in assembly
code to do this with the same structure as the BASIC program.
Fortunately, an addressing mode exists which allows us to do this:
it is called indexed addressing. Here is the assembly program:

LDX NUMBER
DEX
LOOP LDA OLDLOC, X
STA NEWLOC, X
DEX
CPX #&FF
BNE LOOP

The mew addressing mode is at lines 3 and 4: LDA OLDLOC, X and
STA NEWLOC, X. The first loads the accumulator with the contents
of the memory location whose address is OLDLOC + X; it is there-
fore equivalent to the right hand side of line 110 in the BASIC
program. The second stores the accumulator in NEWLOC + X, equiva-
lent to the left hand side of line 110.

The purpose of indexed addressing is to allow access to ome of
a series of up to 256 continuous bytes, the base address of which
is known. Figure 6.1 illustrates this, where the base address is
given the label BASMEM.

73

BASMEM, X }

X+ 1 memory
f lecations

BASMEM —=|

R

Figure 6. 1 Indexed addressing

6.2 IMPROVING THE PROGRAM

The program in 6.1 can be improved upon. As it stands we need
to compare X to &FF at each stage of the loop, which takes time,
By rewriting the program, we can eliminate this step:

LDX NUMBER
LOOP LDA OLDBLOC - 1, X

STA NEWLOC - 1, X

DEX

BNE LOOP

When this is assembled, 1 will be subtracted from the values of
OLDLOC and NEWLOC. Hence on the first cycle of the loop, we deal
with locations OLDLOC - 1 + NUMBER and NEWLOC - 1 + NUMBER: and on
the last cycle, when X is 1, we deal with OLDLOC and NEWLOC them-
selves. In this way we save three bytes and, more importantly,
significant processing time. Incidentally, don't be tempted to put
brackets round OLDLOC - 1 and NEWLOC - 1. As we saw in an earlier
chapter, brackets round addresses are interpreted as referring to
the contents of those addresses by the assembler. This will turn
out to be a useful convention in the next chapter, when we see how
to access more than 256 continuous bytes.

Our program will work in all cases, except where an early part
of the old locations overlap a later part of the new locations
i.e. where NEWLOC < OLDLOC but NEWLOC - 1 + NUMBER > OLDLOC.

74

Figure 6.2 illustrates a typical case. It can be seen that, for
example, locations C and D will lose their contents (to those of A
and B) before they have been transferred to their new homes (at E
and F). This problem can be solved by moving forwards through the
loop instead of backwards. Here is the program:

LDX #0

LOOP LDA OLDLOC, X

STA NEWLOC, X

I NX

CPX NUMBER

BNE LOGP

This method inevitably requires the CPX instruction, and so
executes in a longer time than the first program.

OLDLOC -1+ NUMBER

NEWLOC — 1+ NUMBER

mp—— = —=|glOfF-——= ===l | >

- — = ===|m

oLDLOC

NEWLOC

Figure 6.2: Where moving backwards through a loop wilf not work.

75

Exercise 6.1

Under what circumstances will the 'moving forwards' method not
work?

6.3 THE RANGE OF INSTRUCTIONS FOR WHICH
INDEXED ADDRESSING IS AVAILABLE

All that we have said above applies equally to the Y register,
but it turns out that the X-register indexed addressing mode has a
much greater range of application than the Y-register indexed mode.

Some instructions allow both indexed-X and indexed-Y modes:
ADC, AND, CMP, EQR, LDA, ERA, SBC and STA. But there are some
which allow only indexed-X modes: INC, DEC, LDY and the new in-
structions to be covered in Chapter 8, The byte- and time-saving
aspects of zero page storage are only available with the X-register:
with indexed-Y, zero page must be treated as absolute; so, for
example, LDA &70, Y will be translated as B9 70 00 by the assembler,
whereas LDA &70, X will become BS 70. Moreover, zero-paged indexed-X
operates circularly: e.g., LDA &73,X when X is &FD will access loc-
ation &70 (i.e. since &73+&FD>&FF,8FD is treated as -3). This means
vou can move forwards through a loop ending at X=0: e.g. LDX#&FD:
LOOP:LLDA &73,X:INX:BNE LDOP, will load from locations &70 to &72
inclusive, There are a few cases where zero page-Y is allowed:
LDX and STX both allow this mode (and obviously do not allow indexed-X
modes), and in the case of STX this is the only indexed mode available,
absolute-Y not being permitted either (a2 similar constraint applies
to STY where zero page-X is the only indexed mode), There are just
three instructions which do not allow any indexed addressing: CPX,
CPY and BIT (to be covered in Chapter 9)}. All of this information
is contained in tabular form in Appendix 1.

6.4 ARRAYS

You will know that in BBC BASIC you can declare an integer
array by writing simply, say, DIM ARRAY% (99). This produces 100
elements labelled ARRAY% {0) to ARRAY% (99), each one initially
having the value zero.

Can we do a similar thing in assembly language? Here is the
program:

LDA #0

LOOP STA ARRAY - 1, X
DEX
BNE LOOP

|
LDX #100 ‘
|
|

ARRAY being the address of the first location of the memory.

76

Now, we have not, in fact, done exactly the same thing as in
BASIC, since ARRAY% (99) allocates four bytes to each element of
the array. These four bytes give a range of -23! to 23! - 1, using
signed arithmetic. OQur program is in fact equivalent to the BASIC
statement DIM ARRAY 99, which allocates 100 bytes, the first being
at address ARRAY (which the interpreter will allocate as the first
free location above TOP). To manipulate these bytes in BASIC, we
would have to use statements like ? (ARRAY + X) = TEMP. This is a
little clumsy in BASIC, but for our purposes it has the advantage
of being very close to assembly language, so let us examine a very
simple (and inefficient) sorting program, to sort the 100 bytes
into numerical order, smallest first.

First the program in BASIC: see Listing 6.1.

LISTING 6.1
10DTM ARKRAY 29
70 FOR I%=0 TO 28 S5TEF4: ! {ARRAY+ 7 =RND: NEXT
ZOFLAG=0
A0FOR I%= O TO <8

S50 IF TIARRAY+HIL) <=7 {(ARRAY+TX+1) THENLIOO
SOTEMF=7? (ARRAY+1%)

707 (ARRAY+1%) =7 (ARRAY+1%+1)

BOT IARRAY+I%+1) =TEMF

POFLAG=1

T0ONEXTIY

110IF FLAG=1 THENZIZO

120 FOR 1%=0 T 99: FRINT? (ARRAY+IN) ENEXTIZ

The idea is to scan through the 100 bytes and swop any contig-
uous pair of bytes where the lower byte is greater than the upper
byte, Lines 60 to 80 perform the swop. The process is repeated
until no swops are mecessary, when the sorting is complete: when
this happens, FLAG will be zero on leaving the for/next loop at
100. Lines 10 apd 20 create an array of 100 random bytes, and line
120 prints out the results.

Thus us now construct an assembly language program to do this:
Listing 6.2.

LISTING 6.2

1ODIM ARRAY 99 :DIM START 50
20 FOR I%=0 TO 98 STEF4: ! (ARRAY+IX) =RND: NEXT
SOFLAG®70: TEMP=%7 1

4OFORI%=0 TO 2 STEF 2:F%=START

SOLOPTIY

60. BEGIN

7OLDX #0

gOSTX FLAB

0. LODF

100LDA ARRAY, X

1 10CMF ARRAY+1, X
120BCC OVER
1SOBER OVER

77

1408TA TEMF

151 DA ARRAY+1. X
160BTA ARRAY, X
170LDA TEMF
1BOBTA ARRAY+1, X
190LDA #1

SO08TA FLAG

210 OVER

220INX

2EOCFPE #99
Z240HNE LOOF
250LDA FLABR
2HOBNE BEGIN
R2FORTS: INEXATES
280CALL START
290 FOR I%=0 T0O 99: PRINT?(ARRAY+IX),:MNEXT

The details are:

80 As line 30, Listing 6.1
100-130 -1 " "
140 "o 60 " "
150-160 U 4] " "
170-180 moom g0 " 2
190-200 nor 90 " "
220-240 "o 100 " "
250-260 o110 SN

It is instructive to run both programs and compare the time
taken! (Actually, the dice are weighted even more against BASIC
since ARRAY is not an integer variable; changing this to ARRAY%
speeds up the program a little.)

Now, whilst modelling our assembly program on a BASIC program
makes it a little easier to write, it does not generally produce
the most economical and efficient coding. In this case, a saving
will be produced if we count backwards from 99 to zero, and this
is left as an exercise in Exercise 6.2. (A saving also occurs if
we use the stack for temporary storage as we shall see in
Chapter 9.)

An analysis of the algorithm will point to an immediate improve-
ment. On the first scan of the array, the largest value will end
up in ARRAY + 99. We can therefore now ignore this and scan from
ARRAY to ARRAY + 98: the next largest value will now be in ARRAY +
98. Now scan from ARRAY to ARRAY + 97 etc, The BASIC program for
this is in Listing 6.3.

78

LISTING 6.3

10DEM ARRAY 99

20 FOR I¥=0 TO 98 STER4: ! (ARRAY+IX) =RMND: NEXT
IOFGR J¥u=1 T 99

40F0OR I¥=0 TO 99-Jd%

SO IF POARRAY+IN) =
AHOTEMP=7 (ARRAY+17)
FOTARRAY+I74) =7 (ARRAY+I%+1)

GO7T (ARRAY+1%4+1) =TEMP

FONEXTI%

TAONEXTJIL

110 FOR I%=0 TO 99: PRINT? (ARRAY+1Z) s NEXTIZ

PMARRAY+1%+1 1 THENYO

This method of sorting is called a bubble sort.

The assembly program is in Listing 6.4.
LISTING 6.4

10D1IM ARRAY 9% (DIM START 30
20O FOR IZ=0 T 98 STEFd: ' (ARRAY+I1%) =RND:NEXT
ZQTEMF=%70

4OF0ORIY=0 TO 2 STEF 2:FA=5TART
SOLOPTI%

&OLDY #99

70.BESIN

BOLDX #0O

FOSTY MEMLOC+1

100, LOOF

110L.DA ARRAY, X

120CHMF ARRAY+1, X

1Z0BCC OVER

140RER QVER

iI508TA TEMFP

160LDA ARRAY+1,. X

1708TA ARRAY, X

ig0LbA TEMP

1908TA ARRAY+1, X

200.0VER

210INX

. MEMLQC

RIOCFX #0 (Dummy operand?
ZAOBNE LOOP

290ODEY

Z6OBNE BEIISIN

Z70RTS: INEXTIZ

280CALL START

290 FOR I%=0 TO 29: PRINT?(ARRAY+IX) , tNEXT

We have used the Y register here to store the value (99-J%)+ 1,
which starts at 99 for the first for/next loop and ends at one for
the last. At each stage we compare X to value of Y, using the
device discussed in the last chapter to do this.

79

The bubble sort is not the most efficient way of sorting (for
example, a method called Shell-Metzner is bhetter), but machine
code is so quick that this is not really important here.

Exercise 6.2

1. Improve the first assembly program by counting backwards, at
the same time generalising it to allow the sorting of NUMBER bytes
(NUMBER 5 256), making any other changes which improve economy.
Explain why it is not necessary to treat NUMBER as an address in
this case.

2. Repeat Q.1 for the second assembly program. Notice that this
time, the smallest value drops through to the first element of the
scan e.g. after the first cycle, ARRAY will contain the smallest
element. Is this design more or less efficient than the original
design?

3. The following BASIC program is another type of sort (an
insertion sort). Encode it into assembly language in the most
econcmical way.

IOINPUT"HOW MANY BYTES", NUMBER

20DIM ARRAY NUMBER-1

ZOFORIY=0 T0O NUMBER-2Z STEF4: ' {ARRAY+ 1% =RND: NEXTI%
40F0R WJJ%=1 TO NUMEBER-1

SOF0OR I%=J%4 T 1 STEFP-1

&0 IF ?{ARRAY+IY) »=7 (ARRAY+I%X-1) THENE 10
TOTEMP=7 (ARRAY+1%)

BO? (ARRAY+1X) =7 (ARRAY+1%~1)

QU LARRAY+IY—1) =TEMP

10ONEXTI%

T1IONEXTIY

20 FOR I¥=0 TO NUMBER-1: PRINTZ(ARRAY+IY), sNEXT

6.5 A FUNDAMENTAL DATA STRUCTURE: THE QUEUE

The queue is a familiar idea in everyday life: you go into a
shop, but the shopkeeper is busy, so you form a queue. The person
at the head of the queue, the person who has been there longest,
gets served first. The principle is first in, first served.

Sometimes the microprocessor is very busy on important tasks,
but data keeps arriving from some source. The microprocessor wants
to store this data away until it has time to process it, and it
wants to deal with it on a first come, first served principle,
Thus it wants to form a queue of this data, and when it has the
time it can deal with it. This is termed a first in, first out
(FIFQ) data structure, for obvious reasons.

80

Now it would seem very simple to deal with this, Just set
256 bytes of memory aside, and use an index register to point to
the first free position in the queue as data arrives. When time
allows, the microprocessor starts processing the data from the
fiTst item in memory upwards., Thus the situation is as in Figure
6.3, where BASMEM is the lowest memory position and X points to
the first free location in the queue. Then, STA BASMEM, X will put
the next item of data in the memory, and INX will update the
pointer to the free position. And when time permits, the micro-
processor can access the data by performing the cycle LDA BASMEM,
Y : INY, for Y taking values from 0 to X - 1.

First frae location in the gqueue

BASMEM, X

Tail of the queue.

BASMEM ~+—— Head of the queue.

Figure 6.3; A very simple queue implementation.

A problem arises, however, if the microprocessor does not have
enough time to access the whole queue. It may get half way
through and have to go back to its more important tasks, But now
more data may again arrive, and there is a danger that space will
run out, even though the lower part of the memory allocation is
actually free. One way round this is to move the remaining queue
'up', so that the head of the queue is again at BASMEM. Figure 6.4
illustrates this.

Tail of queue
BASMEM, X
BASMEM, Y ~—-Head of queue Tail of the quaue
-——/
ASM
BASMEM BASMEM <+—Head of the queus

Figure 6.4: One solution to the memory wastage problem.
This idea is not very sensible, however. The microprocessor is

not accessing the whole queue because it does mot have time: it
can hardly have time, then, to move up the entire queue!l What is

81

required is a way of always using all 256 locations without moving
around memory; and this can be done by treating the memory as a
circular and not linear series of 256 locations,

We need to use the X register to point to the first free loca-
tion as before, and we use the Y register to point to the head of
the queue. Thus STA BASMEM, X : INX will deposit a new item of
data and adjust the tail pointer; and LDA BASMEM, Y : INY will
withdraw the item at the head of the queue and adjust the head of
queue pointer.

We begin with X = Y = 0. Data comes in and is put on the queue.
The situation is now as in Figure 6.3: Y is still 0, but X points
to the next free location. The microprocessor gets some time and
starts to access the queus, but before it finishes it has to go
back to more important tasks. The situation is now as in the left
hand side of Figure 6.4: Y points to the new head of the gueue;
and X points to the tail (which may be longer still, since data
may have been entered on the queue while the microprocessor was
accessing the head).

Suppose now that a large amount of data comes in so that X
reaches 255. At this stage X resets to zero., More data still comes
in, and the situation when the microprocessor is again ready to
access the queue is as in Figure 6.5. We see that Y is greater
than X but this does not matter. The same instruction - LDA BASMEM,
Y : INY - will withdraw the data one at a time; and this will con-
tinue to be so as Y increases through 255 to zero.

BASMEM, Y ~— Head of the queus

BASMEM, X

=+— Tail of the queus

BASMEM

Figure 6.5: A better solution to the memary wastage problem.

If at any stage X = Y then either the gqueue is empty or it is
full. Which it is will depend on whether the last transaction was
a withdrawal or a deposit., The microprocessor will need to keep
track of this at each stage, and it will need to be permanently
stored away in case the micro has to 'go off again'., We will use a
zero page location, labelled INDIC, for this. We will set bit
seven of INDIC to one if the last operation was a deposit, and set
it to zero if it was a withdrawal. The reason for using bit 7 is
that it is easily tested with a BPL or BMI test. So, if a deposit
is required to be made but X = Y and (INDIC,) =1 (i.e. bit 7 of
INDIC is one}, then the queue is full and an error condition is

82

required. This is most easily done by setting carry before exitting
The micro will now inspect carry and take appropriate action to
safeguard the data, Similarly if a withdrawal is demanded, but

X =Y and {INDIC7} = 0, the queue is empty.

(INDIC,}:0?

| 1~INDIC,
|DATUM*0UEUE

(e]

INCREMENT X

End

Figure 6.6: Flow chart for depositing on item in a queue

Let us consolidate all this with a flowchart (see Appendix 5
for flowcharting convemtions). Figure 6.6 shows the flowchart for
depositing an item.

LISTING 6.5

10DIM START SO:VDUL4

20 DATUM=%70: INDIC=%71:DIM BASMEM 255
JODIM TEST 286

AOXY=0s YA P INDIC=0

SOF0OR I%=0 TO 2 STEFZ:RPYU=START
&HOLOFTIX

708TX MEMLOC+1

BO . MEMLOC

QOCRY #0 (Dummy operand)

1O0OENE Ok
110L0D4a INDIC
1208FL DK
1Z20SEC
140RTS
150.0K
160LDA #5880

1708TA INDIC

1801.DAa DATUIM

1905TA BASMEM, X

SOOINX

21GCLC

220 RTS: INEXTIX

PLOFOR [%=0 TG 258

PAOTDATUM=RND {256) ~1: P{TEST+1X) ="DATUM

2501 L404=USR(START) & XA=78405: YL=7H408

2LOIF (P&A07 AND 1) =1 THEN PRINT"ERRDR AT
ngTR$ (I%+1) "TH DEFOSIT":BOTOZE0

270 NEXTIX

2OPRINT® M DEFOSIT CUEUE" "

SOFDR 1%=0 TO 255

TOOFRINT 7T (RAGMEM+1%) , P(TEST+IY) s NEXTIY

ZiavDULs

Listing 6.5 shows the program to deposit an item in the queue.
Let us concentrate first on the assembly listing (lines 70 to 220).
The table below gives the necessary documentation:

Line(s) Comment

70-90 Device to compare X and Y registers

100 If not equal, no need to check last transaction

110-120 Otherwise, check last transaction and if a
withdrawal, 0K

130-140 If deposit, indicate error condition and return

160-170 Store present transaction {a deposit} in
indicator

180-130 Put datum in next free space in gqueue;

200 and update pointer to next free space

210-220 Set non-error condition and return.

Before going on, it is worth making a few points about this style
of documentation. Firstly, it is possible to document the program
direct (line 90 is an example), but it is very wasteful of memory
and tends to make the listing very cluttered unless TAB's are used,
It is better, therefore, to keep documentation separate. The only
exception 1s as line 90, where an instruction is not what it seems
- then it is essential to include documentation in the program
itself, Secondly, documentation is essential, but over-documenta-
tion is an obfuscation and is unfortunately much too common. Over-
documentation means stating the obvious. A typical example would
be the following:

70 Store X in the memory location MEMLOC + 1

8o Label for temporary storage

90 Compare Y to the values of X stored in this
location

84

100 If they are not equal branch to OK
110-120 Otherwise set carry and return

etc,

There is no merit in describing the meaning of the instructions:
it is their purpose which is required when documenting. Sometimes
the line between these styles is thin, but it is nevertheless
important to keep on the right side of it.

Thirdly, a few words about flowcharting. Flowcharts are useful
for small, self-enclosed algorithms, but become confusing and less
useful for organising larger programs. One approach is to try to
split the program into small parts, and flowchart each part, but
this is not always feasible. Don't feel that every program you
write has to be flowcharted: flowchart when and if you think it
will be useful. And when you flowchart, do not try to pack too much
inte it,

Let us return to the rest of the program in Listing 6.5, since
there are a number of new ideas in it. The purpose of the program
surrounding the assembly code is to test the workipmg of that code,
The code would never be used in a BASIC program like this: it
would be part of a larger servicing routine, in all probability.
Nevertheless, it has to be tested, and the approach used here is a
simple way to do this.

There are a number of points to be made. Firstly, in line 40 we
set X% and Y% to zero. The reason for this is that when a machine
code routine is called from BASIC the X and Y registers are set to
the least significant bytes of the variables X% and Y%. Usually,
this is irrelevant to us since we set X and Y in the machine code
program itself, but in this case, where we are testing a fragment
of a program, X and Y are not set inside the program and so must be
initialised before entering it. Note also that the least signifi-
cant byte of A% is put into the accumulator on entry, though we do
not need to exploit this here, Similarly, we set INDIC to repre-
sent a withdrawal, so that on first entry when X = Y, we do not
get an error.

In line 240, we set DATUM to a random byte, and store 1t in a
*TEST area' for later recall. We then enter the machine code pro-
gram in line 250 with the USR function. We recall from Section 5.7
that the value returned consists of four bytes, PYXA, most signif-
icant to least significant, where P is the processor status
register. By putting USR equal to 18404, we ensure that the least
signficant byte of A% equals the value of the accumulator on exit
(the permanent address of A% is 3404 - &407). This is useful if we
wish to return this value to the accumulator on the next entry to
the machine cede program, and although we do not require this for
our present program, it is useful to follow this convention.

In 250 we set X% and Y% to their values on leaving the machine
code routine so that when re-entered the values of the X and Y
registers are correctly updated,

85

Line 260 checks whether or not carry is set. Running the pro-
gram shows that the queue correctly fills to the 256th deposit,
but that on the 257th, an error condition is recorded since the
queue is full,

Exercise 6.3

1. Draw the flowchart for the withdrawal of an item of data.
Write a program to do this and test it in the same way as in
Listing 6.5. Fill the queue with 256 random bytes (as in Listing
6.1). Put the withdrawals in a separate TEST area for later com-
parison, and do this by having the withdrawal in the accumulator
on exit from the routine.

2. Combine the two routines into a single program (keeping the
routines separate) which will accept a byte from the keyboard
using BASIC and will go to the deposit routine (say at START1) if
it is positive (i.e. bit 7 = 0), otherwise go to the withdrawal
routine (at START2}. Start with the queue half-full (so that
X% = 128, Y% = 0). At each stage print out the length of the
queue, the item at its head and the item at its tail.

6.6 THE ASSEMBLER EQUIVALENT OF PRINT

The writers of the BBC Computer's operating system have in-
cluded a special subroutine for printing out characters to the
screen, It is usually referred to as OSWRCH (for Operating System
Write Character), and its address is &FFEE. It will print out the
single character whose ASCII cede is in the accumulator.

We will discuss subroutines at length in Chapter 9, but for now
we need only know that a subroutine is called with the instruction
JSR {(jump to subroutine) and that at the end of the subroutine an
RTS instruction must be placed (return from subroutine). The idea
is identical to GOSUB in BASIC: on return, the instruction direct-
ly following the JSR instruction is obeyed. As we will see in
Chapter 9, sometimes we wish to write our own subroutines, but
there are certain very basic subroutines, 1like OSWRCH, which every
computer manufacturer will include, so we would never need to
write these ourselves,

You have probably met the idea of ASCII already. In BASIC, we
can print out a character with the ASCII code CODE with the in-
struction PRINT CHRJ (CODE). The assembly language equivalent of
this is LDA #CQDE: JSR OSWRCH (where OSWRCH has already been
defined as 3FFEE in the program). ASCII stands for American
Standard Code for Information Interchange, and its function is to
provide an agreed set of codes for every symbol commonly needed in
computer comminication. It was originally developed for exchange
between a terminal and a computer, and for this reason the most
significant bit was assigned a special function: it is called the
parity bit, and it serves to check that the other 7 bits have been
received correctly. Using odd parity, this bit is set to zero or

86

one accordingly, so as to make the sum of the bits an odd number.
There are therefore 128 codes available (from 0 to &7F) in ASCII.
However, when used internally {as in the BBC computer) no parity
check is needed and so there are a full 256 codes available to the
user; only the first 128 are accessible from the keyboard, though,
these being the standard ASCII set.

It is, fortunately, not necessary to learn these codes, or
indeed to have of a table of them, since the BBC computer will
give any ASCII code; by typing PRINT ASC ("A"}, for example, the
number 65 will be returned, the ASCII code for A. The only symbols
where one cannot do this are: carriage return (13), quote (34),
delete (127) and escape (27)., In any case, if one requires to
print out text, no reference to ASCII needs to be made by the pro-
grammer. Let us see how to print out some text.

All text should be put at the end of a program. To do this make
the last statement the label ,TEXT. Now when outside the assembly
program, the text can be defined by writing $TEXT = "This is an
example'. The characters of this text will be encoded in ASCII,
and the first will be put at the memory location TEXT, which we
have defined as the first free location after the program. The
very last character will be a carriage return (ASCII code 13,
Don't forget to allow for the text when allocating space using the
DIM statement.

Now in order to print out this text, the following small
routine is required:

OUTPUT1 LDA TEXT, X
CMP #13
BEQ ENDTEXT
JSR OSWRCH
PNX
BNE OUTPUT1

ENDTEXT RTS

This will print out the text, without the carriage return. The BNE
LOOP instruction will always result in a branch as long as the
text does not exceed 255 characters, and saves space over the JMP
as well as being intrinsically relocatable, Call it as a sub-
routine by writing LDX #0 : JSR OUTPUT]1 (saving the old value of X
beforehand, if necessary).

If we require to print out the carriage return also, we have to
take a little care. Carriage return on its own dees not generate a
new line: it only returns the cursor to the beginming of the cur-
tent line. To get a new line we must also output code 10, which
moves the cursor down onme line. Thus to get a new line we write:

LDA #10
JSR OSWRCH
87

LDA #13
JSR OSWRCH

This is needed so often that the designers have included it as a
separate subroutine, called OSNEWL at &FFE7. Hence to get a new
line we meed only write JSR OSNEWL (with OSNEWL defined at the

beginning of the program, of course).
It would be useful if we had a subroutine which automatically

jumped to OSNEWL if it encountered 13 in the accumulator, other-
wise jumping to OSWRCH. There is such a subroutine and it is
called DSASCI (at &FFE3). Hence, to print out text with a new line
at the end, we use this routine:

QUTPUT2 LDA TEXT, X
JSR 0SASCH
| NX
CMP #13
BNE QUTPUTZ2
RTS

Call with LDX #0 : JSR QUTPUTZ.

You may be wondering how we accommodate generally a whole
series of print statements in a single program. This is a little
more complicated and will be covered in full in Chapter 10, al-
though 6.7 deals with two print statements in a less general way.

Finally, a word should be said about the VDU function in BASIC.
You will have certainly used this function, and you will be
pleased to know it is available in assembler too. Actually this
puts things the wrong way round: zll that VDU does is to send a
byte to OSWRCH, so that it is primarily an assembly code statement
You know that VDU 12 will clear the screen. Hence writing LDA #12:
JSR OSWRCH will clear the screen. Similarly LDA #2 : JSR OSWRCH
will turn on the printer. In ASCII, codes 0 to 31 are reserved as
control codes: the BBC computer gives these codes special func-
tions which are specified in the YDU Driver section of your manual,

_ Moreover, this opens up all the colour and graphics facilities
in a very simple way. COLOUR 2: VDU 19, 2, 9, 0, 0, 0 sets logical
colour 2 to actual colour 9 (flashing red-cyan). In assembler we
write:

LDA #17

JSR OSWRCH

LDA #2

JSR OSWRCH

I.DA #19

JSR OSWRCH

88

LDA #2
JSR OSWRCH
LDA #9
JSR OSWRCH
LOA #0
JSR OSWRCH
JSR OSWRCH
JSR QSWRCH

Again, PLOT 85, X, Y will draw a triangle from the two points last
named to (X, Y). In assembler we have:
LDA #85
JSR OSWRCH
LDA # X MOD256
JSR OSWRCH
LDA # X DIV256
JSR OSWRCH
LDA # Y MOD256
JSR OSWRCH
LDA # Y DIV256
JSR OSWRCH

X and Y are sent as two byte numbers, lower byte first in each
case. The BASIC functions MOD and DIV make this easy to write in
assembly language too.

And this means that it is not necessary, nor indeed is it
desirable, to write complicated graphics handling programs in
assembly language. We can maintain easy portability between lan-
guages and processors and make life easy for ourselves by using
the same colour and graphics functions that we have in BASIC.

Nevertheless, you will have noticed that just a few VDU state-
ments produce a huge number of assembly instructions {at least 2
and sometimes 4 for each number in the VDU statement). This can
become very tedious to type in. In Section 6.8 we will consider
ways round this problem.

Exercise 6.4

Using OUTPUT1 and OUTPUT2 as subroutines, write programs to
perform in assembly language the following BASIC statements:

1. PRINT "This is question one'

&9

2. PRINT "This is question two';
3. PRINT

4, PRINT "This is gquestion '; : PRINT '"four"

6.7 THE ASSEMBLER EQUIVALENT OF GET¥, INKEYS and INPUT A3
A familiar construction in BASIC is:

10 Ag = GETE: IF A§ <> "' ' THEN 10

This waits until the space key is pressed before continuing.
This is easy to do in assembler, using the operating svstem read
character routine, OSRDCH (at &FFEQ). This performs exactly the
same function as GET$, putting the ASCII value of the character
into the accumulator. So, here we have:

LOGP JSR OSRDCH
CMP #ASC (" ')

BNE LOOP

There is one problem with this: if the escape key is pressed,
the system will crash! To stop this happening, we must acknowledge
escape using OSBYTE {at &FFF4), a general purpose subroutine, put-
ting &7E into the accumulator. If we wish to otherwise ignore the
escape we can write:

LOOP JSR OSRDCH
CMP #&1B (the ASCII code for ESC)
BNE NTESC
LDA #&7E
JSR OSBYTE
NTESC CMP #ASC(" ')
BNE LOOP

Clearly, other responses to escape can be accommodated by appro-
priate coding after returning from OSBYTE.

Another construction is INKEY$. In BASIC we may have 10 ANSWERE
= INKEY$ (500). This waits for 5 seconds before continuing, unless
a key is pressed. This can be achieved by using OSBYTE again, with
&82 in the accumulator. The time is contained in the X and Y
registers (X the low-byte); otherwise the function is as GETE (and
escape must be acknowledged in the same way). Here, since 500 =

90

256 + 244, we write:

1LOX #2h4
LDY #1

LDA #&B2
JSR O5BYTE

On return, if nc key has been pressed the accumulator will
contain &80, and suitable action can be taken,

When using GET® and INKEYE in BASIC you will probably have used
the statement *FX15, 1 to make sure the keyboard buffer is empty
before the keyboard is inspected: this is termed flushing the key-
board buffer. This is easily achieved in assembler using OSBYTE
again, this time with 15 in the accumulator and one in the X
register.

Thus we write:

LDX #1
LDA #15
JSR OSBYTE

In fact, all *FX commands are just the operating system
mnemonics for OSBYTE., Hence, *FX5, 1 (which selects the Centronics
printer port)} is equivalent to putting S in the accumulator, 1 in
the X register and jumping to the OSBYTE routine. It follows that
any *FX command is easily translated into assembly code.

Finally 10 INPUT A. This can be achieved by writing a sub-
routine using just GETE, but a system call exists which does
everything required. This is OSWORD (at &FFFl), with zero in the
accumulator. Unfortunately, its usage is a little complicated. It
is far easier to jump to part of the BASIC interpreter to perform
this task. JSR &BC20 will read text into the direct command input
buffer beginning at &0700. Pressing escape will automatically
return the computer to direct command status (i.e. out of the pro-
gram) and pressing CTRLU will erase the entire line of text input.
The text will end with carriage return (code 13}, Here is an
assembly program to produce the equivalent of the following BASIC
statement:

10 INPUT A$: IF LEFTZ(AS,2) = "NO" THEN 100 ELSE iF
LEFTS{A$,3) <> "YES'' THEN 10
START JSR &BC20
LDA &70D
CMP #ASC ("N")
BNE NTHO
LDA 4701

91

cHp #ASC("0")
BEQ NO

NTND LDA &700
CMP #ASC{''Y')
BNE START
LDA %701

CMP #ASC (VE™)
BNE START

LDA &702

CMP #ASC ("'s'")

BNE START
YES)

NO

It would not be difficult to combine this with the ideas of the
last section to produce a more friendly computer response. For
example, in BASIC:

10 {NPUT "PLEASE ANSWER YES OR NO'" Ag: IF LEFTZ{A$,2) =
UNO'" THEN 100 ELSE IF LEFT8(A%,3) <> ''YES' THEN PRINT
"] DON'T UNDERSTAND YOUR ANSWER'': GOTO 10

As an exercise encode this into assembler, type it into the
computer and see if it works. Put the statements to be printed
into $TEXT and &(TEXT + 24) respectively (since the first state-
ment is 24 characters long including the carriage return}. Print
out the first statement by using LDX #0 : JSR QUTPUT1 and the
second with LDX #24 : JSR OUTPUT1. Produce a mew line with ISR
OSNEWL.

If we wish to compare text to a longer string than "YES", then
the above method is a little clumsy. Listing 6.6 is a program
which will accept input from the keyboard and test whether it lies
alphabetically between two strings. The two strings are input into
the BASIC part of the program before the machine code routine is
called, and put into zero page. Listing 6.6 contains the details.

Lines 60 and 70 print out a question mark prompt. Lines 110 to
150 compare the input string to the bottom string limit. Exit from
this loop to line 160 will only occur if the input is higher alpha-
betically than the bottom limit, Thus if the bottom limit is MISTY

92

LISTING 6.6

1OOSWROH=4FFEE

20DIM START 50

ZOFOR I4=0 TO 2 STEP2

SOPU=5TART

SOLOFTIY

SOLDA #HASCL"?Y)

TOJSR DSWRCH

SOJILR LRC20

FOLDX #HEFF

100, L0GH]

11GTINX

120LDA %700, %

ROCME BTG, X

140BCC QUTSIDE

150RED LOOP1

1&40LLDX #LFF

170.L00P2

180N

120LDA &8O, X

ZOCGCME 8700, X

210BCC OUTSIDE

2Z0BEQ LOOF2Z

2EOCLC

240RTS

250, UTSIDE

2605EC

27ORTS: INEXTI

2ROINFUT"Lower string limit",A$: IF LEN{AS) »15 THENZSO

Z2YOINFUT "Upper string limit" ,Be: IF LEMBRS$) 205 THENZO
ELSE IF A%:>Re THENZBO

ZOOPROCABC (A%, &70)

T1OPRACASE (B, 2430)

S2OPRINT"Input vour string": !%404=USR(START}

OIF (PR407 AND 1) =0 THEN FRINT"Inside” ELSE PRINT

"Outside"

T4OPRINT® "Another?"

ID0GH=GET$: IF GH="Y" THEN IZ20 ELSE IF G&<>'N" THEN 330

Z6O0FPRINT"New string limits?"

I7064=0CETH: IF G6="Y" THEN 280 ELLSE IF &G%<>"N" THEN Z70
ELSE END

IBODEF FROCASC(5%,M4L)

I90S3=8%+CHRE (13} : MA=M%~1

4Q0FDR I%Z=1 TO LEN(S%)

4107 (MY%+I%) =ASC(MIDS (S, 1%, 1))

AZONEXTIL

4ZCGENDFROC

and MIST is input, equality will occur for the first four letters,
but then on the fifth we compare 13 (carriage return) to 89 (ASCII
value of Y), obtain a negative result and branch to CUTSIDE.
Equally, if the bottom limit is MIST and MISTY is input, then we
compare 89 to 13, obtain a positive result and go through to line
160. In the same way lines 180 to 220 compare the input string to
the upper limit, If the string is inside the limits, C is set to

93

zero, otherwise it is set to 1. This is picked up at line 330 {as
in Listing 6.5, line 260), and the appropriate output delivered.

The procedure at lines 380 to 430, called at lines 300 and 310,
is necessary since the FTEXT statement will not function if TEXT
is in zero page. We use zero page here to save memory and gain
speed with the zero page indexed addressing mode (lines 130 and
150).

Sometimes we may wish to use a different input buffer from &700
since &700 is of no use for anything other than temporary storage.
Once outside the program all input will be lost. If we wish to
permanently store the strings input, it would be more convenient
to store them directly. We can do this as follows: put the lower
byte of the address of the buffer in &37 and the higher byte in
438 and use JSR &BC28, In addition, we can restrict the length of
the string input by loading the accumulator with the length and
using JSR &BU2A instead of &BC28. The default lenmgth is 238 other-
wise,

Listing 6.7 illustrates this with a program which stores a set
of strings input in an array. No string is allowed to exceed 19
characters, since the strings are to be stored in fixed widths of
20 locations. In the next chapter, we will be able to relax these
restrictions, and use variable width locations.

LISTING 6.7

1ONSWRCH=2FFEE

20 DIM START 500
ZOFOR 1%=0 TO 2 STEF2
30PYL=START

SOLOFTIY

60LDA #TEXT MOD 256
TOBTA %357

BOLDA HTEXT DIV 256
F08TA %38

100. BEGIN

110LDA #ASC("7")
120J8R OSWRCH

130LDA #19

1403I8R &ECZA

150LDA %37

160CLE

170ADE #20

1BOSTA %37

190BCC BEBIN

ZOOING %38
210BCS BEGIN

22¢. TEXT: INEXTI%
230CALL START

Line 20 allows storage for at least 23 strings, starting at the
location TEXT defined in 220, Lines 60 to 90 store the lower and
higher bytes of TEXT in &37 and 838, and line 130 restricts the
string input to 19 characters. Lines 150 to 210 increment the

94

storage address by 20 for the next input. As it stands, we can
exit from this program only by pressing ESCAPE; we will alseo
improve on this in the next chapter.

Exercise 6.5

1. Write a program which will print out any string input in
reverse. Use an infinite loop with exit by ESCAPE only.

2, Write a program which will print out any string input with
all spaces removed. Loop until * alone is input, and then end.

3. Write a program to store a string starting in location TEXT
(at the end of the program), with only the trailing spaces removed
(i.e. remove any spaces after the last 'visible' character input).
Include a suitable test of your program.

6.8 MACROS, CONDITIONAL ASSEMBLY AND TABLES:
SIMPLIFYING VDU STATEMENTS

Consider the following set of instructions in BASIC:

MODE 4

vDu28,0,31,39,16 {set bottom half of screen for text)

VDU24,0:512;1273;1023; (set top half of screen for graphics)

VvDU29,0;512; (move graphics origin to bottom LH
corner of graphics screen)

vDU19,1,0;0; (foreground black)

vDU19,0,3;0; (background yellow)

MOVE 0,0

DRAW 450,450

The result of all this is to draw a line in the top half of the
screen in black on a yellow background. We can in fact write this
as one YDU statement, replacing MODE, MOVE and DRAW by their VDU
equivalents:

VvDU22,4,28,0,31,39,16,24,0;512;1273;1023;29,03512;19,1,0;0;
19,0,3;0;25,4,0;0;25,5,450;450;
To encode this into assembly language would require us teo type in
90 or so lines of code (there are 31 numbers, but 14 are double

bytes, being followed by a semi-colon e.g. 0; is &0000). There
must be an easier way! Indeed, there are two such ways.

95

LISTING 6.8

1O08WRCH=&FFEE
20DIM START BOG
TJOFOR I%=0 TO 3 STEP Z:PU=START:RESTORE
4OLOFTI%
WGOLIA #O
HOBTA 70
FTOSTA &7
80 IFROCYDU (TF)
QUDATA 22,4,28,0,31,39,14,74,0,0,5
29,0,0,5912,19,1,0,0,0,0,1%,0,
A, 0, 0,0, 0,05,3, 430,450
1O0L0PTIX
LIORTS: INEXTI®
120CALLSTART : END
130DEF PROCVDU(N) : LOCAL D,D%,H, L, J%
LA4OFOR J%=1 T0 N:READ D%:D=EVAL (D%}
15GIF D255 THEN MH=D DIV 23é6: D= D MODZ54& ELSE H=-1
160IF D<xL THEN FOFTI%:LDA #D:]
170LOPTIY ISR DBWRLEH:]
180L=Dz IF H=—1 THENLF0 ELESE D=HiH=-1:G0T0140
19ONEXTI%
2O0ENDFROC

Listing 6,8 shows the first way. Lines 50-70 are included sole-
ly to show how the VDU statement can be put into the middle of an
assembly program: they are quite arbitrary. Lines 80 and 90 con-
tain the new ideas, Line 80 begins with an 'end assembly code'
marker (]), and then a procedure is called. Line %0 contains the
VDU numbers, with the small difference that 0; has been replaced
by 0,0 and 3; by 3,0.

The procedure is in lines 130-200. Line 130 specifies the vari-
ables used as local so that they may be used again if required
outside the procedure (the parameter N is automatically local).
Line 140 reads the data from line 90 into the variable D. (It is
read first into D$ and EVAL applied to it to accommodate hex
numbers e.g. #1000 could be an item of data.) Line 150 checks
whether D exceeds 255: if it does it splits it into two bytes,
with H the higher and D the lower; otherwise it sets H to -1 as a
flag.

Line 160 is an example of what is called conditional assembly.
L contains the last byte output. If D is equal to L then we do not
need a LDA statement because the accumulater will already contain
this value, If D is not equal to L, the LDA statement is required.
Notice the inclusion of OPTI% here: when we re-enter assembly mode
(by using the marker [) OPT will be set to its default value 3
unless we re-specify it. 1% is, of course, the current OPT value
from the beginning of the program (i.e. 0 or 3).

Again in 170 OPTI% is needed, Line 180 will set L (the last

byte output) to D, and then will either read the next byte from
the data, or if H contains a value will transfer that to D instead.

96

The parameter N contains the number of items in the data state-
ment. Finally note the importance of RESTORE in lime 30: there are
two passes and the DATA statement must be restored after the first

ane,

If you run this with the page mode on (CTRLN} you will see all
the LDA #D, JSR OSWRCH statements being assembled. Normally you
would use it using 1% = 0 TO 2, but we use 1% = 3 here to demon-
strate that all the VDU statements have been translated into
assembly code.

This method of producing code is called macro-assembly and the
procedure is an example of a macro. Macro-assemblers are usually
only found on large expensive machines, but the facility is avail-
able to use because BASIC and assembly code can be mixed.

LISTING 6.9
1 ODSWRCH=LFFEE
ZODIM BTART 500

ZOF0R I%=0 T 3 GTEF 2iPY=5TART:RESTORE

4OL0OFTIY

SOLDA #O

HUETA %70

7O8TA BT

GOLDA #0

@C, L ODFVDL

100LDE TABLE, X

110J5R OBWREH

1201MX

120CHY #45

14GENE LOOFYDU

150BER OVERTARLE

160, TABLE

170 IPROCTABLE (39)

180DATA 22,4,28,90
0,09532,19,1,0,0,Q,0,19,o,;;,OEO,O,Mﬁ,ﬂ,ORO,
0,0,25,5,4%90, 450

19OCAFTIA

200 OVERTARBLE

21ORTS: INEXTI%

ZZOCALLSTART : EMD

TEODEF PROCTARLE (N) LOCAL D, De,H, I%

240FDR J¥%=1 TO N:READ D$:D=EVAL (D%

2=0IFE D255 THEN H=D DIV 25&6: D= D MODR2S& ELSE H=-1

BHEOTFYE=D: FU=FYU+1

270IF H=-1 THEN 280 ELSE D=HiH=-1: GOTOZ&0

ZBONEXTJI%

FFOENDFROC

There is a second way of coding the VDU statement, and Listing
6.9 shows it. Again lines 50-70 are arbitrary. Lines 80-140 per-
form a loop to load the accumulator with the next item of data
from the table (stored at the address TABLE defined in line 160)
and output it with OSWRCH. 45 is used as the comparison since
there are 45 hytes (31 numbers but 14 are double bytes).

97

The table of data values is set up using the procedure called
in line 170. Using exactly the same data as in Listing 6.8 (at
line 180 here)}, line 260 puts each item of data into the current
address pointed to by the program counter (stored automatically in
P%) and increments the counter. When first entered P% = TABLE. On
exit, P% will point to the first free locatien following the 45
bytes stored in the table. The table could have been stored at the
end of the machine code program, but it is instructive to see here
how it can be put in the middle when required.

Running this with CTRLN set points to the essential difference
between the methods employed in Listing 6.8 and Listing 6.9. In
the latter, the coding to perform the output to the VDU is written
only once, but performed many times. In the former, the coding to
perform the output is written many times but performed only once.
Thus the macro approach is an assembly time facility, whereas the
table approach is a run-time facility.

In general, the table approach is much cheaper on memory than
the macro approach, but it is slightly slower in execution time
(since the table has to be read, X has to be incremented and com-
pared to the limit, and a branch has to be made). As a rule, then,

use tables unless speed is critical, when the macro approach can
be used.

Exercise 6.6
Use a macro with conditional assembly to:
(a)} rewrite the coding to Q.2, Ex.3.2
(b) combine the coding for Q.2 Ex.3.2 and Q.2 Ex.3.3 into a
single assembly program, an index being set to A if Ex.3.2

is to be produced and to S if Ex.3.3 is to be produced.

In each case suppress the assembler listing.

98

Chapter 7 Indirect indexed
addressing

7.1 MOVING A SECTION OF MEMORY

Let us consider how we might move a section of memory which is
more than 256 bytes long. In Section 5.4c we saw a general method
of performing a for/next lcop with more than 256 cycles. We can
modify that idea for our present task. Listing 7.1 shows the
program.

LISTING 7.1

1ONUML =270 NUMH=7 1

Z20INFUT"How many bytes will be moved". 'NUML
IOINFUT"Starting address of memory to be moved',

A% OLDLOC=EVAL (A%}

AOINFUTStarting address of new location”,As: NEW.OC=EVAL (A%)
SODIM BTART 100

AOFOR I%=0 T 2 STER 2:P%4=5TART

FOLOFRTIX

80LDX NUMH

FORER LDLOOF

1GaLDY #0

110, MEMLOCL

120L.DA OLDLOC,Y

130, MEMLLOCS

1405TA NEWLGC, Y

1S0OTNY

160BNE MEMLOCI

170ING MEMLOCL+2

180INC MEMLOCZ+2

190DEX
200BNE MEML.OCL
210,.L.0L00F
220 LDX NUML
2Z0BEQ FINISH
240.L00F
250LDA OLDLOC+256%PNUMH, Y
2608TA NEWLOC+2365% PNUMH, Y
270INY

2B0ODEX
ZP0BNE LOOF

FO0.FINISH

S1ORTSz INEXTI%

I20CALL START

ITOFOR I%4=0 T4 256K 7NUMH+TNUML-1

FTA0IF T(OLDLOCHIY) <> (NEWLOC+IX) PRINT "Error at move'"l%Z+1:END
JSONEXTIX

99

As in Chapter 6, the memory to be moved starts at OLDLOC and
it is to be moved to a section of memory starting at NEWLOC.
Altogether, (NUMH; NUML) bytes are to be moved. We move the (NUMH)
sets of 256 bytes first. For reasons which will become clear in a
moment, we use Y to index the move in each ¢ycle and use X to
count the number of sets of 256 cvcles. X is initialised in line
80 {and if (NUMH) = 0, an immediate branch is taken to the move of
the (NUML) bytes at 220). Then Y is initialised, and the 256 byte
move occurs in lines 120-160.

In lines 170 and 180 we increment the high byte of the addresses
OLDLOC and NEWLOC before repeating the 256 cycle move. For example,
if OLDLOC is &8320 and NEWLOC is &4000, then at the end of the
first 256 cycles we have moved the contents of locations &8320-
%841F to locations &4000-&40FF. At the beginning of the next 256
cycles we want OLDLOC to begin at &8420 and NEWLOC to begin at
&4100, and lines 170 and 180 achieve this. The process continues
until we have moved all {NUMH) bits of 256 bytes. Then in 220-2%0
we move the residual number of bytes expressed in (NUML). Again,
continuing the example, suppose we are moving 8920 bytes; then
(NUML) = &20. In lines 250 and 260 we begin the move from &48D20
(88420 + 256 * 9), as required, and move it to &4900. The move
ends at 8491F, giving &920 bytes moved in all.

You may be wondering why in 220-290 we do not simply load Y
with the contents of NUML and decrement Y as we go, so dispensing
with X altogether. This would not work, however, since we would
move a byte from %8p20 to 84920, and this should not happen. To
make this work we would have to decrement Y before starting the
move (so that Y contained (NUML) - 1), and check each stage of the
loop with a CPY #&FF, since Y = 0 must be included. It turns out
that all of this takes up more space and more time than using both
the X and Y registers.

The reason we have used Y to index each cycle of the move
rather than X is to accommodate the case where either OLDLOC or
NEWLOC are zero page locations. If we used X in this case, the
high byte of the address would not be available for incrementing
(see Section 6.3 to remind yourself of this). Using Y, zero page
addresses are stored in two bytes e.g. if OLDLOC is &10,

LDA OLDLOC, X is translated as B5 10 whereas
LDA OLDLOC, Y is B% 10 00,

There is one fundamental problem with this program. It works
well, but it needs to be reassembled every time we wish to change
the number of bytes to be moved or the starting addresses OLDLOC
or NEWLOC. This means that the program could never be a stand-
alone machine code program; it would always have to be tied to the
assembler, This is not good programming practice: in general, we
should only have to assemble a program once; thereafter, any
change in data should not require reassembly.

A solution to this problem is shown in Listing 7.2. The address

OLDLOC is put into two bytes OLDLOCL and OLDLOCH and passed as
data. Similarly the address NEWLCC is put in NEWLOCL and NEWLOCH.

100

LISTING 7.2

TOMUML =870z NUMH=87 1 QLDLAOCL=%7 2 DLDLOCH=%7 3 NEWL QUL =%7 4 NEWL.OCH=%75
ZO0INFUT " How many bytes will be moved", 'NUML

JOINPUT"Starting address of memory to be moved",A$: 'DLDLOCL=EVAL (A%)
A0TNPUT*Starting address of new location",fAs: INEWLDCL=EVAL (A%)

SODIM START 100

SOFDOR 1%=0 TO 2 BTEP Z:Fi=8TART

FOLOFTIY

80L.DA OLDLOCL

QOSTA MEMLOCL+1

10087TA MEMLOCTE+-1

110i.bA OLBLOCH

1205TA MEMLOCL+2

13057TA MEMLOCT+2
140LDA NEWL.OCL.
1508TA MEMLOCZ+1
1408TA MEMLOC4A+]
170LDA NEWLOCH
1808TA MEMLOCZ+2

1908TA MEMLOCA-+Z

200L.DX NUMH

210BECQ LOL.OGR

220LDY #0O

230.MEMLOCT

240L.DA &FFFF,Y Dummy operand

250. MEMLLOLC2

2608TA LFFFF,Y Dummy operand

I70INY

280BNE MEMLOCI

2Y0ING MEMLLOC1+2

JOOINC MEMLOC2+2

JLOINC MEMICHCSE+2

I20INC MEMLOCA+2

330DEX

J40BNE MEMLOCT

350, LOLooF

360 LDX NUML

I70BER FINISH

IB0. MEMLOLCE

JROLDA %FFFF,Y Dummy operand

400, MEMLLOCA

4108TA LFFFF,.Y Dummy operand

420INY

430DEX

440BNE MEMLOCS

450.FINISH

460RTIS: INEXTI%

470CALL START

480F0R I%=0 TO 256¥7NUMH+?NUML~-1

490IF ?COLDLOCL MUOD&SISI&+TY) <P OINEWLOCL+TIZ) FRINT “Error at move"I%
SOONEXTIY

Lines 80-190 take this data and store it into the relevant parts
of the program. Thus the address OLDLOC is put into lines 240 and
390; and the address NEWLOC into lines 260 and 410. The program

101

then operates identically to Listing 7.1, except that the addresses
in 390 and 410 are alse incremented. Once this program has been
assembled, we can reuse it with any new data without reassembly.

7.2 A BETTER METHOD

The solution given in Listing 7.2 works but it is clumsy and
long-winded. Moreover, we could not use it if we wanted to put the
program into a chip in ROM. The designers of the 6502 microproces-
sor have provided us with a better way of solving the problem.

LISTING 7.3

10CL.S

PONUML =270 NUMH=271 : OLDLOCL =272 OLDLOCH=&7 71 NEWL OCL =47 4 1 MEWLOCH=&71
FODIM START 100

A40FOR 1%=0 TO 2 STEF 2:PU=START

SOLOFTIY

HOLDX NUH

FOBER LOLOOF

BOLLDY #0O

QLD

100LDA {(OLDLOCLY ¥

1108TA (NEWLOCL: , Y

LT2GTINY

1EORNE LOOFE

140INC OLDL.OCH

150IMC MEWL.OCH

1&ODEX

170BNE LOOF]

180, LOLOGF

1590 LDX NUML

200BED FIMNISH

10, LD

LDA (OLDLOCL)Y . Y

2308Ta (NEWLOCL) Y

Z40TMNY

250DEX

Z260BNE LDOPZ2

270, FINISH

2BORTS: INEXTIY

Z2R0INPUT"How many bytes will be moved”, 'NUML
SOOINPUT"Starting address of memory to be moved',A$: | DLDLOCL=EVAL (A%
TIOINFUT"Starting address of new location',B$: !NEWLOCL=EVAL (B%)
I20CALL START: PRINT"Memory moved. Checking now.
II0A=EVAL (4%) t R=EVAL (B%)

TAQFOR I%=0 TO ZH54X?NUMH+Z?NUML~1

I50IF PA+TIY L P (B+I%)Y PRINT “"Error at move'"Il¥%+1:END
THONEXTIX

E7OFRINT "Check OE":GUOTO290

The program is shown in Listing 7.3, and the new ideas are in
lines 100, 110, 220 and 230. LDA (OLDLOCL}, Y means exactly the
same as line 390 in Listing 7.2 after the new contents have been
assigned in lines 80-190. It means load the accumulator with the

102

contents of the location (OLDLOCH; OLDLOCL) + Y. Similarly
STA (OLDLOCL), Y stores the accumulator inte memory location
{OLDLOCH; OLDLOCL) + Y. Figure 7.1 illustrates this.

B8040
Acc
OLDLOGL Er4D 7 m
OLDLOGH &80
Ll aeo
la}LDA (OLDLOCL, ¥
82000
Acc
NEWLOCL £00
+7
NEWLOCH & 20
L &e

{b] STA [NEWLOCL), ¥

Figure 7.1: An flustratian of the indirect indexed addressing mode, where OLDLOC s
&8040, NEWLOC is 82000, Y equals 7 and &8054 contains &60

This mode of addressing is called indirect indexed addressing,
and it is very powerful. In Listing 7.3, we are able to increment
the addresses peinted to in lines 100 and 220 in one go by writing
INC OLDLOCH in line 140. In Listing 7.2 we had to do this twice,
once for line 240 (at line 290) and once for line 350 (at line
310).

The mnemonic form used is actually very close to the one intro-
duced in Section 2.7 for our own use, Using that convention, we
would be inclined to write LDA (QOLDLOCH; OLDLOCL), Y. The 6502 can
shorten this because it assumes that OLDLOCH is always the next
location up from OLDLOCL i.e. OLDLOCH = OLDLOCL + 1. So it can
write LDA (OLDLOCL), Y for short, since given OLDLOCL it knows
OLDLOCH.

103

10CL.9

The indirect indexed addressing mode is always a two byte in-—
struction because the operand, here OLDLOCL, kas to be a zerc page
address. In practice, this is not a serious limitation, and it
results in an increase in processor speed and a decrease in memory
space used to store the program.

We cannot use the indirect indexed addressing mode with the X
register: it is only available with the Y register. The X register
has a special indirect mode of its own which we shall meet in
Appendix 3. Moreover, the indirect indexed mode is not available
with all instructions, as a glance at Appendix 1 will demomnstrate.
It can only be used with ADC, AND, CMP, EOR, LDA, ORA, SBC and
STA. But even with these restrictions, a great deal can be done
with it as this and later chapters will show,

Since the high and low bytes of the address referenced indirect-
ly in the indirect indexed mode must be stored in touching bytes,
it is usual to dispense with the L and H suffixes on the labels.
Thus instead of OLDLOCL we write simply QLDLOC; and if we wish to
refer to OLDLOCH we do so by using OLDLOC + 1. This convention is
illustrated in Listing 7.4, which purports to be an improvement
on Listing 7.3. Notice that in line 20 NUM is put equal to &70,
OLDLOC to &72 and NEWLCC to &74. This leaves &71 for NUM + 1, &73
for OLDLOCH and &75 for NEWLOC + 1.

LISTING 7.4

ZONUM=270: DLDLOC=872: NEWL.OC =274

ZODIM
40F0OR

START 100
I%=0 TO 2 STEFP 2:PL=8TART

SOLOFTIY
AOLDX NUM+1

TOLDY

#O

sa. LOOF

20LDA
1003TA
11QDEY
120BNE
1Z0QINC
140ING
130DEX
160BMI
170BNE
1800LDY
190BNE

(OLDLOC) , ¥
(NEWILOC) , Y

LooF
QLDLOC+]
NEWL.OC+1

FINISH
Loor
NUM
LOoOF

200.FINISH

Z10RTS:

INEXTIZ

Z20INFUT"How many bytes will be moved", 'NUM

LI0INFUT"Starting address of memory to be moved",A%: ! OLDLOC=EVAL (A

240INPUT"Starting address of new location",B#: ' NEWLOC=EVAL (B$)
230CALL BTART:PRINT"Memory moved. Checking rnow.”
260A=EVAL (A%) : B=EVAL (B%$)

270FDR 1%=0 TO 256%7 (NUM+1) +7NUM-1

280IF ?(A+I%) <7 (B+I%) FPRINT "Error at move"l%+1:3END
2FONEXTIZ

SOOFRINT"Check OK":GOTOR2ZO

104

Tt is also conventional in discussion to Tefer to all the bytes
associated with each label by just stating the label. Thus if we
want to refer to OLDLOC and OLDLOC + 1 at the same time, and there
is no ambiguity, we just say OLDLOC. Similarly, if a location
NUMBER has associated with it four bytes, NUMBER, NUMBER + 1,
NUMBER + 2, NUMBER + 3 then we could refer to these by just saying
NUMBER. So, for example, the statements 'QLDLOC contains the
address of the first location to be moved' and 'NUMBER contains
the 32 bit signed integer' utilise this convention and are clearly
unambiguous. In the rest of this book, we shall adopt this conven-
tion in our discussions where there is no danger of ambiguity.

Example 7.1

1. What relationship must hold between !OLDLOC and INEWLOC for
the program in Listing 7.3 to work?

2. Write a program which will work in those cases where Listing
7.3 does not. Use exactly the same data input as Listing 7.3 (i.e.
the start of memory to be moved, the start of the new locations
and the number of bytes to be moved). Which program is more
efficient?

3. Listing 7.4 purports to be an improvement on Listing 7.3.
However, there are some faults in it. Correct what you can, and
state which faults cannot be corrected.

7.3 INPUTTING A SERIES OF STRINGS OF VARYING LENGTHS

In Chapter 6, Listing 6.7, we constructed a program to input a
series of strings into an array. We had to restrict the length of
strings to 19, and regardless of the length input, 20 bytes had to
be reserved for each string. Moreover, the only way we could indi-
cate that we had finished input was by pressing the ESCAPE key
which necessarily took us cut of the program.

LISTING 7.5

1 00SWRCH=&FFEE
ZO0DIM START 4000
IOFOR IY=0 TO 2 STEF 2
AOF%=8TART

SOL0RTIY

601.DA H#HTEXT MOD 254
708TA 37

BOLDA HTEXT DIV 256
SOSTA 478

IN0OLDA #12

110J8R 0SWRCH
120.BEGIN
130LDA #ASC (7))
140J5R {ISWRCH
150J5R &BC28

140 LDY &0

105

170 L.9A

(2371, Y

180CHME #ASC ("4
170RNE L.OOF

SO0OINY

210LDA (R37),Y
2R00CMP 0D
FRORNE LONG

ZAORTS

250, L0ONG
R2H0OLDY #O
270.L00F

280LDA (&37) .Y
290CMFP #L0D
FCORER ENDSTRING

I10INY

AROBNE LOOF
FROLENDSTRING

SA0INY
SEOTYA
SGOCLE

I70ANC w37

IB08TA RI7

FFP0RLCC BEGIN

A4O0ING 38

410RCS BREGIN

G20 TEXT: INEXTIX

A4TOCALLSTART

A408TRING=TEXT:VDU14: REFEAT

450 AE=$ETRING :PRINTAS: STRING=BTRING+LEN{(A%) +1
A4E0UNTIL Ag="k"

A70VDULE

Armed with our new addressing mode, we can improve on all of
this, Listing 7.5 allows a series of strings of any length to be
input, stored in an array at the end of the machine code. Exit is
achieved by the input of a single asterisk; **, for example, will
not be interpreted as an exit signal. The details are as follows:

60-90

100-110
130-150

160-190

200~260

280-300

The low byte of the first free location at the end
of the program (referenced by TEXT) is put in &37
and the high byte in &38. This is required for the
routine at &BC28 {see Section 6.7}.

Clear the screen.

Output the 7 prompt, and accept input from the
keyboard.

Check if the first character 1s an asterisk. If not,
go to 1ine 280.

Check if the second character is a carriage return.
|f so, the single asterisk exit signal has been
input and so we return at 240. Otherwise reset the
character Index pointer {Y) to zero at 260.

Get the next character. If it is a carriage return,
the end of string has been found, so go to 340.

106

3106-320 Otherwise increment the index pointer and branch
back to 280. The branch always occurs since the
string length cannot reach 256.

340-380 Increment the base address of the buffer for input
to the mext free location in memory by adding the
string length (Y + 1) to the old base address.

390-410 If there is no carry branch immediately to 130 for
the next string; otherwise, Increment the high byte
of the buffer address before branching to 130,

As usual, we test the program using BASIC. Here, on exit from
the machine code we print out the ASCII contents of the memory
from TEXT onwards until a single asterisk is found.

Notice how the indirect indexed addressing mode solves our
problems for us. We are able to accommodate variable length strings
economically, because the buffer address can be set to the next
free location by the simple expedient of adding the last string
length to the last buffer address. We are also able to inspect each
character of the string, which we could not do in Listing 6.6, and
50 we can exit from the program without having to use ESCAPE. This
would be important if the present program were part of a larger
package, where the input strings were to be used.

7.4 SORTING A SERIES OF FIXED LENGTH RECORDS

In some applications, it is practicable to use a storage method
for records, where each field in the record is given a fixed
amount of storage space. Thus the record is of a fixed length. An
example of this might be wages data, where, say, 30 characters are
given for the name, 5 for a payroll number, 3 for the hourly rate
etc. In such cases, it is usually required that we can sort the
records, with respect to any of the fields. Thus we may want to
sort according to name, or according to hourly rate or according
to any other field we choose. In this case, we have no need to
mark the end of the records with a carriage return; rather we will
requite exact details of the whereabouts of the field upon which
we will sort the recerds.

Listing 7.6 gives a program to achieve this. It will sort up to
256 records, each record a fixed length up to 254 characters. The
particular field is accessed by two indexes: one for the beginning
of the field and one for the end, The indexes are relative to the
beginning of the record: so, for example, the hourly rate above
would be accessed with indexes 35 and 37, the payroll number with
30 and 34, and the name with 0 and 29.

LISTING 7.6

10NUMBER=%70: FIRST=471: SECOND=%73: TEMP=%75: RECLENGTH=
R76:FEYBTART=477 : KEYEND= &78: BASE=47%

20DIM START 100

SOFOR I%=0 TO 2 JTEFR

4OLOPTIZ

S0LDA BASE
608TA SECOND
7OLDA EASE+L
B0OSTA SECOND+1
FOLDX #O
1O0.BEGIN

110LRY EEYSTART
120LDA SECOND+1
1Z08TA FIRST+1
140LDA SECOND
1B0STA FIRST
160CLE

170ADEC RECLENGTH
1808TA SECOND
190RCE LOOFL
200INC SECOND+1
2MOJLOORT
AZO0LLDA (FIRSTY,.Y
F2EOCMF (SECOND) , ¥
240RCC NEWRECORD
LE0BNE SWOF
2L0OTHNY

S2F0LPY EEYEND
280RCC LOOFY
Z0BER LOOF1
AOORCS NEWRECORD
210, 8WaAR

FL0LDY RECLENGTH
TR0 LO0OFPZ2
ZA40DEY

A50LDA (FIRST),Y
ILHOGSTA TEMF
I70LDA (SECOND),Y
I80STA (FIRST),Y
IF0LDA TEMF
4QOSTA (SECOND) ,Y
410CFY #0

4Z20BNE LLOOF2
430 NEWRECDRD
440INX

430CFX NUMEBER
4450BNE BEGIN
470DEL NUMBER
480BNE START
490RTS: INEXT

SO0 CLS: INFUT"What

2 FL=BTART

is the record length",R: PRECLENGTH=R+1
G10INFUT "What are the limits for the key", ?EEYSTART, PKEYEN

S20INPUTY "How many records”,N: P"NUMBER=N-1

108

SIODIM B T(RECLENGTH) 4Nz ! BASE=E
SA40FRINT "Setting up strings now'
550 FOR [%=0 TO N-1sFOR J%= O TO R-1: 7 (B+IZXKR+1)+3%)

=RND (26 63 NEXTIY: P iBE+TYL ¥ (R+1)+1X) =13 tNEXTIZ
SGOPFRINT"Sorting now. ": CALLSTART:: FRINT"Checking. "
STOFDR 1%=0 TO CPRECLENGTHY % (N-2> STEF (7RECLENGTH) : IF

MIDS (S {E+I%), P(REYSTART) +1, PREYEND--PEEYSETART+1)

SMIDS (8 (B+I%+ (PRECLENGTHY)) , PAEEYSTART +1 , PKEYEND~-7EEYSTA

FT+1) THEN PRINT "ERROR ATY"STR$ (1% sEND
SEBONEXT:FRINTO. k. " END

We use a bubble sort, as discussed im Chapter 6. The program
details are:

50-80 Put the base address (of where the records are
stored) initially in locations which will point to
the second string in the bubble sort comparison.

90 Set the record count to zero.

110 $et the character index pointer to the lower limit

for the field to be sorted upon.

120-150 Put the old value of the pointer to the second
string of the current pair into the pointer to the
first string of the pair,

160-200 Increment the second string pointer to the next
record by adding the record length,

220-230 Compare the relevant field of the first record of
the current pair of records being considered in the
bubble sort with that of the second record.

240-250 If a character fails to match, either the records
are correctly ordered (line 240) or they are not
(1ine 250).

260-300 Otherwise, lock at the next character. |If we are
past the 1imit for the field {i.e. Tine 300 is
entered), then the strings must be identical and
need not be swapped.

310-320 The routine to swap a pair of records. Y contains
the record length.

340-420 Swap characters one by one, starting at the end of
the respective fields. TEMP is used as an storage
intermediary.

4L40-450 Continue until the current number of records have
been examined.

470-480 In that case, decrement the current number by one 1
(the bubble principle) and continue until there are
no records left to bubble through.

Notice the use of the two sets of locations FIRST and SECOND
here to point to the start of the current pair of records. By
continually updating these on each cycle ((SECOND) - FIRST,

109

(SECOND) + (RECLENGTH) - SECOND) we are able easily to move
through the entire set of records, pair by pair, using indirect
indexed addressing.

Again, we test the program using BASIC; here we set up the
requisite number of random strings of the correct length, and
after sorting, make sure that they are indeed in the correct order.

Exercise 7.2

Rewrite the program to deal with more than 256 records. Use
LOOPCOUNTH to count the high byte of the loop and X for the low
byte. Take particular care with the comparison: the problem is
probably harder than you think.

7.5 SORTING A SERIES OF 32 BIT SIGNED INTEGERS

In Section 6.4 we saw how to sort a series of bytes into numer-
ical order. Using indirect indexed addressing we are now able to
go much further than this: we will write a program to sort a
series of 32 bit integers into numerical order. You will recall
that all integers in BASIC are stored in this format, so we will
have a program which could sort BASIC integer variabies (see 10.2
for details of this}.

Once again we will use the bubble sort., This is a fairly slow
sorting method, and would be hopelessly inefficient in BASIC. How-
ever, in machine code the slowness is not a real drawback {1000
integers will be sorted in well under a minute) and there are com-
pensating pedogogical features: the algorithm is easy to under-
stand, and the program is short and generally economical in 1its
use of storage locations.

LISTING 7.7

10NUMBER=%70: FIRST=%71: SECOND=%7 31 TEMP=%75: BASE=%7G:
LOOFPCOUNT=%78

20DIM START 100

FOFOR I%=0 TO 2 STEP 2:PU=ETART

A0COFPTIX

SOLDA BASE

&05TA SECOND

70LDA BASE+1

8057A SECOND+]

0L.DA #O

1008TA LOOFCOUNT

110.BREGIN

120LDY #0O

130LDA SECOND+1

1408TA FIRST+1L

130LDA SECOND

1&608TA FIRST

17QCLEC

180ADC #4

110

1908TA SECOND

ZOORCE NOCARRY

Z1QINC SECOND+I

220, NOCARRY

2TALDX #4

2408EC

250, LAOOF1

260LDA (SELINDY Y

Z7O8BE (FIRBT),Y

280 INY

ZI0DEX

J0OOBNE LODF1

T10BVE NODOVFLOW

I20EO0R #%B80

3Z0. NOOVFLOW

I4OEQR #O0

JDOBRFL OVER

Z&ODEY

I70,L00FP2

I80LDA (FIRST,VY

I9O5TA TEMF

A4CG0LDA (SECOND) Y

4108TA (FIRSTY Y

420LDA TEMF

4705TA (SECOND) , Y

440DEY

A50BFPL LDOP2

440 . OVER

470INC LOOPCOUNT

480LDA LOOFCOUNT

A4900CMFP NUMBER

SOOBNE BEGIN

510DEC NUMBER

SZOBNE START

SIORTS: INEXT

540CLS: INPUT"How many numbers®, Nz PHUMBER=N-1:DIM B 4
¥ PNUMBER: ' BASE=R

SSOFDR I%=0 TO N—1:! (B+d¥I%)=RNDiNEXTIX

S6OPRINT"Numbers assigned. Sorting now":CALLSTART:
PRINT*Done. Checking now. "

570F0R [%=0 TO N~Z:IF ' (B+4XI%) »! (B+4+4%1%) THEN
PRINTTERROR AT “STR®{IX):END

SONEXTIY FRINT"Checking O.K.":END

Listing 7.7 gives the program, the details of which are:

50-80 Put the base address (of where the integers are
stored) initially in locations which will be used
subsequently to point to the second integer in the
bubble sort comparison.

a0-100 Injtialise the integer count. A location has to be
used since the ¥ and Y registers are used for other
purposes.

111

120 Set the byte pointer within an integer (Y} to zero.

130-160 Put the old value of the pointer to the address of
the second integer of the current pair into the
pointer to the first integer of the pair.

170-210 Increment the second integer pointer by 4 so it
points to the next integer.

230 Set the byte counter within an integer to four.

240-300 Subtract the first integer from the second integer,
‘throwing away' the result except for the most
significant byte.

310-320 |f the overflow flag is set at the end of the sub-
traction, reverse the sign bit of the most signifi-
cant byte (which is now in the accumulator).

340 This sets the negative flag to bit 7 of the con-
tents of the accumulator. This is essential if no
overflow has occurred, since 340 will be entered
with the negative flag relating to DEX at 290.
{ORA #0 or AND #&FF could have done equally well.)

350 If the second integer is less than the first, no
need to swap them. {If we had subtracted the second
from the first in 260 and 270, we would have had to
swap equal integers. BMI OVER would not pick up
equality, and there is no simple test for equality
in the absence of the four bytes of the result.)

360-450 Swap the bytes of the integers one by one, starting
with the most significant. Y already has the value
4 prior to line 360, so on entry to 380, Y = 3.

470-500 Continue until the current number of integers have
been examined. Notice that 470 and 480 are more
efficient than LDA LOOPCOUNT : CLC : ADC #1
STA LOOPCOUNT.

510-520 Decrement the current number by one {the bubble
principle} and continue until there are no integers
left to bubble through.

You may be wondering why we cannot in 260-300 use CPY #4 and
dispense with using X altogether. The reason is that CPY #4 affects
the carry flag, and we need to leave the carry flag alome so it
can register any borrowing which takes place. DEX does not affect
the carry flag, so we are safe to use it. There is an alternative
method which uses the stack, as we shall see in Chapter 9, but it
is still not as efficient as the one we use here.

Notice the similarity between this program and the one in the
last section. Although one deals with fixed length strings and the
other with fixed length integers, the indirect indexed mode allows
a common structure.

As usual we test the program using BASIC. Here we create a set
of random integers using the RND function.

112

Exercise 7.3

Rewrite the program to deal with more than 256 integers.

7.6 SORTING A SERIES OF VARIABLE LENGTH STRINGS

We could try to use exactly the same structure as Listing 7.6
to sort variable length strings, but we will come upon a large
difficulty when we try to swap them. Since they take up different
quantities of memory, we will need to keep opening up and closing
up sections of memory to accommodate the swap. One solution would
be to store the strings in fixed spaces of 255 bytes (the maximum
permissible) but this would be exceptionally wasteful of memory if
we are mot dealing with record structures where fixed lengths are
practicable.

There is another way which is much more efficient: create a
list of pointers and swap those instead. That is, store separately
a list of the addresses of each of the strings, and instead of
swapping the strings swap the addresses. Then, at the end of the
sort, the first address will point te the string earliest in the
alphabet, the second address to the string next in the alphabet,
and so on. The strings themselves remain fixed in memory; it is
the pointers which are moved about.

LiSTING 7.8
1ONUMBER=%70: F IRGT=%7 131 SECOND=%773: TEMF=%7%: ADDRESS=%763

STORE=%78: STORE1=%7A: G TORERZ=%7C
20DIM START “000: DIM RASE S12
TOFOR [%=0 TO 2 STEP 2iPX=8TART
A40OLCOFTIY
SOLDA BASE
HO0STA ADDRESS
70LDA BASE+]
808TA ADDRESS+1
FOLDYX NUMBER

100.1.00F1

110 LDY #&FF
120, L00F2

1 Z0INY

140LDA {(ADDREBS),Y
15CCMP #2.0D
140BNE LOOF2
170INY

1800 DA STOREL
12¢QCLE

ZO0ADC #2
2108TA STOREL
220HCC NOCARRY1
2EZ0INC BTDRE1+1
240. NOCARRY 1
230CLC

260TYA

270LDY #0O

F80OMDE ADDRESS
2905TA (BTOREL) , ¥
IOGETA ADDRESS
Z10BCE MDCARRYZ
ZR2OINC ADDRESS+1
SE0LNOCARRYZ
F40LDA ADDRESE+1
JEOINY

IH08TA (BTOREL), Y
I70DEX

IBORNE LOOF1

300 LO0OF3E

400LDR STORE
4108TA STOREZ
4700 DA STORE+]
430857TA STOREZ+1
440L.DX #O

450 LOOF4

A44DDY #O

A470LDA STORERZ+L
4B805TA STORE1+1
AF0LDA STOREZ
SOO8TA STOREL
S10CLC

GR0ADC #2

SIOSTH STOREZ
S40BCC NOCARRYS
SSOING STOREZ2+1
360. NOCARRY 2
S70LDA (STOREL)Y , Y
S80STA FIRGT
S90LDA (BTOREZ),Y
5008TA SECOND
G1OINY

HZ20LDA (STOREL) Y
LX08TA FIRST+I1
&£40L.DA (STOREZ) , ¥
6D08TA SECOND+1
G6OL.DY #O
&70.LO0FS

&HBOLDA (FIRST),Y
&F0OCMP (SECOND) , Y
700BCC NEWRECORD
710BNE SWAP
720INY

7IZ0BNE LOOFPS

740. SWAP

750 LDY #1
760.LOORS

770LDA (STORE1),Y
7805TA TEMF
790LDA (STOREZ2),Y
g8008TA (STORE1L),VY
B10LDA TEMF
8208TA (STOREZ2),Y

114

BIODEY

S40BFL LOOF&

B50. NEWRECOIRD

BEGTINK

B7QURPY MNUMEBER

280 BNE LOGF4

BPOLEC NUMEER

FOOBNE 1.O0P3E

PLORTS

FROCTEXT: INEXTI™%

FEOTBRASE=TEXT: { STURE=RASE s ' STIRE 1 =RAKE

GAOTINPUT " "How many records', N PNUMBER=M-1

FOOPRINT® "Setting up strings now"

PEO [=0rFOR ITA=0 TO MN-1:R=RND A0 : FOR J¥= O TO R-127
CTEXT+S+T4) =RND (28) +44 NEX T I FUTEXTHS+TE) = &
PEESHRA L NEXT LY

FTOPRINT"Sarting now. "s CALLSTART: FRINT"Checking.

FEBOFOR I%=0 TO N-Z2 IF ${ (BASE+ZXIXNIYMOD &1« Oy g

(BASE+ZX X+ MOD 10000 THEN PRINT'ERROR AT "STR$ECIE) s END

SROMEXT:FRINT"OLE, " END

The program is in Listing 7.8, and the details are as follows:

50-380 This section of the program sets up the list of
pecinters.

£0-80 Put the base address of where the strings are to be
stored into locations which will be used to point
to the current string found. The address of the
location BASE is set above the machine code program
and the strings in line 20. This will be the start-
ing point of the list of pointers. The first
peinter (to the first string) is passed as data in
Tine 930.

90 Initialise the string counter.

110-160 Scan the current string, starting with the first
character, until the end of the string is found.

17¢ Set Y to the length of the string (Including the
carriage return). Recall that Y begins with zero,
so the string length is Y + 1.

180 STORE1 will contain the address of the next vacant
space in the list of pointers. On entry, it is set
to contain the address of BASE at line 930.

190-230 increment STORE1 by 2 so that it does now indeed
point to the next vacant space in the pointer list.

250-280 Compute the low byte of the address of the next
string in the list of strings by adding the length
of the last string to its base address.

290 Store this low byte in the vacant space in the list
of pointers, pointed to by STORE1 {set in lines
190-230). Y at this stage is zero.

115

300 Also store this low byte in the location which we
are using to paint to the current string.

310-320 Adjust the high byte of this pointer if carry has
occurred.

340-360 Set Y to 1 and store the high byte in the vacant
space next door to the low byte stored in 290.

370-380 Continue until all the strings have been accounted
for.

We shall pause at this point, because this is a fairly compli-
cated piece of coding. We have used indirect indexed addressing in
two ways. Firstly, using (ADDRESS), Y, we have been able to exam-
ine, character by character, the contents of the current string
being examined. Secondly, using (STORE1), Y, we have been able to
access the next free location in the list of pointers. These are
connected because we store the contents of ADDRESS in the memory
location peinted to by the contents of STOREl. This idea will re-
pay careful study, and you should not continue until you are
confident you have fully grasped it. Symbolically, (ADDRESS) =
{(STORE1), Y) when Y = 0 and (ADDRESS + 1) = ((STOREl), Y) when
Y = 1.

The rest of the program does the sorting:

400-430 STORE contains the address of the first pointer in
the list of pointers {i.e. it contains the value of
BASE, not the contents of BASE). It is passed as
data in 930. It is a permanent record of this
address: STORE1, which did contain the address, has
lost it in 50-3B0; and it will do so again in this
part of the program.

449 initialise the counter for the set of strings left
to be sorted.

heo Initialise the string character index pointer.

470-500 Put the pointer to the location of the base address
of the second string of the current pair being com=-
pared in the pointer to the first.

510-550 Increment the pointer to the second string address
by 2 so 1t points to the next string address in the
list of pointers.

570-650 Store the base addresses of the first and second
strings of the current pair in locations on which
indirect indexed addressing can be performed (in
680 and 690).

660-730 Compare the strings as in 220-300 of Listing 7.6.

770-840 If strings need swapping, swap their addresses.
Remember STORE1 and STORE2 point to the addresses
where the base addresses of the current strings are
located, and not to the strings themselves.

116

860-910 Continue with the bubblie sort until there are no
strings left to bubble through.

Once again we check the program in BASIC. Here, random strings
of random lengths up to 40 are used.

The ideas here are so important, and so tricky to grasp, that
it is worthwhile finishing with a diagram .to stress the relation-
ship. Figure 7.2 considers a typical case. The current lower
string of the pair begins at &2132. This address is contained in
FIRST and FIRST + 1, whose contents were filled from the contents
of 81682 and 41683, The first of these latter addresses is pointed
to by the contents of STOREL and STOREL + 1. Illustrated is the
flow of information required to access the sixth character (Y = 5)
of the current lower string.

v s
STORE 1 82 —_ 1682 32 " FIRST o] —_— 2132
STORE1+1 16 1683 2t FIRST +1 21
+5
bt
2137

List of pointers

Prenmnm el

List of strings

Figure 7.2: The relationship between locations in fisting 7.8.

Exercise 7.4

Rewrite the program to deal with more than 256 strings.

7.7 INDIRECT JUMPS AND JUMP TABLES

There is a non-indexed indirect addressing mode, available only
with the JMP instruction, For example, the mnemonic JMP (&020E)
will jump, not to &020E, but to the address conrtained in &020E and
8020F (low byte first).

You are unlikely to want to use this in much of your program-
ming, Its main use is in the structuring of operating system soft-
ware, usually in conjunction with jump tables.

When you write JSR &FFEE for example (i.e. OSWRCH) the micro-

processor goes through what seems a tortuous path. It goes to
LFFEE and encounters JMP(&020E). So it picks up an address from

117

o

&020E and &0Z0F and goes to the OSWRCH routine. Why this round-
about path? Surely it would be quicker to go straight to &E1BB,
the address of the write character routine in 08,017

When writing software, there are sometimes more important
things than saving a few microseconds. There are two aspects to
explain here: first the jump table, then the indirection. The BBC
Computer has a series of operating system jumps stored from &FF00
onwards. These will either be straight jumps (i.e. 4C XX XX} or
indirect jumps (i.e. 6C XX XXJ. In either case, there 15 a good
reason for such a table of jumps. The jumps in this table repre-
sent most of the important operating system calls.

Now, later on Acorn, the BBC micro's designers, may want to re-
write parts of the firmware (as software in ROM is oftem called).
This may well involve changing some of the addresses for the
important system calls. Since a jump table has been used, however,
all references to the call need not change. All that needs to be
changed is the reference address. So, for example, all calls to
OSWRCH remain as &FFEE; all that needs to change is the contents
of &020E and &020F (which is set up on power on or reset). Again,
all references to JSR &FFAl (which is not indirected) remain; all
we need to change is the contents of &FFA2Z and &FFA3, This makes
operating system management a much easier task. And it ensures
that all your programs which use operating system calls, will work
with any change in the operating system.

Most of the important calls are indirected. One of the main
reasons for this is to allow you to add pieces of code to the
system software, whilst utilising the jump table idea. One example:
suppose, when using OSRDCH, you always want to use the query

_ prompt. Then you replace the contents of %0210 and &0211 (the in-

direction pointers for OSRDCH) by, say, &F8, &0D and write at
&4&DF8 onwards:

LDA #ASC{"'?}

JSR OSWRCH

JMP &DFAS

Now all references to OSRDCH will indirect to &DF8,

The second reason for indirection is to allow you to intercept
the operating system. As an example, suppose you wish to replace
the prompt ">' by "2, If you type in and run the following pro-
gram and then execute 7&Z0E = 0: 7820F = &D, all occurrences of
">" will be replaced by "?'.

10 FOR 1% = 0 TO 2 STEP 2: P% = &D0OO0
20 CoPT 1%

30 CMP #ASC{"'>")

40 BNE QVER

50 LDA #ASC("?'")

118

60 .OVER
70 JMP &E1BB: INEXT

To reset OSWRCH to its usual operation, execute ?&20E = &BB:
?&20F = &El. {All absolute addresses are for 0S O.1)

Used with care, this facility can be of considerable use in
application programs. FINDCODE, one of the utilities on the secornd
tape available with this book, makes use of this to selectively
list certain lines in a program,

Exercise 7.5
1. Small letters are always &20 more than capitals in their
ASCII values (i.e. A is &41 and a is &61). Intercept OSWRCH to

treat all small letters as capitals.

2. Use interception to give a query prompt to OSRDCH. (OSRDCH
indirects through &0210 and its default value is &DFA5 in 0S,01,)

119

Chapter 8 Multiplication and
division

8.1 A SIMPLE MULTIPLYING ALGORITHM FOR DECIMAL NUMBERS

Let us begin this chapter by reviewing the familiar algorithm
for multiplying two base 10 numbers together.

Consider 1564 x 8401. We set out our working thus:

1564
8401 x
1564 (x 1)
0000 (x 0)
6256 (x 400)
12512 (x 8000)
13139164

We take each digit of the multiplier 8401 in turn, beginning
with the least significant (the right hand one), and multiply 1564
by it. As we move from right to left through the multiplier we
move from right to left correspondingly through the columns. Thus
each partial product is shifted cne place to the left of the pre-
vious partial product. Then the partial products are added, column
by column, to give the final result.

Each shift to the left is equivalent to multiplying by 10. Thus
shifting twice and multiplying by 4 is equivalent to multiplying
by 400; shifting three times and multiplying by 8 is equivalent to
multiplying by 8000.

8.2 A CORRESPONDING ALGORITHM FOR BINARY NUMBERS

Consider now 1011 x 1101, both numbers being in binary. Our
working is:

1011
1101 x
1011
0000
1011
1011
Tooo1111

The algorithm is identical, but very much simpler to perform
since we only ever multiply by 1 or 0. Here, each shift to the
left is equivalent to multiplying by 2.

120

8.3 PROGRAMMING A 4-BIT MICROPROCESSOR TO
PERFORM THE MULTIPLICATION ALGORITHM

Imagine that instead of an 8-bit microprocessor (i.e. one with
an 8-bit data bus and 8-bit Tegisters) we have a 4-bit micro-
processor (with 4-bit data bus and registers). How can we program
it to perform the multiplication of 4-bit numbers? Once we have
solved this problem for a 4-bit processor, it will be an esasy
matter to extend it to an 8-bit one.

Let us discover first what programming commands we have at our
disposal, There are four:

(i) SHIFT RIGHT
This shuffles all the bits along one place to the right. The
space created at the most significant end is filled with a zero.
The bit which falls out at the right is put into the carry flag,
Consider what happens to 1011. It becomes 0101 and 1 goes into the
carry. Thus:
Action Result

B3 B2 Bl Bd c B3 BZ Bl BO C

1|0 (1]1 —1-|II 011{0 |1 1

(ii) SHIFT LEFT

Identical to shift right except all the bits are shuffled one
place to the left, the least significant bit being filled with a
zero, the most significant falling into the carry flag. Thus on
1011 we have:

Action Result

B3 B2 Bl BO C B3 B2 Bl BO L

c

(iii) ROTATE RIGHT

This is just like shift right except that the space created at
the most significant end is filled by whatever was in the carry.
Thus, again considering 1011, if the carry contains a 1 we have:

Action Result

B3 B2 Bl BO C B3 Bz Bl BO C

rﬁ- 1| 0ji |1 I!I 111011 1

121

If the carry contains a zero we have:
Action Result

B3 B2 Bl BO c B3 B2 Bl BO C

1jof111 P—-{ 0 l 10114101 J 1

{iv) ROTATE LEFT

Identical to rotate right except the movement is leftwards. The
corresponding diagrams are:

Action Result
C B3 BZ Bl BO C B3 BZ Bl BO
1 p— 1(0(1 11 1 o{1fj1]1
{
c B3 B2 Bl BO C B3 B2 Bl BO
0 je—1 [0f2]1 1 gl |10
| |

These four operations can act on any memory location, zero page
or absolute. In addition, they can alse act directly on the accum-
ulator. This is something new, and constitutes an additional form
of addressing, called, not surprisingly, accumulator addressing.
In this case the operand is simply the accumulator itself.

Now, let us use these instructions to model the algorithm as
closely as possible.

We will need two four bit locations for our result: RESH for
the top four bits and RESL for the bottom four bits (remember that
at the moment we are assuming that memory locations hold only four
bits). We will need a temporary location, TEMP; you will see why
in a moment. Finally we need a place to store the multiplier,
MULTER, and a place to store the number multiplied by this, MULTED.
In our example above MULTER is 1101 and MULTED is 1011.

We begin by setting RESL, RESH and TEMP equal to zero. We now
look at the least significant bit of MULTER. If it is one we add
MULTED to RESL. We then shift MULTED one place to the left, put-
ting the left next bit which drops out into TEMP. Look at the next
bit of MULTER. If one, add MULTED to RESL and TEMP to RESH (to-
gether with any carry). Continue in this way through all four bits
of MULTER,

122

The flow chart of the process is in Fig.8.1 (we assume MULTER
and MULTED already have their values assigned). Recall that
(MULTER}) refers to bit I of MULTER.

0-—+RESH
0—+TEMP ®

J FORI=1T04
F-—"—~———~=- T T - 1
I 1
I I
I I
I @ [
| |
I {MULTER):07 t
' i
I !
' I
! No I
L |
' (RESH; RESL) + (TEMP; MULTEDI @ I
; —RESH, RESL I
! |
t |
L t
v ——{ swrcimemp; muLTeDi e | (8 '
{ 1
1 {
- -4
Figure 8.7
MULTER RESH RESL TEMP MULTED
101 0000 0000 0000 1011 Initialisation
D110 e =11 0000 1011 0001 0110 Loop 1
0011 (c=01 000G 1011 0010 1100 Loop 2
0001 [e=1] 00N o 0101 1000 Loop 3 i!
0000 (c=11 1000 1 1011 0000 Loop 4 — End i |
Table 8.1

123

The only preblem now concerns how we can test the successive
bits of MULTER. This is most easily done by shifting right each
time; the next bit of MULTER will fall into the carry flag and we
can test this flag to see whether it is zero.

Since the ideas here are so impertant, let us follow through
the flow chart for 1011 x 1101. The analysis is in Table 8.1.

8.4 A PROGRAM TO MODEL THE MULTIPLICATION ALGORITHM

Now we have understood the process using the simpler 4-bit
microprocessor we can now write the program for our 8-bit micro-
processor. The flow chart will be identical to Figure 8.1 except
the loop is from 1 to 8.

LISTING 8.1

16 TEMP=8 70 MULTER=%7 18 MUL TED=872 REG=7 5 P47 5=05 PRT7H=0
20DIM BTART S50
TOFOR I%=0 TO 2 STERZFU=5TART
4OCORTIY

S0LDA #O

&HG8TA RES

FO5TA RES+1
aasTa TEMF
gL #8

100, LOGH

110LSR MULTER
120800 ZERG
130LDA RES
140CLE

1S0ADE MULTED
1608TA RES
170LDA RES+]
1B8OADEC TEM#
120574 RES+1
200, ZEROD

210A%5L MULTED
220 ROL TEMF
2I0DEX

240BNE LOOF
ZS0ORTS: INEXTIZ
260CLS REFEAT
270 INPUT"Numbers to be multiplied",A,B: PMULTER=A: PMULTED=H
ZEOCALLESTART
2Q0FPRINTAXE, 'RES
SODUNTIL FALSE

The program is in Listing 8.1. As usual we have used RES and
RES + 1 for a two byte label (instead of RESL and RESH). In this
listing three of the mnemonics for the shifts and rotates are
introduced. LSR is shift right; ASL is shift left; ROL is rotate
left; and ROR, the one missing, is rotate right. Appendix 1 gives
the symbolic diagrams and addressing modes. Note that LSR denotes

124

]

logical shift right and ASL arithmetic shift left. These first
words are of no consequence and are best ignored. So remember LSR
as shift right and ASL as shift left; and to distinguish, think of
shifting left as multiplying by 2 and so arithmetic.

The important thing to notice in Listing 8.1 is the method of
shifting TEMP; MULTED left, Shift MULTED left (ASL); then shift
TEMP left rotating in the carry flag (ROL)}. Thus we use the carry
flag as an intermediary in shifting the MSB of MULTED into the LSB
of TEMP. This technique is used a great deal and should be thor-
oughly understood and committed to memory.

8.5 A MORE EFFICIENT ALGORITHM FOR MULTIPLICATION

Qur program in 8.4 models very accurately the algorithm in 8.2.
But are we sure that algorithm makes best use of the microproces-
sor's facilities? Let us return again to the 4-bit machine of 8.3.

Consider the following method of performing 1011 x 1101:

(1) Begin with 1011 0000 in RESH; RESL, since LSB of 1101 is 1.
Shift right to 0101 1000.

(2) Since LSB of 0110 is 0 there is nothing to add on. Shift
0101 1000 right to 0010 1100.

(3) Since LSE of 0011 s 1 add 1011 0000 te 0010 1100, giving
1101 1100. Shift right to 0110 1110.

(4) Since LSB of 0001 is 1 add 1011 0000 to QLl10 1110 giving
Q001 1110 and 1 in carry. Rotate right to 1000 1111.

The great advantage here is that we do all our shifting in RESH
and RESL and thus have no need for TEMP. As we move through the
four stages of this process, the contents of RESH; RESL make the
following changes:

(1) 0101 1000 (2) 0010 1100

(3) 0010 1100 (4) 0110 1110
1011_0Q00 + 1011 0000 +

1101 1100 [1]JoooT 1110

+ 0110 1110 51000 1111

The logic here is that we add on each partial product before shift-
ing the partial result, In this way each partial product is shifted
once less than the partial product immediately preceding it, and
thus ends up in the correct column, The first partial product we
take is the one which will end up furthest to the right; the next
one is the one which will end up one less columm to the right; and
so on.

125

Start

0—+RES,
0—+RES +1 @

J FOR 1=1T08
r—-—-—---- Fe-d - 1
| I
|)
' Shift (MULTER) i
| right §
| |
[|
| |
| [
{ @ Yes 1
| C.07 |
| [
1 |
t No |
I |
) |
| | (RES+1+ (MULTED)~RES +1 ‘(:) :
| 1
| |
I |
[@
Rotate {RES + 1; RES} right }————
L U -

LISTING 8.2

1OMULTER=& 7O MULLTED=&7 1 s RES=472: 747 4=0: ?875=0
20DIM BTART S0

TOFOR I%4=0 TO 2 STEPZ:P4L=START
A40C0PTI%

SOLDA #0

&0STA RES

7O5TA RES+1

BOL.DX #8

@O, LO0F

100L8R MULTER

110RCTC ZERO

120LDA RES+1

1Z00LE

140ADC MULLTED

1505TA RES+:

126

160, ZERO

170ROR RES+1
180ROR RES
170DEX

FOOBNE LODF
Z10ORTS: INEXTIZ
22OCLS: REFEAT
2I0 INFUT"Numbers to he multiplied”,A,B:?MULTEH=A=?MULTED:B
240CALLSTHRT
2H5OFRINTAXE, 'RES
2H0UNT T FALBE

Figure 8.2 gives the flowchart for an 8-bit processor, and
Listing 8.2 gives the program, Note the use of ROR RES+1 instead of
LSR. This ensures that any 'minth bit' is rotated in (a situation
analogous to stage (4) in the 4-bit processor algorithm above).

8.6 MORE EFFICIENCY STILL: ACCUMULATOR ADDRESSING

We met the idea of accumulator addressing in 8.3. If you
inspect Listing 8.2 you will notice that after initialisation the
accumulator is used only to load and store RE5+1l, We can therefore
do without RES+1 until the end and perform the shifting on the
accumulator instead. This has the bonus of being quicker too (2
cycles instead of 3).

LISTING 8.3

1OMUL TER=%70: MUL TED=%7 1 : RES=872: P87 4=0: 7L75=0
20DIM BTART S0

ZOFOR I%=0 TO 2 STEFZ:FR=START
4OLOFTIA

SOLDA #O

&05TA RES

7OLDX #8

B0. LOCF

POLSR MULTER

100BCC ZERD

110CLE

120ADC MULTED

1370, ZERO

140ROR A

1S0ROR RES

1450DEX

170ENE LOOF

1805TA RES+1

190RTS: INEXTIY%

2000LS: REFEAT

210 INFUT"Numbers to be multiplied",A,B: ?MULTER=A: ?MULTED=B
220CALLSTART

2ZO0FPRINTAXR, 'RES

ZAOUNTIL FALSE

The new listing is in Listing 8.3. Note that the mnemonic label
for accumulator addressing is A - hence A camnnot be used as a

127

location name. As a final point, if we did not want to store the
result, only output it to the screem {(as we will do in the next
section and in Chapter 9) then we could dispense with line 180
also.

Exercise 8.1

1, Adapt Figure 8.2 to deal with the multiplication of two 16-
bit numbers. You will need four locations for the result: RES+3,
RES+2, RES+1, RES. Also two bytes for the multiplier, MULTER+1
and MULTER, and two for the multiplied number, MULTED+1 and
MULTED.

Write the corresponding program. Can you make it more efficient
by using the accumulator as a storage location for part of the
result?

2. Adapt Listing 8.3 to multiply two signed 8-bit numbers. You
will need to check if either number is negative. If it is, you
will need to form the two's complement. You will need to determine
the sign of the final result also. This can be combined with the
earlier checks by initially setting X to zerc. Increment X if the
first number is negative, decrement X if the second is negative.
Now if X is zero the result is positive; otherwise it is negative
(set Y to 1 in this case).

Now Listing 8.3 can be used, and the sign of the result adjust-
ed accordingly.

3. Write a program to compute 250 * Y + X (see 5.4b}.

8.7 AN INTERLUDE: OUTPUTTING NUMBERS USING BINARY CODED DECIMAL

In Chapter 6 we saw how to output characters to the screen, but
we did not consider how we could output a number stored in a byte,
For example, how can we output the byte &A3 to the screen as the
decimal number 1647 We will consider a quite general way of doing
this in the next chapter, but here we will combine some of the new
instructions in the last few sections with a new way of storing
data: binary coded decimal (or BCD).

Any byte consists of two sets of four bits, the four least
significant and the four most significant. With their customary
humour, computer scientists refer to these half-bytes as nybbles!
We can conceive of the bottom nybble as representing a decimal
digit, and the top nybble as another decimal digit. No problems
will arise as long as we restrict the range of each nybble from
binary 0000 te binary 1001 (i.e, from O to 9). Thus we could
understand 00110100 as decimal 34 in this approach. To put this
another way, as long as each hex digit is restricted to between 0
and 9, we can interpret a hex byte as a two digit decimal number.
Then, a byte can now represent any of the decimal numbers from 0

128

to 99. This way of coding decimal numbers is called, for obvious
reasons, binary coded decimal (BCD).

Now when we want to perform addition or subtraction using BCD
numbers, we want the computer to behave in a special way. As an
example, let us add 78 to 34 in BCD. We have:

34 0011 0100
78 0111 1000

Without any special changes, the computer will produce
1010 1100 which is obviously rubbish in BCD. What we would like
the computer to do is to generate a carry after it adds the lower
two nybbles, correcting the result to BCD: thus,

0100
1000
Carry 1 0010

We want now to be able to add this carry with the addition
of the higher two nybbles, and again generate a new carry correct-
ing the result to BCD: thus

0011
D111
.1

Carry 1 0001

The final result will be [1] 12 in BCD (with the hundreds digit
in the carry), which is correct,

There is a simple way to get the computer to behave like this:
we just set a flag in the processor status register called the D
flag. The instruction is SED.

Whilst this flag remains set all occurrences of ADC and SBC are
treated as BCD. Then an internal carry from the lower to the upper
nybble will automatically occur as the lower nybble passes through
9, and it is automatically set back to 0. Similarly a carry 1o the
carry flag is generated automatically as the upper nybble passes
through 9, and this nybble also is set back to 0. Hence if we add
1 to itself 100 times we will obtain 00 with a carry of 1.

It is this idea that we exploit to convert our byte to a set of
ASGII digits which we can output to the screen. The idea is to
decrement the byte to be converted (using DEX, with the byte in X)
and increment the accumulator by 1 in BCD (using ADC #1 with the D
flag set). The highest digit can then be straightforwardly output
(430 + digit). The lower digits have to be separated: we use LSR A
four times to shift the top nybble of the accumulater into the
bottom nybble position, at the same time setting the top nybble to
zero. Then again output in ASCII, Finally, we reclaim the accumu-
lator, perform AND #&0F to set the top nybble to zero whilst leav-
ing the bottom nybble unchanged; and then output in ASCII,

129

LISTING 8.4

1OHIDIGIT=%70: NUMBER=271 : OSWRCH=4FFEE; DSNEWL=%FFE7

20DIM START 100
ZOFOR I%= 0 TO 2 STEPZ: PU=START
AVLCORTIX

SOLDA
60BTA
TOLDA
BOLDX
SORER
1005ED
110ELE

#H20
HIDIGIT
#0O
NUMBER
ZERD

120, BACK

1EGADC
140RCE
1SOING
160CLC

#1
NOCARRY
HIDIGIT

170 NOCARRY

180DEX
1FQBENE
200CLD

RACHK

210, ZERO

220TAY
230LDA
Z240J8R
250TYA
2601.5K
270LSR
280L.8R
290LSR
IO0CLC
E10ADC
Z20JI8R
IIOTYA
I40AND
IHOoADC
I60IBR
JI7OJISR

HIDIGIT
QOSWRCH

TP

#8530
OSWRCH

#LOF
#4330
OSWREH
OSNEWL

IBORTE: INEXTIZ

IPOLLS: REFEAT

400INFUT"Number to be output™, PNUMBER
410CALLSTART

420UNTIL FALSE

The program is in Listing 8.4, and the details are:

50-60 Store the ASCII code for zero in the location for

the highest digit.

70-30 Initialise the accumulator and the X register. |f
the byte to be converted is zero, skip the BCD

conversion.

100-110 Set the relevant flags for the conversion.

130

130-190 Add 1 in BCD to the accumulator and at the same
time decrement the byte in X. If the accumulator
passes from 99 to 00 increment the high digit.
Continue until the byte reaches zero.

200 Clear the D flag. It is most important to do this
as soon as you are finished with BCD arithmetic,
and also whenever you want to use a system sub-
routine like OSWRCH.

220-250 Save a copy of the accumulator in Y, output the
highest digit to the screen, and reclaim the
accumulator (the copy is still in Y).

260-320 Set the top nybble into the bottom nybble position
and set the top nybble to zero. Add the ASCI| code
and output to the screen.

330-380 Get the accumulator back (stored in 220}, set the
top nybble to zero, add the ASCII code, output the
digit to the screen, output a new line and return.

This routine will always display three digits: 000 to 255. It
can be adapted to output the contents of two or more bytes, but it
is not really worth it since the next chapter contains a much more
efficient routine. However, it is very straightforward to adapt it
to count from 000 to 999 and this is left as an exercise.

You may be wondering why we do not use BCD to multiply, since
we are so accustomed to hase ten work, The problem is that BCD is
very wasteful of space, and it is slow because many more byte
movements are involved e.g. 193 x 253 will involve 3 instead of
two bytes, and each multiplication by ten invelves four shifts
which multiplies by 16 im binary.

Exercise 8.2

What amendments to Listing 8.4 are required to allow it to out-
put numbers from 000 to 9997

8.8 A SECOND INTERLUDE:
A PSEUDO-RANDOM NUMBER GENERATOR

Here is a relatively unknown, but very simple and very fast way
to produce your own pseudo-random numbers.

We begin with a 32-bit shift register, which we seed initially
when assembling the program with a 32-bit pseudo-random number
from BASIC's generator (i.e. we use RND) .

Every time the program is called, this 32-bit register is
'specially' rotated left B bits, and the number remaining in the
highest 8-bits is the random number. The 'special' aspect of the
shifting lies in this: if the most significant bit of the register
is 0 we simply rotate the register left ome bit; if the most sig-

131

1 .

nificant bit of the register is 1, we first exclusive-or the
bottom three bytes with a suitable constant before rotating left
one bit. The constant we will use here is, highest byte first,
&76, &B5, &53, but others are possible.

At the end of 8 rotations we have our random number, which we
put into the accumulator. The program is given in Listing 8.5.
Lines 280 to 370 perform a chi-square test on some test data. When
I ran this with 500 sets of 256, the null hypothesis of randomness
could not be rejected even at a significance level of 25%. This is
strong evidence in favour of randomness. Permutation tests also
show that there is no clustering. Moreover, it can be shown that
repetition occurs only after 229 bytes (i.e. after 536,870,912
bytes). This is therefore a very good pseudo random generator,

LISTING 8.5
10CONSTANT =&70:8HIFTREG=%73
Z20DIM STaRT 5G
IOFOR I%= O T 2 STEF 2:P4L=8TA4RT
AOLOFPTIZ
SOLDY #3
&0, BEGIN
7aCl.C
B8OLDA SHIFTREG+E
PORPL ZERDBIT
Lo DX #2
1140 L 00K
120L.DA SHIFTREG, X
1Z0EDR CONSTANT, X
1408TA SHIFTREG, X
L3ODEX
1&0BFL. LOOF
170BED
180. ZEROBIT
190R0OL. SHIFTREG

200R0OL SHIFTREG+!

F10R0OL. SHIFTREG+Z

2EOR0OL SHIFTREG+S

2TODEY

240BNE BEGIN

250LDA SHIFTREG+Z

POORTS: INEXTIY

27OMRTO=ESTy PRT 1=y RS PLT ey T hy | &7 S=RND:
REM ¥%f%Initialisationfix

280VDU1Z: INFUT"How many sets of 2546 for the test", T4

290DIM NY{255) :VDUIZ2:FOR 1%=1 TQ T%

TOOFOR J%=1 TO 256:AL=USRETART: A%=78404

E1ONY CAK)Y =NY (AX) +1 2 NEXT

EZ2OFRINTTAB (0, 1) TN NEXT

ITOSY=0: FORIZA=0 TO 255:8%=8U+NLU(I%) "2 NEXT

Z40PRINT"Chi—squared gives ";S5u/TL-256XT4

TSOFRINT"This compares with " FNCHI(1.64)" at 0%
NENCHT (1.28)" at 104" FNCHIC O.84)" at 2074 and
"AENCHI(.L7S) " at 25U"

ZH0END

Z70DEF FNCHI(X) = O.5%(X + 22.56)"2

132

especially given its simplicity and speed. By calling it four
times, you can, if you wish, generate 32 bit signed integers equi-
valent to RND, with a repetition cycle of 134,217,728,

The program requires seven memory locations, all of which are
initialised on assembly in line 270. Thereafter, no further
initialisation is required. The details are:

o Initialise hit count.

70 If most significant bit is zero, we require zero in
the carry flag when rotating into the lowest byte
of the shift-register at iine 190,

80-90 If msb is zero, no need to exclusive-or.

100-160 Exclusive-or bottom three bytes of shift-register
with constant.

70 Set carry to one for rotation in line 130.
190-220 Rotate shift-register one bit to the left.

230-260 Continue for 8 bits, load random number into the
accumulator and return.

Notice that we must initially load the carry flag with zero or
one to perform the 32-bit rotation, since the rotation into the
lowest bit will need to contain the contents of the highest bit.

8.9 A THIRD INTERLULE:
COPYING THE HIGH-RESOLUTION SCREEN TO A PRINTER

As a third example involving our new instructions, we will con-
sider how we can arrange to output the high-resolution screen to a
printer. Specifically we shall focus on MODE 4 and MODE 0, since
these are the two-celour modes where the maximum resolution is
possible. The program is written for an EPSON MX80 type Il printer,
but even if you lack one of these, or even indeed if you have only
a model A with no printer interface, the ideas here will still be z
of use to you. From the programming point of view the techniques !
involved are of interest, and the information on how the BBC com-
puter organises its high resolution graphics should be valuable
too.]

In MODE 4 it is helpful to think of the screen as 32 rows, each
row containing 320 bytes consisting of 8 rows and 40 columns. In
MODE ©, 32 rows again, but this time 640 bytes consisting of 8
rows and 80 columms.

As long as no scrolling has occurred since the last clear
screen or mode change (this will typically be the case when we are
plotting on the high-resolutlon screen) then the first byte of
screen memory will be the first byte of the first row and first
column of the screen. What happens if scrolling occurs (which will
typically only happen in MODEs 0 and 4 if we are using user- _
defined characters textually) will be covered in Chapter 9. i

133

Thereafter, the memory is allocated as follows: we remain in
row one, scan the first column of 8 bytes, then the second and so
on to the eightieth {or fortieth) column. Then onto row two, and
repeat the scan; then row three, etc. until we end at row 32.
Figure 8.3 should make this clear. With no scrolling, the final
byte at the bottom right-hand corner is &7FFF {or &3FFF in a Model
A). In multi-colour modes, part of each byte contains the legical
celour information but we are not concerned with this here,

Rowl l——— LDl § - — . A

Row 2

I
Bow32 — — — — i - - - %

|

. _éé ~— EB7FFF {or &3FFF)

Figure 8.3 The organisation of screen memory on the high-resolution screen in MODE 0 (or
4) when no scrolling has occurred since the last clear screen.

Now in order to understand how we can copy the screen to the
printer, we must understand how the Epson printer prints high
resolution graphics (other high-resolution printers operate
similarly).

When the right control codes are passed to it (more on this in
a moment) the Epson will treat each byte of data passed to it as
specifying which of its 8 needles will fire (the ninth, bottom
needle, will never fire in high-resolution mode). The top needle
corresponds te the most significant bit of the byte of data, the
eighth needle to the least significant. Thus &B3, which is
10110011 in binary, will fire the top needle, the third and fourth
needles down, and the seventh and eighth needles down. The pattern
produced is shown in Figure 8.4: notice it is a vertical pattern.

134

Figure 8.4: The pattern produced on an EPSON printer with the data &83.
@ /ndicates & dot on the paper (i.e. needle fires)
o indicates a space on the paper (i.e. needle does not fire)

L X NeloR X NoN

Now, in order to get the correct orientation on the paper it is
necessary to output each of the 32 rows, column by column. That
is, the first 8 x 8 bits must be output not in rows but in columns:
Figure 8.5 should make this clear. This is where our new instruc-
tions come in: we need to extract the column information from the
8 bytes which contain the row informatiom.

bytes

output

J& R

Figure 8.5: An 8 x 8 set of bits at the intersection of any row and cofumn. The bytes refate to
the rows of this grid, but the output must relate to the columns so that it matches the set-up
in figure 8.4.
LISTING 8.6
1000 UMNS=% 70 ROWS=%7 1 s GO COPY=& 7 s L ITMIT=&7 %z
BEGINCONTROL=%741 L.OCATION=%75: 8TORE=%7 7 OGWRCH=%FFEE:
OSBRYTE=%FFF4
20FORIY=C0 TO 2 STEF 2:FPY=D0O0: RESTORE
JOLOFPTIX
40t DA #3
SOSTA LIMIT
GOLDX #O
70JSR CONTROL
BOLDX #4
FoLDA #&:B3
100J8R O8BYTE
1108TY MEMLOC+1
120LDA #2284
130J5R OSBYTE
1408TX LOCATION
1508TY LOCATION+1
1&60. MEMLOC
170CFY #O Dummy operand
180BNE ZEROMDODE
190LDA #7
2008TA LIMIT

135

210048 #3
Z22068Ta BEGINCONTROL
.DA #40
240BNE FOURMODE
250, ZEROMODE
260L0DA #1131
2708TA LIMIT
ZE0OLDA #7
2208TA BEGINCOMTROL
IQOLDA #80

Z10. FOURMODE
I2068TA COLLUMNMES
ZEOLDA #3232
Z408TA ROWS
SO, BEGIN
THOLDA COLUMNS
I705TA COLCORY
EeOLDE BEGINCONTROL
IFOJISR CONTROL
400, L00F1
410LDY #7
A420.1_.00F2
AZOLODA (LOCATION? LY
4408TA STORE, Y
ASODEY

4460BFL LOOPR
470L.0DY #&

4801 00FPT
490LDX #7
SO0OLDA #1
510J8R OSWRECH
520, L.00F4
SI0ABL STORE. X
S40R0OR A

SSGDE X

54HCEFL. LOGF4
S70JI5R OBWRCH
SEODEY

HROBNE LLOOFPZ
&HO0L.DA LOCATION
&10C1E

HZ0ARC #EB
A&TOSTA LOCATIGN
A40RCC NOCARRY
HI0IMC LOCATEON+L
&£60. NOCARRY
&70DEC COLCORY
64BOBNE LOOF1
LFOLDA #1
FOOJSR OSWRCH
710LDA #%0D
720I8R OSWRCH
7Z0DEC RIWS
740BNE BEGIN
7S0LDA #13

136

7HO5TA LIMIT

77OLDX #1i1

780IS5R TONTROL

THRORTS
a00, COMNTROL.
S10LDA #1

G20J8R OSWREH

BI0LDA TABLE, X

340GJ8R O8SWRECH

850INX

BO0CFY LLIMIT

B70OBNE CONTROL

830RTS

BRO. TABLE: INEXTI%
FOOFOR [%=1 TO 13

F1OREAD 7F%

FLOFA=FA+1 i NEXTLI%

FTODATART, &5

VB, D7 T, bb, 1,27, 76, 128, 2. 27, 50

The program is shown in Listing 8.6, and the details are:

40-70

80-110

120-150

170-180

190-220

230-240

Output the first three bytes in the data statement
{at 930) to the printer. This is ESCA 8 and it

ensures that there will be no gaps between the
lines output (i.e. line feed is exactly B dots in
depth).

Using OSBYTE with &85 in the accumulator returns
the first memory location in screen memory with the
mode number in the X register (here Mode L4}. The
low byte goes into X and the high byte into Y. Here
we store Y (at 170) for future comparison.

OSBYTE with &84 in the accumulator returns the
first memory location in screen memory for the cur-
rent actual mode (low in X, high in YK. We store
this address permanently into LOCATION.

Since we assume the program will be used In either
MODE 0 or MODE 4, if the comparison in 170 is not

equal (i.e. high byte of current screen memory is

not the same as it would be in MODE 4), we assume

MODE 0 operates.

If MODE &4, output ESCK 64 1 to the printer. ESCK is
the normal density high resolution mode, which
gives a maximum of 480 bits (i.e. 60 columns of 8
bits/column) per line. This is adeguate for MODE 4.
64 1 7s 64 + 1 x 256 i.e. 320, and this tells the
printer we will output 320 bits (i.e. 40 colums of
8 bits/column) per line.

Put the column count in the accumulator and always
branch to 320.

137

260-290

300
320-340

360-370

380-390

L1o-460

470
490

500-510
530-570

580-599
600-650
670-680
690-720
730-740
750-790

810-880

In MODE 0, output ESCL 128 2 to the printer, which
is double density high resolution (i.e. maximum of
960 bits or 120 columns of 1 byte/coltumn) per line.
We inform the printer that we will output 128 + 2 x
256 = 640 bits (i.e. 80 columns) per line.

Put column count for MODE O in the accumulator.

Store the relevant column count in COLUMNS; ROWS is
always 32 for either mode.

COLUMNS will be required later, so store a copy in
COLCOPY, which we can alter.

BEGINCONTROL contains either 3 in MODE 4 (from 220)
or 7 in MODE 0 {from 290). LIMIT is fixed from 200
or 270. Thus we output the same control information
per line i.e. ESCK 64 1 or ESCL 128 2.

Put the 8 bytes of the current column into STORE.
Notice in 440 we forego the one byte saving avail-
able in zero page with STORE, X. However, there is
only a small time penalty and it is overall much
quicker to do this than to enlist X as well (we
must use Y for line 430).

Initialise the byte counter {Y} for output to
printer.

Initialise the bit counter {X) for each byte output
to printer.

The next output will be to the printer only,

Taking each byte in turn in STORE {(moving backwards)
shift out a byte to the left and rotate it right
into the accumulator. After the 8 bytes in store
have been shifted once in this way the accumulator
will contain 8 bits, the most significant relating
to the top byte (i.e. STORE, 0} and the least sig-
nificant relating to the bottom byte (i.e. STORE, 7).
This accords with Figures 8.4 and 8.5,

Continue to shift until B bytes are output (i.e.
the 8 columns of Figure 8.5).

Increment the screen memory location to the next
column.

Continue for the 80 (or 40) columns.

Qutput to the printer a CR to mark the end of the
line. (This assumes your printer is set up so that
CR generates an automatic LF.)

Continue until all 32 rows are covered by returning
to 360,

Output some control characters which reset the line
feed to its usual depth, and return.

Qutputs selected bytes from a data statement to the
printer only.

138

Notice that this program assembles into &D00. This is useful
in that it can now be combined with any BASIC program beginning
in 8E00 by using *SAVE between the memory limits D00 and TOP,
Now *LOAD will pick up the machine code and the BASIC program,
and OLO will initialise the BASIC pointers. An example of this
is contained on TAPE 1 available with this book, This is a
double function graph plotting program, and the screen can be
copied to a printer by simply pressing P which activates a
CALL &DO0 in the program,

8.10 DIVISION

Let us examine how we would divide 170 by 28 in binary. This is
10101010 : 00011100, We shall use the familiar algorithm for long
division, written a little more fully than usual.

DIVISOR DIVIDEND QUOTIENT

11100310101010 (0110 (a) Dividend < divisor so

put zero in quotient
11100000 (a) and do not subtract

DIVIDEND 10101010 divisor from dividend,

DIVISOR 01110000 (b)

DIVIDEND 00111010 (b) Dividend > divisor so

DIVISOR 00111000 (b) put one in quotient and
subtract divisor from

DIVIDEND 00000010
DIVISOR 00011100 (a)

DIVIDEND 10 remainder

dividend.

The general idea here is to start at the most significant end
of the dividend (the number into which we are dividing) and com-
pare the 5 most significant bits with the five in the divisor.
This is equivalent to attempting to subtract from the dividend the
number 11100000 and seeing whether the result is positive. If it
is, we put a one in the most signficant bit of the quotient (the
result}; if not we put zero. If we put a one, we replace the quo-
tient by the result of the subtraction; if we put a zero, we leave
the quotient as it is.

We now shift the divisor one place right to give 01110000, and
repeat the above process. We continue until we have shifted across
to the original divisor, (0011100, and after we have performed the
compare and subtraction process on that we stop. In order to know
how many right shifts we must do before stopping, we start by
shifting 11100 left until a one appears inm bit 7. We store a count
of the number of left shifts necessary and reverse this count when
shifting right.

The flowchart for the process is in Figure 8.6, where we use
the X-register to count the shifts required. Notice how we ensure
that the quotient has its digits in the correct place: we shift
left for every shift right of the divisor, so that the digits
automatically line up. The program is in Listing 8.7. Notice that
we have reversed the shift of (DVIS) and the incrementing of X in

139

Start

ozaver | ©

L REPEAT WHILE (DVIS), =0

(DVID):IDVIS)?

[wuon+1~auor | ®

l
[lowm—mrls:—-l:ﬂ] ®
—————[7 X—1=X l@

-
| Shift {DVIS) right J ®
[
[sniruomiet l

Remainder in

Figure 8.6

140

the REPEATWHILE loop: this is so we can test the N flag as it re- ‘
lates it DVIS; if we put INX after this, the N flag would refer to ;
X.

LISTING 8.7

10DVID=%70: DVIS=471 : QLD T=872 |
Z0DIM START S50 E
FIOFOR 1%=0 TO 2 STEP 2:P%=START :
4OLOFTIY
SOLDX #0
H0O8TX QUOT
7oi_DA bVIS
BO. REFWHILE
SORMI LODFE
100INX
110ASL DVIS
1Z0BPL REFWHILE
170, LOOF
140L0a DVID
1S00MF DVIS ;
1&4DECE LESS I
1TQING QUOT
180L.DA DVID
190SEC
2008RC DVIS
21068TA DVID
220 LESS
230ODEX
240BMI FINISH
250L6R DVIS
THOASL RUOT
270JMF LOOP
260. FINISH
P90 RTS: INEXTI%
I00CLSIREFEAT
S10INFUT"Dividend”,DD
IROINFUT"Divisor”, DS
IZOTDVID=DD: ?DVIS=DS
TAOCALLETART
ISOPRINTDD DIV DS.DD MOD DS
TAOPRINT?OUOT, ?DVID
Z70UNTIL FALSE

This program is very easy to extend to the division of a 16 bit
dividend by a 16 bit divisor i.e. to any number from 0 to 32767
divided by any number from 1 to 32767. We need to assign two
memory locations each to the divisor (PVIS+1; DVIS), the dividend
(DVID+1; DVID) and the quotient (QUOT+1; QUOT). The program is
left to you as an exercise in Exercise 8.3,

Exercise 8.3

1. What happens in Listing 8.7 if we try to divide by zero?
Include a line which will stop this happening.

141

2. Write the 16-bit program referred to in the section above;
indicate a check for division by zero.

3. Write the code which will round the quotient to the nearest
whole number in the program of .2, Hint: divide the divisor by 2
and round up if necessary; compare it with the remainder; umless
the result is negative, add one to the quotient.

4. In a similar way to Q.3, Ex.8.1, write a program to divide
two signed 8-bit numbers. Include a check for zero and a rounding
operation, but do not output the remainder.

8.11 A SECOND APPROACH TO BIVISION

The programs developed in the last section are modelled closely
on the structure of the pen-and-paper algorithm for division. It
is worth examining, however, whether an improvement can be made by
deviating from this structure a little.

Rather than shift the divisor, let us see what we can achieve
if we instead shift the dividend. Consider again dividing an 8 bit
dividend by an 8 bit divisor. The idea is that we shift the divi-
dend left one bit at a time into the accumulator and at each stage
compare the accumulator with the divisor. If the divisor is
greater than or equal to the accumulator we subtract it from the
accumulator and put a ome in the least significant bit of the
quotient. On each shift of the dividend we need also to shift the

quotient one bit left,

Using the last example, the first five shifts left into the
accumulator result in zeros in the quotient. The next shift has
101019 in the accumulator, so we subtract 11100, obtain 1110 in
the accumulator and put 1 in the quotient which is now 000001. We
now shift across the seventh bit to get 11101 in the accumulator;
we subtract 11100 to obtain 1 in the accumulator and put 1 in the
quotient which is now 0000011. We now shift the eighth bit giving
10 in the accumulator, which is the remainder. The quotient is
00000110, the final answer.

An examination of this algorithm indicates that we can save
significant time and storage space by depositing the quotient in
the same place as the dividend. Then a shift of the dividend also
shifts the quotient as required. Returning to the last example,
after the fifth shift the dividend will be 01000000. After the
sixth we put a one in the least significant bit position to obtain
10000001; after the seventh we have 00000011; and after the eighth
00000110, as required.

A flowchart for the process is in Figure 8.7 and the program is
in Listing 8.8. Notice how very much more concise it is than List-
ing 8.7. The moral of this is that we must choose our algorithm
with great care: mapping exactly onto an existing pen and paper
algorithm is not always the best course.

142

______ i

Shift {DVIDY) left
inta A @

? Quotient in DVID ‘
f Remainder in A

Figure 8.7

LISTING 8.8

10DV ID=R70: DVIG=LT7 1 s OSWRCH=LFFEE
20DIM START S0
IOFOR I%=Q TO 2 STEF 2:PA=START
AOLOFTIA

SOLDA DVIS
LORBEC MISTAKE
TOLDA #0

BOLDX #8

Q. LOOP

100A5L DVID
110R0OL A

120CHMF DVIS
1ZORCC LESS
1408BC DVIS
1SOINC DVID
160.LEES

170DEX

180BNE LOOF
120RTS
200.MISTAKE
210LDA #ASC ("727'")
ZZ0JBR OQS5WROCH
230LDA #7

143

2401,15R DSWREH

; 250RTS: INEXTIXY

| 260CLS s REFEAT

’ STOINFUT"Dividend", A
PEOINPUT"Divisor ", B
2907DVID=Aa: YDV IG=H
00! LA03=USRETART
F1OPRINTA DIV E,a MOD B
BZ0FRINT?DVID, 7&405
LZIOUNTIL FALSBE

Exercise 8.4

Write a program using this algorithm to divide a 16 bit divi-
dend by a 16 bit divisor (use QUOTH for the higher byte of the
shifted dividend and the accumulator for the lower). Is it sherter
than that in Q.2, Ex.8.37 Is it quicker?

144

Chapter 9 The stack: Subroutines
and interrupts

9.1 THE CONCEPT OF A STACK

In Section 6.5 we met the idea of a queue. This was described
as a FIFO structure, in that the first item to enter the queue was
the first to be taken from it. The contrasting structure to this
is the stack, for this is a FILO data structure. Thus, the first
item on the stack is the last to be taken from it; and conversely,
the last item on the stack is the first to be taken from it.

Now this data structure is much easier to implement than is the

queue. First of all, we need have no worries about memory wastage;
secondly we need only one and not two pointers.

e ATt a T Ay

First free kcation

+ Stack pointer

BASE

Figure 9. 1: The memory set-up for a stack.

Figure 9.1 shows a section of memory to be used for a stack,
Only two items of information are required: the base address of
the stack (which is fixed) and the next free address in the stack.

Let us assume there are 256 bytes available for the stack. The
first item to arrive is put at BASE + &FF, so the next free
address is at BASE + &FE, The pointer to this address is called a
stack pointer, and its initial value is &FF. As an item comes into
the stack this pointer will be decremented by one. So after one
item arrives, the stack pointer is &FE.

Notice that we have started to fill up the stack from the top:
this is conventional. To complete this imagery, it is usual to
refer to the putting of an item on the stack as pushing an item
onto the stack. The image is best conceived as pushing the next

145

item up a kind of tube, the base of which is at location BASE. We
keep going until we get to the first free location.

When we want to get an item from the stack we pull it off,
pulling it down the tube as it were.

Now all of this would be very easy to program in software. Let
us use X for the stack pointer. We initialise the stack by writing
LDX #&FF, Now, to put an item on the stack we write:

{a} STA BASE, X
DEX

assuming the item was originally in the accumulator.

And to take an item from the stack we write:

) ENX
LDA BASE, X

Figure 9.2 shows the action of adding &10 to the stack when the
pointer is &DA. Figure 9.3 shows the action of removing an item
from the stack when the pointer is &E2.

BEFORE AFTER

First free location &810
First free location

+80A +&D9

BASE BASE

Accumnulator

Figure 8.2: Adding the item & 10 to the stack.

BEFORE AFTER
axn First free location
Firat free location
+ &E2 +8E3
+1
BASE BASE

Accumulator

Figure 9.3: Taking the next item (&21] from the stack
146

Now the stack is such a useful device for temporarily storing
information that the designers of the 6502 microprocessor have
implemented the stack as part of its design. A special register,
the stack peinter or SP, registers the next free location, And
page one of memory, from 8100 to &1FF is reserved for the stack
(i.e. BASE = &100). Appendix 2 shows the SP register in relation
to the rest of the architecture.

The useful thing about having this hardware stack (called a
hardware stack because we do not have to write any special soft-
wate to implement it) is that we do not tie up our X or Y regis-
ters in keeping track of it,

There are two special instructions to take the place of (a) and
(b) above. Instead of (a) we write PHA: push the accumulator on
the stack. The SP is automatically decremented, Instead of (b) we
write PLA: pull the accumulator off the stack. The SP is automati-
cally incremented.

When you turn the BBC computer on, the SP is automatically
initialised to &FF. It is possible to do this vourself however;
LDX #&FF : TXS is the coding. TXS transfers the contents of X to
the stack pointer,

9.2 THE STACK AND NESTED SUBROUTINES

A particular program goes to a subroutine labelled SUBROUTINEL,
Whilst in this subroutine another subroutine SUBROUTINEZ is called;
whilst in SUBROUTINEZ, SUBROUTINE3 is called; and then, SUB-
ROUTINE4! When RTS is met, how does the microprocessor remember
where to go back to? The answer lies in the stack.

Figure 9.4 shows the situation we have been discussing. The
thin 1line shows the flow of logic as we call each subroutine in
turn. The bold line shows the flow of logic as we return from each
subroutine.

The first RTS (return from subroutine) which the microprocessor
obeys is the one attached to SUBROUTINE4. At this stage the micro-
processor needs to change the program counter to point to the next
instruction after JSR SUBROUTINE4. The program counter increments
uniformly, each new instruction being obeyed, until the next RTS
is met. Now the microprocessor needs to change the program counter
to point to the instruction immediately after JSR SUBROUTINE3; and
so on, back to the instruction immediately after the first call at
JSR SUBRQUTINEL. How does the microprocessor do it?

The algorithm it uses is a very simple one: when it meets a JSR
instruction it puts the current contents of the program counter
onto the stack (high byte then low byte) before going off to the
subroutine. 'Geing off te the subroutine' means that the program
counter takes on the address referred to by the label attached to
JSR., When it meets an RTS, the microprocessor restores the address
to the program counter by taking it off the stack.

147

START ! &000
]
t
| 1
! X
i
]
JSR SUBROUTINE 1 601G
']
] 1
. RTS D42
SUBROUTINE 1 &D43

1

1

1

|

1

—-l :
JSR SUBROUTINE 2 &0563

)
I
" 1
i 1
- RTS ™ &073
L~ SUBROUTINEZ | &D74
1
1
]
1
1
JSR SUBROUTINE 3 &D93
1
1
]
RTS T\ §DB4
L.~ SUBROUTINE3 | &DB5
1
|
1
]
1
1
JSR SUBROUTINE 4 BDCa
1
I
1
i
L~ SUBROUTINE4 | &0DA
¢
]
]
1
:
ATS EDFA

Figure 9.4: Nested subroutines.

148

Actually, there is a slight anomaly in the way the 6502 does
this. The address it puts on the stack when it meets a JSR is in
fact one less than that of the mext instruction. Hence, when it
meets an RTS it automatically adds one to the Testored program
counter before continuing.

To understand the full operation let us follow through the con-
tents of the PC, SP and stack on moving through Figure 9.4. The
memory locations are given on the right of that figure. Table 9.1
gives the details, where we assume (slightly unrealistically) that
the stack begins empty.

Present contents of New contents of Stack

program counter program counter Pointer Stack (first out on extrems left}
0D00 FF

0D15 0043 FD 17,00

0D58 oD74 F8 54, 0D, 17,00

0D93 0DBS Fg 95, 0D, 5A, 0D, 17, 0D

0DC3 0DDA F7 C5, 0D, 95, 0D, 5A, 0D, 17, 0D
ODFA 0DC6 Fo 95, 0D, 5A,0D,17,0D

0DDY 0006 FB 54, 0D, 17,0D

QD B4 QDsR FD 17, 0D

0D 73 OD1B FF

Table 9. 1: The contents of PC, SP and stack during the operation of the program i figure

When we get to &D1S, we meet JRS SUBRQUTINEL. 0D, 17 goes onto
the stack (first in is 0D so it is last out). Notice that &D17 is
one less than the return address. The program coumter now contains
the address of SUBROUTINEl. At each new JSR the same thing occurs:
onto the stack with the return address (less one); into the pro-
gram counter with the address of the subroutine.

Then the first RTS is met at ADFA, The first byte off the stack
goes into the low byte of the PC; the next into the high byte.
Then the PC is incremented by one, and the execution of the pro-
gram continues from 8DC6, the next instruction after JSR SUB-
ROUTINE4. And so it continues until we ultimately return to &D18,

You will motice a final RTS at &D42, but in Table 1 there is
nothing left on the stack., In fact, there will be two more bytes:
these peint back into ROM, returning to the interpreter routine
for CALL (USR is a little more complicated, but we need not con-
sider it now)., Thus, when we execute CALLADOO, a return address
from the CALL routine is put on the stack, and the final RTS picks
this up.

Apart from the CALL then, there is room for 126 nested sub-
routines in the 6502, (fewer with USR) far more than you are likely
to need (unless you use a lot of recursion i.e. subroutines calling
themselves), However, as we shall see later, the stack is also
often used to store data using PHA and PLA,

149

The main purpose of using subroutines is to economise on pro-
gram space. When using a high-level language, it is often advis-
able to use subroutines and procedures anyway, to make the
program easier to follow, However, there are two disadvantages
with subroutines which must be borne in mind if you wish to do
this in assembly programming.

The first is that there is a time overhead to be paid. JSR
takes 6 machine cycles to perform, and so does RIS, so there are
at least 12 cycles in excess. Moreover, there may be a little more
time taken up with passing parameters (see 9.4). On the BBC com-
puter, 12 cycles is only 6 microseconds (6 x 1076 secs) which may
not seem very much. Indeed it ism't, but if your subroutine call
is in a loop which executes a hundred thousand times {this is not
untypical), then the subroutine call alone costs 0.6 secs, which
is more substantial., An important principle, then, is not to use
subroutines in large loops if time is critical.

The second disadvantage is that subroutines do not allow a pro-
gram to be relocatable, By reloctable, we mean that the machine
code translation can go into any part of memory and work, without
having to be re-assembled. This means that there must be no JMPs
{except for indirect jumps) and no JSRs (unless the subroutine
goes to a fixed location like JSR OSWRCH). Branching is allowed,
since it uses relative addressing, and in principle it is always
possible to replace JMPs by branches, though it can sometimes be a
little complicated. Relocatability is a desirable property, but
not at the expense of program compactness or simplicity. Some pro-
grams are easy to make relocatable (an example is the REPLACE
program, available on the second tape which can be purchased with
this boek; others are STRINGSCRT and RETRIEVE in the next chapter).
But in general, do not waste time and energy trying te do without
subroutines just to achieve relocatability. With an assembler as
fast as the BBC's, re-assembly only takes a moment anyway. However,
there are sometimes useful tricks which can allow subroutines
whilst retaining relecatable code: see Section 10.5 for an example
of this.

9.3 INTERRUPTS

You are working at some fairly complex problem when the 'phone
rings. You make a brief note of where you are up to, put aside
your work and answer the 'phone. When you've finished, you get
your work back, read the note vou left yourself to remind you
exactly where you were, and continue. The 'phone call represented
an interruption, one too instrusive to ignore.

The microprocessor can be interrupted in a very similar way.
One of its pins is comnected to special circuitry such that, when
this pin is grounded, an interrupt request passes to the micro-
processor. The microprocessor finishes the instruction it is doing,
saves some relevant information on the stack and goes off to an
interrupt service routine, Figure 9.5 shows an example of this.

150

&D32 AD +Interrupt happens while microprocessor here
&D033 03
&D34 04 +Theinstruction (LDA &0403} is finished.

At this point, PC = &D35 and SR is, say, §81. Then,
HOD-rstack
&35-~+stack
&81—+stack

Address of interrupt service routing—=PC.

Figure 8.5: Program sequencing during an interrupt request,

Now, sometimes you do not want the microprocessor to be dis-
turbed in this way. You want to do something similar to taking the
phone off the hook. You can do this by setting a flag in the pro-
cessor status register, by writing SEI. This sets the interrupt
disable flag. When you want the microprocessor to answer inter-
Tupts again, you enable interrupts by clearing the disable flag
with CLT,

It is possible that some interrupts are just too important to
ignore. For this reason, the 6502 has two separate interrupt lines:
NMI for Non-Maskable Interrupt and IRQ for Interrupt Request. The
former cannot be ignored, whether or not I is set; the latter will
be ignored if I is set, but not if I is clear. The standard BBC micro-
computer does not make any use of the NMI interrupt so we will
have no more to say about it here.

When the microprocessor is interrupted, how does it know where
the interrupt service routine is? The answer is that it always
looks for the address of the routine in &FFFE and &FFFF. This
happens automatically; it is part of the internal make-up of the
6502 and has nothing to do with the BBC machine. However, the
address contained in &FFFE and &FFFF is at the disposal of the BBC
micro's designers, and the code at that address must be provided
by them. The address of the service routine is at &DDA4 for 05.01.

Now, there are a number of devices which could interrupt the
microprocessor in the BBC computer: the tube, if it is connected;
the printer or the user port, if available; the cassette system; i
and the analogue to digital converter, amongst others. However, 13
the most usual interrupt comes from an internal timer which is]
part of a VIA (see Appendix 7), memory mapped from &FE40 to &FE4F.

151

You can disable interrupts from this timer only, by writing

LDA #840: STA &FE4E; but then no keyboard interruptions are pos-
sible, so JSR OSRDCH will not work, and neither will the input
routines,

To Te-enable interrupts from the timer, write LDA #&CO:
STA &FE4E, You can disable all the interrupts with SEI; OSRDCH
will still not work but entering the input routines will re-enable
the flag.,

Assuming no interrupts have been disabled, how can the micro-
processor decide which device has caused the interrupt? The answer
is that a number of memory locations need to be used to reflect
which device is calling for service. For example, if bit 7 of &D5
is 1, this reflects the fact that the tube is asking for service;
if bit 7 of &FE4D is 1, then it is the timer in the keyboard VIA
which is asking for service, In this latter case, after the system
clock has been updated, the routine will need to ascertain whether
a key has been pressed on the keyboard too. The interrupt service
routine must interrogate each of these status memory locations in
a fixed order, and when it finds the cause of the interrupt it
must service it.

It is conceivable that more than one device interrupts at the
same time. In this case, more than one of the status locations
will be set, The fixed order that the service routine uses to
interrogate the status locations reflects the priority of the
devices to be served. The tube gets a very high priority; the VIA
timer gets a lower priority, which is one reason the system clock
is not as accurate as the GMT signal, as John Coll puts it
{another is that the crystal generators are not absolutely accu-
rate, the error being about * 0.1%, which is adequate for micro-
processor timing, though not necessarily for clocks). Moreover,
whilst one device is being serviced, it is essential that no other
device can interrupt, otherwise some devices are imn danger of
never being serviced adequately. Because of this, IRQ is auto-
matically kept low until the calling device is serviced. When the
microprocessor returns from the interrupt, IRQ will go high again
and new devices can interrupt.

When the microprocesser is interrupted, it automatically puts
the return address on the stack (not less one as with a JSR). But
in additionm it puts the processor status register on the stack,
because this register is very volatile (see Figure 9.5]. Since
there are three bytes to remove from the stack and not two, and
since there need be no correction to the return address on the
stack, RTS cannot terminate the interrupt. Instead, a new instruc-
tion RTI is used: this restores the processor status register, and
then restores the return address (not incrementing it by one as in
RTS).

Any service routine worthy of the name will certainly use the
accumulator, and most will use the X and Y registers also. It is
essential to preserve these registers, therefore, and very early
in the service routine this must be donme. We can save them on the

152

stack by using PHA: TXA: PHA: TYA: PHA. At the end of the routine,
just before the RTI, we restore the registers with PLA: TAY: PLA:
TAX: PLA, Notice the reversal of order here when regaining the
registers, having stored them in the order A, X, Y.

1t is unlikely that you will want to interrupt the microprocessor
in most of your programming, unless you are using the user port {on
which see Appendix 7) but it is important to understand the general
concept,

There is a software interrupt, called BRK, which you might be
more tempted to use, The term 'software interrupt’ needs to be ex-
plained first. The IRQ interrupt is a hardware interrupt, since it
is produced by altering the voltage of a4 pin on the microprocessor.
Sometimes, however, especially when debugging, one wishes to inter-
rupt the flow of a program to go to some other routine. Une way of
doing this is to use BRK. This is a one byte instruction, and when
working in machine code it makes it easy to patch in a software
interrupt. At the place where we wish to stop we replace the next
byte by &00, the Op Code for BRK. When the microprocessor encoun-
ters this, it puts onto the stack the return address plus one and
the processor status register; and then goes to the software inter-
rupt routine. Later, when we have completed the debugging, we can
restore the old byte again,.

The choice of zero as the Op Code for BRK is quite deliberate.
When memory locations develop faults, they often give the impres-
sion of containing zero. Hence, by using a software interrupt
routine in conjunction with BRK, faults of this type need not be
catastrophic. But, the question arises: what is the address of the
software interrupt routine? Where does the microprocessor get this
information?

The answer is that it gets it from the same address as with
IRQ; namely at &FFFE and &FFFF. This means that when it enters the
interupt routine, it must check first to see if it is via BRK or
IRQ. To enable it te do this, a special flag is reserved in the
processor status register, the B flag. This is automatically set
to I if a BRK is encountered, Hence, every service routine must
start as follows:

STA TEMP
PLA

PHA

AND #&10
BNE BREAK

The accumulator is first saved temporarily. Then the processor
status register is removed from the stack, and copied back to the
stack. Then (line 4) bit 4 of the status register (the B flag) is
isolated, so that the result will be zero if B = 0 and non-zero
if B = 1. Hence, if the result is non-zero, we branch to the BRK

153

.
i
i
i
E)

servicing routine, Otherwise, we save all the registers on the
stack, as mentioned earlier, and continue with the IRQ service
routine.

Now the BRK command is used in a very special way by the BBEC
Computer. Most error messages are handled through the BRK command.
What happens is that following BRK is put the error number. The
address of this location is stored in &FD and &FE. A jump is then
made to an address located at 0202, using the indirect jump
instruction, JMP (&0202), which prints out the message located
after BRK and the error number. Figure 9.6 shows the set-up for
ESCAPE.

0 BRK

17 Error number

69 E

8 5

67 €

6B A

8 P

6 E

0 Terminating sign {always zero}.

Figure 9.6 The contents of memory locations designed to produce the message ESCAPE.

Since &0202 is in RAM it is possible to create routines for
oneself for BRK, but there are two problems here. Firstly, unless
you incorporate a way of deciding whether BRK was encountered
while checking your own assembly program rather than in the course
of normal error processing in a BASIC program, you will lose all
the error messages when using BASIC. For example, if you press
ESCAPE ({which is error number 17) and &0202 points to your own
routine, you will jump into that routine. Even if you solve this
problem, the processor status register has been removed from the
stack and is lost to you, It follows that in the BBC Computer, BRK
is not of much use for debugging. The next chapter will show you
an alternative way to enlist a debugging aid into your program
(Section 10.7).

Figure 6.7 acts as a summary to this section on interrupts,
which has been fairly complicated.

154

on

! E10DA4: Check Bflag. cnack
STACK SFFFE [A4 If B=0, IRQ~ siatus
Processer Status ——- &FFFF | DD locations

Register If B=1, BRK-+(E10202)
BRK Return Address

Figure 8.7: Interrupts on the 85C Computer. (IRQ means that the IRQ pin on the
microprocesser has been pulled low. BRK means that the opcode zero has been
encountered in a program. }

9.4 PASSING PARAMETERS TO AND FROM SUBROUTINES

There are three ways of passing information to and from sub-
routines, and we shall examine their merits here:

(a} Through registers

This is the simplest way to convey information between the main
program and the subroutine. If only one 8-bit parameter needs to
be passed then the accumulator is the natural place: OSRDCH and
OSWRCH use this method. If a second or third parameter is needed,
X and Y can be used: OSBYTE uses this method.

If more than three parameters are to be passed, the registers
can still be used as a pointer. A common convention is to put the
low byte in X and the high byte in Y. Then the subroutine can
store these in zero page locations of its choice and use indirect
indexed addressing. This method is commonly used in operating sys-
tem subroutines, where the firmware writer does not want to use up
memory locations which will be used by a software programmer. For
example, in the BBC Computer &70 to &8F are kept free: when one
uses certain system calls that refer to a large memory allocation,
one can specify what memory one wants to use by passing the
pointer in X and Y. In this way, one can be free to partition
one's own memory requirements and still have the advantage of
using powerful system routines.

The disadvantage of using registers for passing parameters is
that they might well contain important information which needs to
be kept. The remedy here is to save the registers on the stack and
recall them on return. It is good programming practice to save any
registers used in the body of the subroutine, but not being used
to pass parameters, in the subroutine itself. So, for example, if
X and A are used to pass parameters, write PHA: TXA: PHA prior to

155

i
1
i
i
;

loading X and A with the parameters and going to the subroutine.
Y should be automatically preserved, for if the subroutine uses Y
it will use TAY: PHA and recover Y with PLA: TYA at the end.

{b) Through the stack

Returning results from a subroutine on the stack or passing
parameters to the subroutine using the stack needs care, since the
return address is put on the stack just before entry and taken off
just prior to exit. This means that the address needs to bhe saved
in the subroutine itself. This is not generally used in firmware
programs, but in your own programs it might be a possibility 1if
you need to keep zero page free for some reason.

The first lines in the subroutine will be:

PLA
STA MEMLOCT + 1
PLA
STA MEMLOCZ + 1

and the last lines will be:

MEMLOC2 LDA #0 Dummy operand
PHA

MEMLOC1 LDA #0 ODummy cperand
PHA
RTS

Notice the order of replacement: FILO dictates that the first item
taken off be the last put omn the stack.

Once this is done, items can be passed on the stack with com-
plete freedom. If a lot of data is to be passed, this method could
actually result in a saving of memory since PHA and PLA only take
up one byte. The 14 bytes used up in storing and restoring the
return address are a large overhead in most cases, however; and
there is also a large time penalty attached.

I mentioned above that such techniques are not usually used in
firmware. There is one exception to this, and this inmvolves sub-
routines that may be called by the interrupt service routine, but
which may also be used by the program being interrupted. In this
case, it is conceivable that a section of program is interrupted,
and then the interrupt routine uses just that section of program.
In such a case, it is essential that the subroutines be capable of
re-entry without destroying what has gone before. Such subroutines
are called re-entrant. The fundamental consideration is that no
fixed memory locations be used: this confines the subroutine to
using registers (which are saved at the beginning of the interrupt

156

routine) and the stack., If the stack is used, the X register will
carry a zero page pointer to where the return address can be
stored. A small section of zero page memory will be set aside for
interrupt routine use, and its use will not corrupt any other pro-
gram. The X Tegister is used because it simplifies the coding. The
subroutine will begin:

PLA
STA 0, X
PLA
STA 1, X

Tt is necessary that the X register is not otherwise used in
the routine, since its contents will be required at the end when
the return address is restored (unless there is room in zero page
for this information also):

LDA 1, X
PHA
LDA 0, X
PHA

X is used in preference to Y here, since zeTo page addressing is
not available with Y.

There is one other way that the stack can be used to pass data.
Look at the following coding:

JSR EXAMPLE

o m o P v v m X

L =]
- o

The word MESSAGE is encoded in ASCII following the JSR, and ends
with zero, Following this, is the address to which the subroutine
should return {minus one). The subroutine picks this up as follows:

157

EXAMPLE CLC
PLA
' ADC #1
STA ADDRESS
PLA
ADC #0
| STA ADDRESS+!

where ADDRESS is a zero page location. Now, indirect indexed
addressing can be used to pick up the message i.e. LDA (ADDRESS), Y.
When zero is encountered, the message is over and the subroutine
returns as follows:

LDA (ADDRESS), Y
PHA
I NY
LDA (ADDRESS}, Y
PHA
RTS

This method is not re-entrant, and so 1s not used in interrupts,
but messages are not usually needed in interrupts in any case. The
BRC Computer uses this method in cases where a message is required
but the BRK method, discussed earlier, is not suitable.

{¢) Through fixed memory locations

This is the method that you will use most often when you write
your own subroutines, It is generally frowned upon by many author-
ities on programming because it makes it difficult to establish a
library of subroutines. This is because a subroutine may use
memory which interferes with the main program.

This is net a problem on the BBC Computer, however, as lomg as
you store a copy of your program in its unassembled (source code)
form. It can then be combined with other subroutines and the main
program, and memory allocated at the end. Appendix 6 explains how
to combine such programs together.

The only problem with this method is that labels may interfere
with each other. For example, we may have OVER in the main program
and the subroutine. It should not be difficult, however, to check
a program for this. A utility program on the second tape {FINDCORE)
will be of assistance in this.

158

9.5 TWO IMPORTANT SUBROUTINES

In order to illustrate the ideas considered in the last section,
especially those in (c), let us examine two very useful sub-
routines. The first accepts numerical input in decimal from the
keyboard and converts it into a signed four byte hex number. It
therefore fulfils the function of INPUT N as opposed to INPUT N3,
which we covered in Chapter 6. The second outputs in decimal a
signed four byte hex number: it fulfils the function of PRINT N.

LISTING 9.1
{a) A subroutine to convert from decimal to hex

10LDDFCOUNT=&70: INDIC=&7 1 BUFFER=%72: GPOINT =70 NUMBER=%7 &+
PDEWRCH=%FFEE

20DIM START 200
TOFOR I%4=0 T0O 2 STeEP 2:PU=RTART
40L0FPTT%

SOFHA

&OTXEA

7OFHA

anTyn

QOFPHA

1O0TEY

1108TX SFOTINT
120L.0A #ASC (7™M
130JER OSWRTCH
140J8R &BC2O
PSOLDY #0

140LDX #32

170, INITIALISE
1808TY MUMBER, X
190ODEX
ZOOBFL INITIALISE
2105TY INDIC
2208TY RUFFER
2L0LDA #7
Z408TA BUFFER+1
290L.DA (BUFFERD ,Y
26QCHMP #ASC ("-")
LTOBRNE NTMINUS
280LDA #%80
2205Ta INDIC
ZOOBNE OVER
IT1I0.NTHMINUS
SEOCMP #ASC (M+")
II0BNE CHARGET
240, QVER
ZSOINC RBUFFER
Z60, CHARGET
I70LDA (BUFFERY,Y
FB8QCMP #20D
JIF0REE@ CHECKESIGN
400JSR MULTTWO
410LDX #3
420.5TACK

4Z0LDA NUMBER, X

159

J4CHE

4T0ODEX

460BFL. STACK
470 J5R MULTTWO

480J5R MULTTWO
40L.0DX #0
S00LDA #4
S109TA LOCOFCGUNT

S20CLC

SiE0,. XTEN

SACGRLA

S550ADE NUMBER, X
DE05TA NUMBER, X
S7OINX

SBODEC LOOPCOUNT
SROBNE XTEMN

HOQBVES OVERFLOW
S10LDA (BUFFER) Y
HAOVGEC

HIOBRE #LT0
LHA4O0BCEC MISTARKE
&TOCMP #10
LHORES MISTAKE
&70ADC NUMBER
LB80O5TA NUMBER
HF0BLCC NOCARRY
TOOINC NUMBER+1
710BCC NOCARRY

720INC NUMBER+2
7EORCC NOCARRY
FA40INC NUMBER+X
7HOBRMI OVERFLOW
760, NOCARRY
T7OINY

730RNE CHARGET
790.CHECESIGN
gooLDA INDIC
B1OBFL PLUS
2048/ FLIFPSIGN
B30.FLUS

840CL.C

8%0BCC REGS
8460. OVERFI.OW
870LDA INDIC
B800ORA #%40
8908TA INDIC
FOO.MISTAKE
F10LDX SFOINT
9TOTXS

PTOSEC

P40, REGS

E0PLA

FEOTAY

F7OPLA

FBOTAX

F0OFL.A

160

FOOORTS

1010 MULTTHWD

1020A8L NUMBER

IROL. NUMBER+1

1040R0OL. NUMBER+2

1050R0OL. NUMBER+Z

1OA0RMYI OVERFLOW

1O70RTS

1080, FLLIFSIGN

TOOLDY #4

1100LDX #0

11108EC

1120.FLIF

1130LDA #0

11 408REC MIMBER, X

11508TA NUMEBER, X

1160INX

1170DEY

1180BNE FLIF

11P0ORTS:s INEXTIX

1 Z200REFEAT

1210 $404=UUSRETART

12201F (72407 AND 1) = O THEN PRINT!NUMBER ELSE IF
(P7INDIC AND &40 = O PRINT"Not a valid number” ELSE
[F (PINDIC AND %B80) = O PRINT"Number too iarge” ELSE PRI
NT"Number toc small'

123OUNTIL FALSE

Listing 9.1 contains the program and the details are:

50-90 Saves registers on the stack.

100-110 Save stack pointer in case exit from program is via
OVERFLOW (at line 870) or MISTAKE (at line 910).
TSX transfers a copy of the stack pointer to the X
register,

120-140 Display ? prompt, and get data from keyboard into
buffer at &700.

150-240 Initialise the relevant memory locations.

250-300 |f the first character is a minus sign, set bit 7
of INDIC to 1. Line 300 always results in a branch

to 350.

320-330 If the first character is not a plus sign, skip to
370.

350 |f first character was a +/- sign, increment buffer

to begin at &701.

370-390 |f end of number (signalled by carriage return), go
to check the sign at line B00.

161

400-460

470-480

490-590

600

610-660

670~740

750
770-780
790
800-820
840-850

860-890

910-920

930
950-1000

1010-1060

1080-1190

Otherwise, multiply the current contents of the
four byte location NUMBER by 2 and save on the
stack with least significant byte last in (and so
first out in line 540}.

Multiply NUMBER by 4 more, giving a total multi-
plication of 8.

Add the four bytes on the stack (deposited in 400-
460) to the current contents of NUMBER. This is
equivalent to 2 * NUMBER + 8 * NUMBER i.e. it
multiplies NUMBER by ten,

If overfiow occurs into bit 31, jump to error exit
at 870.

Loead the current buffer character into the accumu-
lator, and subtract &30 to convert to a digit from
0 to 9. If the result is pot 0 to 9, go to error
exit at 910.

Add this digit to the current contents of NUMBER.
(Note that CLC 1s unnecessary since C must be zero
to get past line 660.)

As line 600, but overflow into bit 31 is signalled
after INC by the N flag.

Increment the pointer to the next character in the
buffer, and branch always to line 370.

This section alters the sign of the result if
required.

If {INDIC)7 = 1, convert NUMBER to its negative
counterpart at line 1090,

C=0will indicate 'no error' to the main program.
Always branch to line 350.

This is entered if overflow has occurred. Set
(INDIC)g to 1 to indicate 'overflow error' to main
program.

If any error has occurred, restore stack peinter to
the old value on entry, just after the registers
were saved. This is a precaution in case an error
was encountered while the stack still contained
some data for the conversion (e.g. at line 1060).

Set C = 1 to indicate 'error'.

Restore registers (note the reverse order from 50-
90) and return.

A subroutine to multiply the four byte NUMBER by 2,
and to check for overflow,

A subroutine to reverse the sign of NUMBER, leaving
its numerical value unchanged. The method used is
to subtract from &00000000., This is quicker than
using EOR #&FF on each byte plus CLC: ADC #1 at the
end,

162

Notice that we cannot use CPX #4 since this affects
carry. So we have a second counter in Y which goes
from & to 0 using DEY, since this does not affect
carry.

The general algorithm is very simple: begin with NUMBER equal
to 400000000. Then continue to multiply by ten and add the next
digit (0 to 9) in the buffer until carriage return is met. For
example, 312 is evaluated as ({0 x 10 + 3} x 10 + 1) = 10 + 2.

If at any point an error occurs, we clear the stack of any un-
wanted data, signal the error and return. The possible errors are
'invalid number' (e.g. 31C2) or overflow (e.g. 10,000,000,000).

An error is signalled to the main program which calls this as a
subroutine, by setting the Carry flag. Here, we use BASIC to test
the program in lines 1200-1230. Notice that we are able to differ-
entiate between the type of crror, and also differentiate between
positive and negative overflow.

The carry flag is the best flag to use for indicating error: it
is easy to set and to clear (SEC and CLC). It is also very easy to
test: BCS Error. If a second flag is required, the overflow is
best, since this can easily be cleared with CLV, How we set it
will be discussed in a moment. If a third flag is required use the
N flag: we will consider in a moment how to set and clear this.

Now in this program, we only need to use one flag to indicate
erTor, since we already have the location INDIC at our disposal to
convey the other information. But how do we discover the contents
of bits 6 and 7 of INDIC? Bit 7 seems straightforward: just use
LDA INDIC: BPL, but what about bit &, which we need to test
first in this case?

There is an instruction BIT which will do everything for us.
Just writing BIT INDIC sets the N flag to bit 7 of INDIC and the V
flag to bit 6. Moreover, it sets the Z flag to 1 if "ANDing' the
accumulator and INDIC (i.e. AA{INDIC)) is zero; Z is set to zero
otherwise. This last use of BIT is not needed here, but it is use-
ful when we wish to test certain bits of a whole series of loca-
tions. The reason for this is that BIT leaves the accumulator
unchanged, whereas AND changes the accumulator. In a way, BIT is a
sort of logical equivalent to CMP. So, if we wanted to see if
either bits 2 or 4 of any of four locations were one we could
write: LDA #&14: BIT LOCl: BNE ONE: BIT LOC2: BNE TWO etc. This is
particularly useful in interrupt processing.

However, the main use of BIT is to access bits 6 and 7 of a
location easily and moreover without affecting the accumulator. A
main program calling this subroutine would first test C. If Cis 1
it goes to 'Error' where the following will occur: BIT INDIC :

BVC INVALCHAR : BPL TOOBIG : If bit 6 of INDIC is zero,
INVALCHAR will print a message like 'Not a valid number’; other-
wise if bit 7 of INDIC is zero, there is positive overflow, and
TOOBIG will primt 'Number too large'. If bit 7 is 1, we pass

163

through to some code which prints 'Number too small'. After this,
the main program will return to the subroutine to try again. In
this way, errors are easily dealt with.

It is important to signal errors in this way, preferably using
flags unless memory locations are available, as here. If we wish
to use V and perhaps N this is how we can set and clear them:

SET N and V BIT &FFFB (&FFFB contains &FF)

SET V, clear N BIT &FFF7 (&FFF7 contains &6C)

SET N, clear V BIT &FFFA (&FFFA contains &AD)

CLEAR N and V BIT &FFF9 {&FFF9 contains &02)

CLEAR V, N immaterial CLV (thi;l be unchanged by
this

In all of these, the contents of the accumulator will be un-
affected. When return is made to the main program, it is important
that tests are made immediately if N is being used, since it is
extremely sensitive to almost every instruction.

One last point on setting flags. Is it possible to set V leav-
ing N unchanged? It is, but to do it we need to introduce two new
instructions: PHP and PLP. PHP copies the processor status regis-
ter to the stack; PLP copies the top item on the stack to the
processor status register. So we write:

PHP : PLA : ORA #840 : PHA : PLP

Transfer the status register to the accumulator. Put a 1 into bit
6, the V flag, leaving all other bits unchanged. Transfer the
accumulator back to the status register. All transfers between P
and A have to be done via the stack,

Appendix 6 explains how to append Listing 9.1 to another
program. The listing will need to be on tape, renunbered from
30,000 onwards: lines 10-40, 1190-1230 will not be required, The
program will end with RIS and line 30,000 will give a list of all
the variables used (i.e, it will be line 10 without the location
assignments). The main program can now fix memory locations for
these variables, and a quick check can be made to ensure that no
labels are used twice. To help with this, it is best if common
labels like LOOP, NOCARRY etc. are used only in main programs. In
the case of NUMBER, however, it is probably preferable to use this
variable name in the main program too, to facilitate the easy
passing of parameters. Line 30,000 can then be deleted, and the
entire program renumbered.

If subroutines are always saved with at least one copy numbered
from 30,000, and if no main program has a greater line number than
30,000, then it is easy to append as many subroutines as required,
since after appending, remumbering can be used and the next sub-
routine appended (32767 is the highest line number al lowable).

164

{b) A subroutine to convert from decimal to hex

LISTING 9.2
1ONUMBER=270: QBWRCH=4FFEE: OSNEWL=%FFE7
DIV START 100
TOFOR I%=0 TO 2 STEP 2:;FU=START
40C0FTI%

SOFHA

LHOTXA

FOFHA

BOTYA

FOFHA

1GOLDA NUMBER+E
110BFL FPLUS
1201.DA #ASC("-")
120J8R OSWRCH
1403588 FLIPSIGN
150, FLUS

1&OLDY #O

170, CONVERT
1BOLDY #3I2
1920L.0DA #O
200, TENDIV
Z10AGL NUMBER
L20R0OL NUMBER+1
2EOR0OL NUMBER+Z
Z40ROL NUMBER+Z
250R0L A
2LOCMF #10
F7ORCE LESS
2805BC #10
2R0INC NUMBER
A0, LESS

TENDIV

#5330
ISOPHA

THOINX

A70LDA NUMEER
T800RA NUMBER+1
TGG0RA NUMBER+2
4000RA NUMBER+3
410ENE CONVERT
420.DISPLAY
4TOFLA

44035k 0OSWRCH
450DEX

460BNE DISPLAY
470J58R DSNEWL
4B80FLA

A0TAY

SO0PLA

S10TAX

SZOPLA

165

SI0ORTS

540.FLIFSIGENM

SEOLDY #4
SAHOLDX #O
S3708EC
S8O.FLIF
SP0LDA RO

HOOSRE NUMBER, X
6105TA MUMBER, X

HZ2OTNX
HIODEY
LH4O0BNE FLIFP

HGORTS: INEXTI%

GHHOREPEAT

&E7OINFUT "Number " , | NUMBER

HPOLALLSTART

HFOUNTIL FALSE

Listing 9.2

£0-90
100-140

160
180-190

210-320

330-350

360-410

L30-470

480-530
550-650

contains the program and the details are:

Save registers on the stack.

If number is negative, output a minus sign and make
the number positive (at 1ine 550}.

Set digit counter to zero.

Set bit counter to 32 and initialise the accumu-
lator.

Divide current contents of the four byte NUMBER by
10, using the method described in Section 8.9.

The remainder is in the accumulator, and this digit
is the next digit to be output, reading from right
to left. Convert to ASCI| and save on the stack.

Increment digit count. NUMBER now contains the
result of dividing by 10 in lines 210-320. if
NUMBER is not zero, go back and divide by 10 again
to get the next diglt.

Output digits from the stack. They will now be in
the correct order, since the last one in was the
digit furthest to the left.

Replace registers and return.
As 1090-1190 in Listing 9.1.

The algorithm used here is again simple: keep dividing by 10,
saving the remainders on the stack. Output them in reverse order
when the dividend becomes zero, For example, applying this to &BC7
gives: remainder 5, dividend &12D; remainder 1, dividend &1E;
remainder 0, dividend 3; remainder 3, dividend 0. Now restoring
the remainders in reverse order gives 3015.

166

Exercise 9.1

1. Use PHP and PLP to set or clear N and V without affecting i
the Z flag.

2. Use PHP and PLP to perform the same funection as lines 260-
300 of Listing 7.7, but dispensing with the X register. Which
method is more efficient?

9.6 FURTHER USES OF THE STACK

We have seen in the last section two uses of the stack to store
temporary information. In the first, it was convenient to put the
interim result of 2 * NUMBER on the stack. We could have saved it
temporarily in memory but it would have taken up zero page memory.

In the second example, not only did the stack act as a tempor-
ary storage area but it also reversed the data for us into the
correct order. This is an important use of the stack.

There have been many occasions throughout this book where the
instruction STA TEMP has been used, with LDA TEMP following some
time later. In such cases PHA and PLA would have saved space.
Consider the answer to the first part of Q.3 of Ex.5.3 again.
Using the stack we could write instead:

PHA : TXA : SEC : SBC M : TAX : PLA

This is more economical: it also solves the problem for a program
written in ROM.

LISTING 9.3

10COLUMNS=%70: ROWS=%71: SCREENLEF T=&72: SCREENRIBHT=%74 1
TEMP=%74: 05RYTE=LFFF 4

2O0F0OR I%=0 T 2 STEF2

SOFE=HDOO

40L0OFPTI%

SOLDX #4

&OLDA #2805

70J5R OSBYTE

808TY MEMLOC+]

FOLDA #u84

100JSR OSBYTE

1105TX SCREENRIGHT

1208TY SCREENRIGHT+1

130 MEMLAOC

140CFY #0 Dummy opet-and

150BNE ZEROMODE

160L.DA #3539

170BNE FOURMODE

180, ZEROMUODE

170LDA &79

200.FAOURMODE

2105TA COLUMNS

167

220L0DA HZE2

Z2EOSTA ROWS

240, BELIN

250L0DY #7

260, L.00OF1

Z70LDA (SCREENRIGHT)Y ,Y
2EOFHA

290ODEY

FO0BFL LDOFI

OL.DX COLUMNG

0. 1.00FP2

OLDA SCREEMRIGHT+ 1
05TA SCREEMILEFT+1
IEOLDA BCREEMRIGHT
F608TA SCREEMLEFT
TTOCLE

ZBOADEC #8

FGOETA SCREEMNRIGHT
AOOECC NOCARRY L
410TNE BEOREENRIGHT+1
420, NOCARRY L

4TOLDY #7

44001 00F3

4THOLDA (SCREENRIGHT) . Y
AHGETA (SCREEMLEFT) .Y
470DEY

4Q0BFL LOOFZ

490DEX

SOOBNE LOOF2

S10LDY #0

{(SCREENRIGHT) Y

SEOINY

S6O0PY #8

S70BRNE LOOF4

SBOLDA SCREENRIGHT

S90CLC

LHUUADC #8

&108TA SCREENRIGHT

HZORLC NOCARRYZ

HZOINE SCREEMRIGHT+1

&40, NOCARRYZ

&SODEL ROWS

&6HO0BNE BREGIN

HTORTE: INEXTIX

&H80t i med=TIME

HFOFOR I4=1 TO 100sCALLEDOO

FOONEXTI%:timeXi=TIME-timeXt PFRINTtime%/ 10000 - L0018 "secs
per shift left"

Listing 9.3 gives one more example of the use of the stack,
This program rotates the high-resolution screen one character to
the left. Refer to Section 8.6 for the discussion on high resolu-

168

tion graphics organisation, if you need to. The details are:

50-80
90-120

140-150
160-170

190
210

220-230
250

270-300

310
330-410

430
L40-480

490-500

510
530-570

580-630
650~670

The idea is

As 80-110, Listing 8.6 (¥ stored at line 1L0).

As 120-150, Listing 8.6, except we store starting
address in SCREENRIGHT.

As 170-180, Listing 8.6.

Put the number of columns less one of mode 4 into
the acecumulator and branch te 210.

The number of columns less one for mode 0.

Store number of columns less one in COLUMNS, a
permanent location.

Number of rows in ROWS,

Initialise byte counter for left-most character
square {8 rows, one byte per row)}.

Put the first character on the left of the current
row on the stack.

Initialise column counter.

SCREENRIGHT refers to the address of the right-most
character of the current pair and SCREENLEFT the
left-most. This section of code increments these
addresses by 8, so that they point to the next pair.

Byte counter for current character square.

Move the right-most character of the pair into the
left-most character position.

Continue for the 79 or 39 columns {not including
the last column).

Byte counter for right-most character square.

Get left-most character square from the stack and
store In right-most character position.

Increase SCREENRIGHT to the address of the begin-
ning of the next row.

Continue for 32 rows, then return.

to store the first character of the Tow on the

stack (in lines 270 to 300), shift all the rest omne place to the
left, and then restore the contents of the stack into the last
character position (in lines 530-570). Notice how the reversing
property of the stack is a slight inconvenience here: it necessi-
tates a forward loop with a CPY at 560. Nevertheless, the stack
saves memory here but not time. Why this is so we will consider in
the next section,

Exercise 9.2

1. Rewrite 1(i) and 2 of Ex.5.3 so that they would work in ROM.

169

2. Rewrite the second part of Q.3 and Q.4, using the stack as
much as possible.

9.7 TIMING

Appendix 1 contains information on the timing for each instruc-
tion. For example, PHA takes 3 cycles, the same as STA TEMP, where
TEMP is in zero page., PLA takes 4 cycles, one more than LDA TEMP.
It is therefore slightly quicker, on average, to use zero page
memory than the stack, but there is a memory cost both in zero
page and in the program itself (PHA and PLA are both one byte in-
structions). Moreover, there can be a time saving using the stack.
In Listing 9.3, if we used zero page memory in 270-300 instead of
the stack, we would need to use indexed addressing (STA TEMP, Y):
this takes five cycles, two more than PHA. However, to he fair
there is a corresponding saving in 530-360: we can move backwards
through the loop, by replacing PLA by LDA TEMP, Y and can thus
eliminate CPY #8. This saves 2 cycles altogether (CPY #8 is 2
cycles, PLA and LDA TEMP, Y are both 4 cycles), which cancels out
the extra two in the temporary storage loop.

You will have noticed that the average time taken per shift in
mode 4 is about 0.1067 seconds in Listing 9.3. The 6502 micro-
processor in the BBC computer runs at 2 MHz i.e, 2 milliom cycles
per second. It follows that Listing 9.3 uses up about 200,000
machine cycles! Where do they all go?

In order to answer this we will analyse the timing involved in
Listing 9.3. Table 9.2 gives the details. The column labelled
multiplication factor, gives the number of times the instruction
ts used in the program. In the most used loop, LOOP3, each instruc-
tion is used 10,240 times! This underlines the importance of
making loops as economical as possible.

In certain cases we have had to estimate the factor: line 630
is an example. With branches, there is a problem since if the
branch occurs, the time involved is 3 instead of 2 cycles. We have
used the method of assigning the time of the most frequent occur-
rence - the results should then average out. In this case all
branches are given the value of 3: this will invelve only a slight
over-estimate overall {we take no account of page crossing, which
gives an additional cycle to a branch, and to indexed addressing,
since it will not occur in this program - this is why we have

170

Line humber Time for instruction Multiplication factor Total "
50 3

2 1
® : ! 1
70 G 1
20 4 1
20 2 1
100 6 i
110 3 1
120 3 1 45
140 2 1 ’
150 2 1
180 2 1
170 3 1
190 2 ¢
210 3 1
20 2 1
230 3 1 J
250 2 32 64
270 5
280 3 3328
290 2 32x8
300 3
310 3 3z 96
330 3
) 3
380 3
360 3 40%32 28160
370 2
380 2
390 3 !
400 3
410 5 40 200
430 2 40 % 32 2560 3
450 5]
460 6 40x32x8 163840 i
470 2
480 3 3
490 2 } 40 x 32 } 840
500 3
510 2 32 64
530 4
540 8
560 2 32x8 4352
560 2
570 3
£80 3
530 2
600 2 32 416
610 3
620 3
e : 6 2
256
060 3 } ® ¥ 8
670 6 1
Total 204,057

Table 8.2: Timing for listing 9.3

begun at &D00 rather than use DIM START 150). In cases where exact-
ness is important (we shall meet one in a moment} we shall need to
be more accurate in our allocation.

From our analysis we see that over 80% of the time is spent on

the loop in lines 450-480! Unfortunately, indirect indexed address-
ing is used twice in this loop and this is costly in time {the

171

reason for this difference in time would take us into hardware
considerations outside the scope of this book). But even if we
could have got away with zero page indexed addressing, we would
save only 3 cycles per loop, which would result in an overall sav-
ing of 15%. And of course in mode 0, the time is very nearly
doubled.

This sort of analysis does not need to be done with many pro-
grams, but it is very revealing in this case. There is a gemneral
principle stemming from this: worry about saving time only in
loops; initialisations and very small loops take up a negligible
amount of time anyway, and are not worth the time-saving effort.

Even with such economy, this rotation program is rather slow for
some purposes: for greater speed, the properties of the 63845 chip
and screen ULA would have to be used, but these are outside our
scope,

To end this section let us try to devise a piece of code which
will result in a pause of precisely 1 millisecond (i.e. 2000
machine cycles). In doing so, we will introduce our last new
instruction: NOP. This instruction does nothing: it just takes up
2 cycles of processor time, and is useful for the fine tuning of
timing loops, as we shall see.

To begin with we must set the interrupt disable: the interrupt
routine takes time and will muddle our timing. We will mot clear
the disable as part of the code, since that would be done after
the operation for which the pause was required has been completed.

Consider the loop

LOOP DEX
BNE LOQOP

This takes up 5 * X -1 cycles (minus 1 since the last branch
will not occur). The maximum value of this is 1279, which falls
below our 2000 mark,

Consider instead
LOOP DEC DELAY
BNE LOOP

This takes up 8 * (DELAY) - 1 cycles assuming zero page. We are
in range here, so let us now consider the initialisation. We have:

SEI
PHP
PHA

172

LDA #Count
STA DELAY

and at the end we will need PLA : PLP,

We do not want our delay loop to affect any of the workings of
the rest of the program, so we save the accumulator and status
register on the stack. All of this adds up to 21 cycles: we there-
fore require 8 * Count - 1 = 1979, and the nearest we can get to
this is Count = 247, which leaves us 4 cycles to find. This is
where NOP comes in. So our 1 millisecond delay is:

SEI

PHP

PHA

LDA #247

STA DELAY
LOOP DEC DELAY

BNE LOOP

NOP

NOP

PLA

PLP

Exercise 9.3

Show that if we wish to generalise this to a t millisecond
delay by using the X register containing t, then, assuming we will
save the X register on the stack, we will need to load DELAY with
the greatest integer nmot more than (1991t - 28)/8t.

Include suitable code to give a precise pause of 10 milli-
seconds.

9.8 SCREEN SCROLLING: HOW IT QPERATES

If we consider again the operation of Listing 9.3, something
rather odd will be noticed. To slow things down a little, insert a
line 695 F = INKEY (25} in the program.

Clear the screen in mode 4, begin listing the program and press
escape before any scrolling occurs, Now type RUN, and you will
notice the screen shuffling along from the top. Now type LIST
again, and after a few scrolls press escape. Type RUN again, and
you will notice that the screen shuffles along again, but this
time it begins somewhere around the middle. Remove line 695 and

173

repeat these experiments: you will see the same effects happening
more quickly. In the second case, some of the lines will seem to
be indented as the rotation occurs.

To understand what is happening here, we need to perform one
more experiment. Keeping Listing 9.3, add the following line:

1 FOR 1% = HIMEM TO &7FFF: 71% = &AA: F = INKEY(5): NEXT

(use &3FFF in a model A)

Clear the screen and type RUN. The screen will begin filling up
from the top., Press escape, and list the program to get some
scrolling. Type RUN again and watch the screen fill up starting at
the middle! Now clear the screen again, list a little without
scrolling, and press Return enough times to put the cursor at the
bottom of the screen. Now type RUN, and one scroll will occur. The
screen will begin to fill up from the bottom. Try this again, but
with one scroll before typing RUN and the next to bottom line will
start filling; with two scrolls plus RUN, it begins filling two
lines from the bottom; and so on.

It is scrolling which causes this to happen. Let us consider
what happens in scrolling, Imagine that the whole screen is full
and that the cursor is mow at the bottom of the screen., At this
Stage we type in something and press return: what must happen now
is that the line at the top of the screen disappears to accommodate
the new flashing cursor line. One way to do this is to move up all

&5800 | >
> Before pressing return, start of screen
> is at &5800 (assuming
f wa began with a clear screen).
L}
>
G7ET0 | > —
(a}
85340

After prassing ratumn, start of screen
is now at &5840. The

contents of

&5B800 are now repiaced by

the fiashing cursor line at the bottom
of the screen.

RV,

S7ECH
£5800

Ve

(b}
Figure 9.8: Scroffing in mode 4 {model B addresses)

174

the other lines so that line two is now at HIMEM (i.e. &1800 or

45800), but this is rather slow. A simpler approach is to replace
the contents of the top line on the screen by the flashing cursor
line (i.e. > followed by blanks). All we need to do then is to re-
define the start of the screen as the location of the present line
one (which is the old line two) i.e. &5940 (or £1940) in Mode 4.

It foliows then that &5800 (or &1800) is now the location for the ;
bottom line of the screen. Figure 9.8 shows this. :“

The screen memory is hence treated as a sort of cylinder, 1
rather like our method in 6,5.when we implemented the queue. All ff
modes are treated like this, not only Mode 4.

The situation with Mode 7 is slightly different, since there
are 24 unused locations in screen memory. As scrolling takes place,
the 24 locations which are unused will change. Figure 2.9 illus-
trates this. Here, the cylinder principle is even more obvious,
Similar considerations apply to Modes 3 and 6 also.

57000 | >
Before pressing return, start of
screen is at 87000 (assuming we
began with a clear screen). The 24
locations B7FEB to &7FFF are unused,
>
BIFCO | D> — ETFE7 i
la) .3;
g7C28 | > 15
> After pressing return, start of screen |'
is now at 87C28. The bottom line i
begins at &7FES, at the 24th i
character reaches &7FFF, and then returns I
to B7C00 for the 25th character, The [
24 locations from &7C10 to &7C27 are ki
unusad,
B7FCO |2
GIFER (> — &7COF

b}

Figure 9.9: Scrolfing in mode 7 fmodel B addresses.)

There are a pair of memory locations which are set aside to
hold the information of where the start of the screen is at any
particular time: the low byte is in &322 and the high byte in &323.
Incidentally, the figure given for each mode is the same whether
or not a model B is in use. So, a clear screen in Mode 7 gives
47C00 for both model A and model B, However, the BBC Computer
copes with this in a rather novel way: in a model A machine, all L
references to location &4000 to &7FFF are treated as references to i
%0 to &3FFF. In this way, the computer can store one set of para-
meters in ROM which will work for either machine.

175

Exercise 9.4

Rewrite Listing 8.6 so that it will cope with scrolling.

176

Chapter 10 Some utility programs

10.1 INTRODUCTION

The principal purpose of this chapter is to draw together all
the preceding ideas in the past nine chapters into a series of
example programs. As a bonus, these programs will be found to be
particularly useful to you in your work with BASIC and with assem- :
bly language. In this sense they may be called utility programs. F
This is not to imply that programs in the rest of the book are not
useful (for example Listing 8.6 is certainly of use if you have a
printer), But the earlier programs were chosen to make specific
pedagogical points: the programs here try to draw all the points
already made together. If you purchase one or other of the tapes
available with this book you will find some other utility programs.
Tape 2 contains an assembly program to find and list the lines
containing any section of code in a BASIC program (FINDCODE) and
another to Teplace any section of code by any other section in a
BASIC program (REPLACE). Tape 1 contains a 6502 disassembler
(written in BASIC, but very fast): this will turn any section of
machine code back into assembler mnemonics and make it easy for
you to analyse all the BBC micro's firmware, as well as other
people's machine code programs!

10.2 PROGRAM 1: RETRIEVE

The purpose of this program is to allow you to recover most or
all of a program which has been corrupted in some way. It may be
that you cannot get all the program from a damaged tape; or it
may be that one of your machine code programs went a little wrong!
In such cases, when you try to list the program you get the mes-
sage 'Bad program'. In order to understand what happens here, we
nesd to look a little into the workings of BBC BASIC.

Each line of a BASIC program, when it is stored in memory,
begins with 4 bytes. The first is always &0D (ASCII for carriage

return); the next is the high byte of the line number {which must [
not exceed &7F i.e, bit 7 must be zero); the next is the low byte ;!
of the line number; and the last is the number of bytes used in I;
this particular line (including these four). This means that line I

numbers can range from (0 to 32767, and that the number of bytes
allowed in a line, apart from the first four, is 251.

Now, apart from these first four, any line comsists of two
sorts of bytes: those with ASCII values between &20 and &7E, and

177

those with values from &80 to &FF (the control cedes from 0 to
&1F and the delete code &7F will not be found in a BASIC program
line). Those from &30 to &FF outside quotes represent keywords,
and a 1ist of these is given in your User Guide. Figure 10.1
shows how the line

S e

TOPRINTVEXAMPLE" : X=4: END

will go into memory (ignore the last byte for a monment). Notice
how this method of storage makes the BASIC program entirely

relocatable.
[t]»] 0O 0A 14 F1 224558 4140504C 4622
. ling ‘keyword’ “"EXAMPLE?"
T line number length token for
start of PRINT
lina
JA583D243A ED op FF

© X = 4 : ‘keyword ﬁ
token for new line terminator
END

Figure 10.1: How the program 10 PRINT “EXAMPLE"": X =4: END is stored in memory.

Now when you try to save or list a program, or when an error
occurs (including ESCAPE) the interpreter first checks that the
program is valid. It does this by seeing if the first byte is &oD:
if not, it falls at the first hurdle. It now takes the next byte
and checks its sign (BMI or BPL): if it is minus {i.e. bit 7 is 1)
it knows it has reached the end of the program. This is because
LFF is used as a terminator to the program, but any negative byte
will do.

If it has not reached the end of the program, it adds the
fourth byte (the line length) to the address of &(0D and expects to
find &0D at this new address - if it doesn't it outputs 'Bad
program', It repeats this process until either it finds the nega-
tive terminator or it outputs 'Bad program'.

Now our program RETRIEVE goes through a program making the same
check, but when it comes to a point where the interpreter would
output 'Bad program' it is much more friendly: it puts the termina-
tor &FF at that point. In this way you have retrieved some (or all)
of your program.

One last point. As Appendix 6 discusses, it is possible to
start a program at any page by using the PAGE command. Location
%18 contains the current page, and so we can use RETRIEVE on a
program anywhere in memory, by first setting PAGE to the correct
point.

178

LISTING 10.1

=5
DI Lo

NI=Cu=
~ =0

=]
i

St P S~ 3o TSI e e

LD T I T
=T

=N O
| e

MO MO0 DL DT TN

DZOHOr -0 Z DT =40 -Hoo0D

AT

[}

faletel T e e e e e -
e N DO W mOr Ty A wnr e=TIr
(L

® J40ToT-
g e T o ey

Zr
m
=fin
5

[[r=d
falii]
i
:._0

[t
L

[

Il

(.
=
.

=<

++=Z M
P = I

1
0
N
N
N
N

mmmmc

C
=
oo

INEDY Y

L

The program is in Listing 10.1, and the details are:

4g-90

110
120~ 149

150-180

150-250

270-300

Initialise the low bytes of the pointers to the
beginning of the last line analysed and to the
present line under analysis, to zero; and the
respective high bytes to the current page.

Initialise the byte pointer to the current line,.

if the first byte of the line is not &QD we have
found the fault - go to 270 to put in the termina-
tor.

Otherwise put the address of the present line into
the last tine pointer.

And add to the present line pointer the length of
the present line, storing this new address back
into the present line pointer. Always branch back
to 110,

Once the fault has been found, put the terminator
&FF at the end of the last line and return. This
will work even if the entire program can be
recovered.

The program is relocatable, but is assembled into &D00. Save a
machine code copy, and use it when you need to {(which won't be

very often, I

hope).

179

10.3 PROGRAM 2: INTSORT

We saw in Listing 7.7 how to sort a set of up to 256 32-bit
integers, and in Ex.7.3 how to generalise this to deal with more
than 256 such integers. Howsver, a major limitation to that pro-
gram was that it could not sort an integer array created in a
BASIC program e.g. by DIM ARRAY% (500}, say. In this section we
will see how to remedy this.

One feature of CALL we have not yet considered is its ability
to pass parameters, or more precisely to pass addresses of para-
meters. For example, if we write CALL ANYTHING, Integer%, FPOINT,
where ANYTHING is the start of the program,Integer% is an already
declared integer variable and FPOINT an already declared decimal
or floating-point variable (see Appendix 43, then a parameter
block table will be set up starting at address &600. Figure 10.2
shows what it looks like.

&600 2 Number of parameters passed
&601 56 Address of first parameter is
&602 12 } &12566
&§603 4 First parameters is an integer variabie (4 bytes!
5604 82 Address of second parametsr is
86605 12 } 1282
8606 5 Second parameter is a floating-point
variable {% bytes]

Figure 10.2: The parameter block table in response to CALL ANYTHING, Integer %,
FPOINT

The first byte gives the number of parameters passed; and then
each group of three following give the address of the relevant
parameter together with its type: 4 is integer (4 bytes are used
for an integer, so we expect &1256 to %1259 to contain our four
byte Integer%); 5 is floating-point (FPOINT will occupy 5 bytes
from &1282 to &1286). It is also possible to pass a single byte
{e.g. ?BYTE) code 0 (1 would have been more sensible), and a
string at a defined address (e.g. BTEXT) code 128, but both of
these seem rather pointless since by definition we know where they
are stored: in such cases, indirect indexed is the best course.
Finally, as we shall see in the next section, we can pass string
variables (e.g. Stringd).

Now it turns out that arrays are always arranged consecutively
by the interpreter, so we can pass information about the whole of
an integer array like one defimed in DIM ARRAY% (500) by writing
CALL ANYTHING, ARRAY% (0). From then on, we can add four to the
address to get the next item in the array.

180

In our integer sorting program we need to pass one more item of

d. So we assume our

ent CALL

information: the number of integers to be sorte
program is called from BASIC with the statem

,
o8
[= 4
i
5
=
=
o
a
o

a8
QL
=
i)
e
=
a
o
o]
[+]
o
+
Rl
a
=~
o
@
£
2]
3
o
T,
=]
=4
o
o
m
g
=
%)
g
=
L]
=
)
e
~
=]
foad
NS

~
—
L
o
Fe
o
qa
vy
w
4]
0
o
e
127}

[\

LISTING 10.2

14T

ARRAY

8,75 LOOFCOUNT=%773

%7 13 SECOND=%7 33 NUMBER=

: STEF

.

S

EMP=%70:FIRET

E

H=%FFE

OSWRE

2o PY=EDO0

K_1%=0 TO

FQ

€

O Z e AL
— e sH NSRRIkl (b

DO > LI T TL T T T I
L= Lt~ (OO —k-

e
— #SNSM# L~ ~
TXCOITIDO>

INE St s Nl S

o O LT T L e T e L T
OO 2O 2O WE ONECoa- 00

DL - >eluOE Ol O TLIIL
) Do _ 002200 IGGZiyZ>0Z00 W
N0 N INUIUEI— o 10 «_J0-IIil LR o000
Taleinlelatelelatulatelolsivielelelololsiolaln o el s iwie)
< O D (e T I O QA QN et IS IO - (O O e
Apt o e et o e eHGEILEINEEINIIN0-0-0-0-0-0-0-0-0-8

181

ey .
oRFLLOOR2

JAG. GVER

ZSOINC LODFCOUNT

ZHOEBNE NTZERD

Z7OINC LOCOPCOUNT-+1

780 . NTZERD)

790L.DA LODFCOUNT

BOOLME NUMBER

BLORNE BEGIN

ga0LDA LOOFCDUNT+1

BIOCME NUMBER+1

BAOONE BEGIN

SEODEC NUMBER

BaoreEd |LOWIERC

7ol DA NUMBER

B30CME #HLFF

BRORNE START

GOODEC MNUMEBER+1

FI0BFL START

20 LOWIERD

QIOLDA NUMBER+1

F40BNE STAR]

GEHORTS: INEXTIW

QEOCLG: INFUT ! How man be gt NATDIM AL INL

P70F0R I%=0 TO Mi-13 % =RNDNEXT 1%)

FRBOFRINT "Number s, agslqned Snrtlnq now'stimex=TIME:
CALL%DOO.NA AL s tim me = TIM& —time4s FRINTtimeh/ 100" secs"
1 PRINT " Done. Checkin oW,

FP0E I%=0 TO NA-2:IF A (IZ) A% I%+1) THEN PRINT"ERRDR AT
'SGTRS (I%) s EMD

1O00ONEXTIY :PFRINT“Checkinag O.8.":END

The program is in Listing 10.2 and the details are:

40-60
Jo-120

146-160
180-300

320-350

360-380
Loo-730

750-760

770

750-810

If there are not two parameters, something is wrong.

And if they are not both integers, something is
wrang.

In these cases, output a gquery sign and return.

Store the address of NUMBER% in a temporary loca~
tion {FIRST will be used for other things later}.
Subtract one from the contents of that address and
store in NUMBER. Store the byte from the next
address in NUMBER + 1 (adjusting it if any borrow
had occurred on the previous subtraction).

Store the address of the Tirst integer (ARRAYZ(0))
temporarily in SECOND.

Initialise the integer counter.

Identical to 120-450 of Listing 7.7. Notice how in
670 and 700 we do not use PHA and PLA since they
cost one cycle in a very often used lcop.

If the lower byte of the
go straight to 790 where
lower byte of NUMBER.

integer count is hot zero,
we can compare it to the

If it is zero, increment

count first,

the higher byte of the

If the lower bytes don't agree, we can't be
finished with the present cycle through the integers.
Go back to 400.

182

B20-840 Even if the lower bytes agree, equality cannot
occur unless the higher bytes agree too. Go back to
4o0.

850-910 At the end of the present cycle, decrement the lower
byte of NUMBER by 1. If it is not zero, examine
whether Tt has gone through zero: if so, decrement
the high byte of NUMBER by 1. Return to 320 in all
cases, unless the high byte of NUMBER has passed
thr?ugh zero (which will never happen - see 930-
950},

§30-950 This checks if the high byte of NUMBER has got to
zero as well as the low byte of NUMBER, since entry
to 930 is from 860 only. In this case, (NUMBER)
equals 0 and we have finished; otherwise return to
320,

Notice how much more code is necessary when the number of inte-
gers can exceed 255: 6 lines of code for fewer than 256 integers,
18 lines for more than 256 integers. The principal problem is that
we need to allow the case where the low byte of NUMBER equals zero
in every cycle, except the one where the high byte is also zero
(and for fewer than 256 integers this will be the only such case
where the lower byte is zero). Hence, we need to check if the high
byte of NUMBER is zero every time the low byte reaches zeTo.

This is not the fastest machine code sort pessible, but it is
simple and still pretty quick. To sort 2000 integers in BASIC using
the bubble sort would take all day: see how long it takes in machine
code - about 190 seconds. (If you have a model A, to give yourself
room insert line 955 STOP; run the program; delete lines 10 to 955
and run it again.) In practice, though, you are not likely to want
to sort more than about 500 integers, and this takes only 12
seconds. {The reason for the sixteen-fold increase from 500 to
2000 is that the number of comparisons with 500 is % x 500 x 501
i.e. 125,250 whereas with 2000 it is % x 2000 x 2001 i.e. 2,001,000,
almost 16 times as great. Incidentally, this means that each
comparison occupies about 0.0001 second or about 200 machine
cycles.)

10.4 PROGRAM 3: STRINGSORT

Let us now do the same thing for Listing 7.8 as we did for
Listing 7.7. There is a slight complication when we pass a string
variable via CALL. The address we get is not of the string, but of
another block of information called a String Information Block.
This consists of four bytes: the first two give the starting
address of the string and the last one the length of the string.
This is essential because a string variable does not end in &OD
unlike BTEXT.

The third byte is of no use to us here, but it is quite inter-

esting: it denotes the maximm length of string possible without
reallocation of space. When a string variable is first defined in

183

BBC BASIC it is given a bit more space than it actually needs:
this amount of space is stored in the third variable. The reason
for doing this is to cut down on what are called garbage collec-
tion problems. When we define A% to be "ABC" and then later define
it to be A + A$ + AP + A$ + A%, this new string will have to be
stored somewhere else in memory: the old "ABC" remains where it
was, What will happen here is that the string information block
will have its contents changed to point to the new string (but the
block itself will not need to be moved). If we do this a lot, we
will run out of memorvy, but a lot of memory will be old discarded
strings - in other words, garbage. So all this garbage will need
to be collected up and thrown away; and this is a slow process,
even in machine code. By careful programming, however, we can
assign enough space to our original string to circumvent this. As
long as our new allocation does not exceed byte three, we will not
have to use up any more memory to store our new string: we just
overwrite the old one. So, if we know a string is unlikely to be
much more than about 25 characters, define it initially as

A$ = STRINGE (25, '),

Back now to our immediate task. As far as we are concerned
then, a string array will be a continuous set of bytes in memory,
each element of the array corresponding to four of those bytes
(the String Information Block). The strings themselves can be any-
where else in memory: the first two bytes in the String Information
Block point to the starting point of the string. It follows, that
the first half of Listing 7.8 has already been done for us by the
interpreter: the list of pointers already exists, we do not have
te create it. However, we must remember that when we swap pointers
there are four bytes to swap: the address plus the two string
length bytes. We shall assume that there are no null strings in
the set of strings we shall be sorting. A null string is denoted
by zeros in the string information block.

LISTING 10.3

10LOOFCOUNTH=870: FIRST=%71 : SECOND=&72: TEMF=475: ADDRESS=474:
HUEEEE—“78€STORE1 LA STORER2=L 70 : LETHI=%7E: LGTH2=%7F

2OFE0R _T%=0 TO 2 STEF 2:PA=&D0O0

MUIDFTI

41H.Dﬁ

1gd)}

jmyal

ikt
3
&

o b Lo Fom e B e S 1 Lo ¢ L e e o e

DO AN D=-Q T o m
i

B Etd
MO wmr oy Do ool mer
[e
G
D>
=
1]

WDDE#&HAQHM&\

BIETEININ ISR F0 JB bbbt bt
IO LA LA DRI U A S D
etarstos
DHACIHEP TP IR0
FWF oW

jelnlalelalelslelalele

184

T > - Elp-s > > > x> I T

= v = . - - = [} . oe w [u .
=t - = bl Flei o ~ Tt - [ir e = Zt — -
+ + 3 + + >4 om0 —={ = ~ jm — = O = 4+ o + +
x o0 (3 Rt Aol NS W Wis wihdo WwooW == [oW W o 00 O T e 0
il wow g Ll Wi rZ g BT N0 =it I KoM ¥ Xy © V¥ 0 W Owstig - e
T ST 4 iavidr T -oNod ool oToT ok TELad o o CcoLooas 40 bid @O0 medNELE O E0omno
r oooD O cRoo SOQX P 0 it P Y e v { o g T R T e NOREQODZQEIZL DEDIET >

Pt i It oY il A ¥ S o T 5 Y Tt TY T pF i da Lol g T FYhc i 2 TV x| F-omanminn 0w O 10300030l
#NW&S&S#LW#SBSS #SNSMM.(F(B (F(DQ#(L(L#W.\(NS LNLSLWLWLWYW(T((T(Lm NLENELNLNLN#LNPMNP
C«HOAHQAHAHXXMUV.HAHAHAHCCAHCCWAAHAHQV:AQQAHYAHAMAMAv.UQFCEYYQV.QEILIEWDDANAHAHQAAHYLEXECTXN.HPECQAPECLDAHES
BTLDTDTDTL_UDTDTLDTCNNDTDTNDTDTDDTDT.DLDMCNNPEFENPPPNSLLDTDTDTEPNNNNNPBDMNEED”NEPLDNT

W3 = JIA_I0 0«10 _JE0TU)Ti T U080 I D OmMOEND oG ah » +JUIHD DM om0 ool _HJad 8o
COOUJOOQCDOGCO&UQOQODOQOODDQOQDDQOQGDUQO000000000OOOOODQOODOQOQOGOWQOGOOODDGOQOCOOO
O 456780.01n..t.,..45,&7890lm,._w..._d.5&7.5?.Uin.._q...hd.mu&?oua..n.1?:...._45678&.01?:.....45&789.0123456780..012345678901

| S e T A e e s o S s o i AR T p Ty L g Hu T TR N R M by N O NNy T fraloa T sl it i Ty T M U A R ST Sy [eimpwlatelolol

OIS
P e e e L

uy
-]
r~

V120 . TEXT: INEXTI%
T1Z0CLS: INFUT " "How many records",N%
%%%%Eg?N$$(Ej€é) T gs now”

GOFR "Setting up rin . .

160 S=0= ~ =(} A 1:R=END IO} s As=""FOR J¥%= O T R-1:
1160, SZRENORkd tan 19040 3 TRENE 54082835 A (17 =885 NEXTTY,
L170PRINT"Sorting now, ":tim eA=TIME;LRL $D0C, N7, AF(0) i

timeXl=TIME- tlmPA.PRINTflm %100 secs " s PRINT" Checking
liaﬂFDR 1%=0 TO NZ~2:IF As(I%) *A%(I4+1) THEN PRINTERROR AT
"STRS (1% s END
TIRONEXT:FRINT"(2. K. "z END

The program is in Listing 10.3 and the details are:

L0o-160 Check that the parameters are of the right type.
The code for a string variable is 881, If there are
any mistakes output a query and return.

180-300 As Listing 10.2.

320-350 As L400-430 of Listing 7.8 except that we do not
need STORE: the information is in &04% and &605.

360-370 Low byte of string count is in X which is not
otherwise required in the program,

390-580 As 460-650 of Listing 7.8 except that we need to
add & not 2 to get the next pointer.

590-630 Store the lengths of the respective strings being
compared in LGTH1 and LGTHZ2.

640-700 As 660-720 of Listing 7.8.

710-720 If we have reached the end of the first string and
there is still equality, no swap is needed.

730-740 By contrast, if the end of the second string is
reached a swap is required.

750 If we get to here, the branch will always occur.
760-730 See 920-1100.

810-900 As 750-840 of Listing 7.8 except that we swap four
bytes not two.

920-1100 As 750-940 of Listing 10.2, except that the low
byte of the count is in X, not in LOOPCOUNT, and
LOOPCOUNT+1 is replaced by LDOPCOUNTH, Using X is
quicker, and allows a saving at 960 {compared to
790 and B0OO of Listing 10.2).

Lines 1070 and 1100 are necessary in order to
create a relocatable program. The jump is just too
far for a straight branch, and so we use pivots at
760-790, Listing 10.2 was slightly easier to make
relocatable than this one, but the cost is still
small, and is certainly worth it for a program of
this sort (no pun intended!).

Try it for 1000 strings (with a Model A, with luck and the same
method as in the last section, this ought to just fit: if not
change 10 to 8 in 1160). Agaln not the fastest sort possible, but
still very reasonable compared to BASIC (BASIC takes long enough

186

to set up the test strings!). You should find the sort takes about
48 seconds. {Again there are % = 1000 x 1001 = 500,500 comparisons,
so each comparison takes about 0.0001 second, giving 200 machine
cycles per comparison on average. This is just the same as with
Listing 10.2, and will not alter much with much longer strings, as
long as they are not too close to each other. For example, re-
running the program with 32 in 1160 for 250 strings gives a sort-
ing time of about 3 seconds, one sixteenth of the 1000 string sort
as we would expect. And 4 in 1160 with 1500 strings gives about
108 seconds, 2.25 times as much as the 1000 string sort, again as
we would expect.)

10.5 PROGRAM 4: REMSPACE

When you type a BASIC program into your computer it is useful
to leave a liberal number of spaces tec aid legibility. For
example, IF X > 3 THEN PRINT "MORE" is much easier to read than
1FX>3THENPRINT''"MORE", Moreover, in a case like IF X > Y THEN 100,
the space between Y and THEN is essential otherwise BASIC will i
look for a variable YTHEN. 3

Again, to aid understanding it is useful to put in the
occasional REM statement either in a full line, such as

10 REM This is a full line

or a part line like

50 ¥=10:Y=20: REM This is a part line

The problem with both these strategies is that they take up
memory space; and in a microcomputer like the BEC's, space can be
crucial in high-resolution modes.

The purpose of our next program is to solve this problem. All
spaces and all REM statements will be extracted from any program
(of course, spaces occurring between quotes will be left}. You can
therefore keep two copies of a program: one for running and one
for documentation purposes. (If you have REPLACE, available om the
second tape, you can reduce the program still further by replacing
all variables by single letter variables.)

Once a statement like IF X > Y THEN 100 is translated into
BASIC, using tokens for IF and THEN, it is perfectly all right to
remove all the spaces, so no precautions are needed here, This
assumes that you don't use lines like .LABEL DEY, for if you do,
when the space is removed the computer will treat it as .LABELDEY
and the DEY instruction will be lost into the label. If you must i
use this, write .LABEL: DEY. Again DEFPROCYN Y% = -1 will lead to
difficulties, since the procedure will take on the new name YNY% '
and you will get a 'no FN/PROC' error. There is no need to use
this formulation - use DEFPROCYN: Y% = -1; it is much easier to
read anyway.

187

When full line REMs are removed any GOTC etc will peint to the
wrong place if it hitherto pointed to the REM. My own preference
is never tc point to a REM statement in this way; but if your own
preference is different, you will have to change all the line
numbers yourself, (or write a utility to do it for youl).

The program is shown in Listing 10.4. It isn't relocatable
because to do without the subroutine MVEMEM would be a substantial
hardship. However, if you want it to be relocatable, you can put
the subroutine permanently at location &75 onwards (it takes up 8
bytes) and define MVEMEM to be &75 in line 10. Delete lines 820 to
870, and insert the following 16 lines, after writing 21 [OPT I%:

22 LDA #&B1
23 STA &75
24 LDA #372
25 STA &76
26 LDA #8&91
27 STA &77
28 LDA #&70
29 STA &78
30 LDA #&C8
31 STA &79
32 LDA #&C9
33 STA &7A
34 LDA #&QD
35 STA &78

36 LDA #&60
37 STA &7C

Now everytime the program is run, it will write the subroutine
MVEMEM into &75 to &7C, no matter where you put the program. My
own preference is not to go to these extremes to create relocat-
able code, but I offer this solution to those of you who feel more
strongly about it,

In the program, two main variables are used: NEWLINE is the
address of the first byte of the current line of the "new' program
(i.e. the program with spaces and REMs removed); OLDLINE is the
address of the current byte of the 'old' program less the pointer
to the current byte of the 'mew' program (which is stored in Y)
i.e. NEWLINE + Y = current byte of 'new' program; OLDLINE + Y =
current byte of 'old' program.

The methed used is to transfer the program byte by byte, not
transferring spaces or REM statements. Im a sense, the program is
transferred back into its own memory space, but it will take up

188

11 further bytes of
the 'old' line to be passed over: OLDLINE is incremented but mot Y,

the 'new' line byte pointer.

(FLAGREM}» is set

AGREM

Z Sl STy onr o S EA0 i oitl > 2 oL o¥ =

R Z O 2O AL B ERL TN L ZNEWWRnEZ

DT I G T - L e G0 (B W= T s
WO - o AN UEE Ja-0n E2 W2 EE Zus—2

Odmm » GEOGE JONOE0R YT DO s+l
[siotale] : D D S D T D

4 F
Do CITLE
D O

o
"
[
=
L]
O
=}
=]
>
=]
~
[}]
+
=]
()]
=]
(o]
o
o
=]
e
]
o
[Aa]
=
—
—
=
d
=)
g
-
L3
(=)
=
)
Fs)
«©
&
8]
o
=
%)
+
[y
=
+
e
O
0"
"
[
—

time that a space is met or (FLAGREM)7 is set.
to one if a REM has been met. This will cause a

LISTING 10.4

ISP D D

et v v vt ed eyt i

telele]

i

+

= w W ow

W E=Z z Z
ll L= LIy ey
SO0 B0 gl
P _WRos ADADZ
F i, T > Z B IO (0 _Jo—
#LOWT LIRS Q0 I0 I

189

EWLINE), Y

JA0JOWD>Z S
o010 A=l

oGt G (WO Z - < - E-C OO OO0 QLI OO DG
ZULE L ZNZZZ Z 0> T ik iQe0ZZ_1 OO0 Z ZO0WE
o0 LT IO LS 0 T UL 0
2 [alelaleloralete sl dlelersiolaivisla ulniele ol
A B~ DS S-S D0 St G IO T Cors G TN T 0 e
WA o o o o e S I I TIOEIN0AG 006G 000D

720HNE RUDTES
TROBED LOOFE
740 . FINISH
7900DA NEWLINE
TEHOULC
T70ADC #2
ZEO8TA L1
790LDA NEWL INE+1
gO0ADE #0O
BI06TA &13
BZORTS
0. MYEMEM
8401 DA (OLDLINE) , Y
8505TA (NEWCINE) ;Y
SLOINY
S700MP #0D
BBORTS: IMEXT

The details are:

40-90 Put address of beginning of program to be
'compacted', into the pointers.

110-120 Set the 'REM-found' flag to zero initially, at the
beginning of each line of the program tc be
compacted.

130-140 Move the high byte of the address from the 'old' to
the 'new' line.

150-160 |f this high byte is &FF, the end of the program is
reached.

170-180 Otherwise, move the low byte of the address and the
line length byte, from the 'old' to 'new' lines.

200 Put the current byte of the 'old' line of the pro-
gram into the accumulater.

210-220 If FLAGREM not set (i.e. bit 7 = 0) branch to 280.

230-240 Otherwise check if end of line, and if not, branch
to 430.

250-260 |If end of line is reached, move &0D into the 'new’
line and always branch to 480.

280-290 Check if space, and if so branch to 430.

300-310 Check if REM token, and if not skip over to 370.

320 Otherwise reduce 'new' line byte pointer by one, so
that the colon before the REM is written over by
&0D in lines 250-260. If this is a full line REM,
this decrement is irrelevant, but will be performed
anyway.

330-360 Set bit 7 of FLAGREM and always branch to 430.

370-380 tMove a byte from 'old' to 'new' line, and branch to
480 if end of line is reached.

390-410 If quote met, branch to 690; otherwise go back to
200.

430-460 Increment the pointer to the 'old' line by one and

return to 200.

130

470 Routine when end of line reached,

480-500 Reduce the 'new' line byte pointer by one (it was
incremented unnecessarily in 860) and transfer to

the stack.

510-520 If this pointer is 3, a full line REM was met, sc
skip over update of NEWLINE by going straight to
610.

530-540 Store this pointer as new line-length byte in the
"new' Tine.

550-590 Update NEWLINE to beginning of next 'new' line.
610-670 Update OLDLINE to beginming of next 'old' line.

680 Routine entered when quote encountered.

630-730 As long as another quote is not met, keep moving
bytes from the 'old' to 'new' line, checking for
end of line at each stage. Return to 200 if another
quote met.

750-820 Reset TOP location {&12 and &13) to point to top of
the 'mew' program, and return to call.

840-870 HMove a byte from the 'old' to the 'new' line,
increment the 'new' line byte pointer by 1, and set
Z to 1 if end of line reached.

10.6 PROGRAM 5: MEMORYHUNT

Qur next program searches any section of memory for any set of
bytes and displays the addresses (if any) of their location in
that section of memory.

It is part1cu1ar1y useful if you want to analyse the workings
of the BBC micro's firmware. Used in conjunction with a disassem-
bler (there is one on the first tape available with this book] it
offers a powerful tool for understanding how the interpreter and
operating system work. It differs in its structure a little from
the rest of the programs in this chapter in that it is a mixture
of BASIC and assembly language. We use BASIC to perform all the
inputs, error checking and initialisation; and we use assembly
language to very speedily search through memory.

LISTING 10.5

1OGDSUE “40:# EYFUGOTO 1001M"

20YDULZ PRINT"?"Do you want to search for a string,"?
'some machx code or sone assembly"®'code (S5/M HJ"
\095 GET$ Fos="A"THENPRINT" " "Input the assembly code
in 1ne ?Ogn"ganh1q program. When vou have"*"finished

40IFA$-“S“¥HENBOELSEIFQ$\ MU THENSC

S0INFUT"How many bvtes .BYTES? PRINT"Input them one by

T

ane in order.”’"Hex is assumed so do not prefix kith &.°

5OFORIA=1TORYTESY: PRINT VBV TE 1 BTR® (17) 11 INFUTAS: 7 (L6F+1%)
=EVAL ("% "+A%) s NEXT

7060TOFC

BOINPUT "What is the string",A$:FORILZ=1TOLEN(A$):? (REF+I%)
=AGC (MID$ (A%, 1%, 1)) NEXI

191

"
-
P

.
s this

) " Lt
i W8 3 t
PR I = B
m.n" .,H.P_u il m.L - = WP.... o &
- Zye @ @ G L Zeld
z TE I }o# L wak
- O wwmyp <D ol W
: ALl S s ek
m i =Y % oD i
5o BEOsa oo EZ O MUR
—~ & Gogo L . ~ #sBE g
w c Tt # Fozr oo
I =D s cg Wpuiian Lzl
L oo+ L. PO TN pwiok
8 = cE, g So0uEr, 6L
L2 =T gy FUeeEol gy
EoLooooouce gl dodazh
C o "I 3ol JgneElndis
woo @ el TEDSSepU
T 0D RAg DL NSNS
Lo e no¥ LT Zseie®
0 2 TEL 5o LapZaN>S5oaEC
Lo=E 3 %o 5 NN ESS LZT
Lol ECT Swl & nLozdgipo—ow ~
o I Y] —
> Cin_gon L@ zBLTRSE el
S DDTLW g g B el
o2 oot B0 s g Wbl O30
Eoa UFEe 5 G,° #3-4CaR LoTe
0 @ MG Ty S Dgalvi LIS -
LE e, mrg T T Coem HOETD . >
=z EIn 3" T gepd.T do - - —t -
— WIZ B I e Dl D) + i + - -~ -
I = Tl d-pz , g - g0 Cdep LF OO0 [i Wi o+ i +
P : - ~ ST BT it U+ & Bwin w = 0 W ow
i -y T g i v} AL B £ 4 0w
1 W &mIT T o & I Ol < 0= & g &
i X Ik = L = 03 LT @ O T [eT[@ eT
Lt I =00~ 0O 4 00 r I OIQ I Lo O THI|
e B L@Ea W b i WL) TOC L WZ &~ 4 Laodo
E C ¥ CdESLEZ L EQ LW T~I = o i inety
S L Uil Epiiyye e el O = el SRACHD-0 DWHOnWOnNG Ue Ionhd £SO Wdawodar >335 ERG T Lol
SO O g o BN R ltIOMDETZ0 0 NE e Bl A -SE O% & NZOEEL O —ei ZETETH
w3 = E w o I Z B ED oy Z Wi C I O Z = [o 5

FUZDER U= D e mi e ¢ 2 8 I - GO - WO D G S0 > DWW O I L G O - OO OO - I G > DT C e
>0 COEZ TNy mih 2 ZOVE L THC R $OO 0N NOW_ 07 Z s Z O g il 2 Q- OR Ll > T 00 20 U7 e E 0 I L oG
e O T T (T s IT)n/._u.).Tj i ER L i ..\.MIBIDB afdd =

O Dooco T TS 20T o0 To0s SO o ol osoTooDooleloo0oDTO0oT oSSO0l 0000000000000 ED
SO~ (dHe R B & = CINS NONQOC T O D S G) D B SN A T -0 D D CEF I F1-D 0 S TS 0 DR
T e S TR T S o S o] B T e B e L TR ety Ty S MR N R e R N S M N SN)

OSWRECH

X

NVT

L FUOO0CONIoD AT N DN <D

The program is in Listing 1C.5. The BASIC part is from 10 to
230, The idea is that we can input the bytes simply as a series of
bytes (lines 50 to 60) or as a string (line 80) or as assembler
mnemonics (line 30, and 100-140}. In this latter case, we must
leave the program to input the mmemonic code in line 130, and then
re-enter at 100 using the programmable fg key. The machine code
routine will have to be reassembled (GOSUB 240) in this case to
deal with destruction of dynamic memory caused by the re-writing
of 130. In the case of bytes and strings no re-assembly is neces-
sary and we may continue to re-run the program (from line 220)
without doing a GOSUB 240. The rest of the BASIC program sets up
all the values required by the machine code routine, deals with
the various input Tequirements and then calls the machine code.

Lines 270-1030 contain the assembly program. The program is .
written in such a way that if we are searching for the string ABA
then it will be found twice in ABABA. This is the best strategy
for a memory-searching problem of this type. The code to be
searched for is put in &70 onwards and BYTENUMBER contains the
number of bytes. There are three variables used for the searching
process: MEMTOTAL contains the total number of bytes to be
searched. SEARCHBASE contains the base address of the memory to be
searched. It is used in conjunction with the index register Y, and,
employing indirect indexed addressing the high byte is incremented
every 256 bytes. MATCHBASE contains the address of the current
section of memory being compared to the code searched, where the
first byte of this section is the same as the first byte of the 1
code to be searched. I

The details are:

270 Print a new line to guard against overscanning on

ordinary TVs (which tends to obscure the top line}. i
280 Set pointer to current byte at zero. !
290-300 |f fewer than 256 bytes are to be searched, jump to

390.

193

- welm e

320
330-340
350-370
330-400
420
430-470
h90-~520
cho

550-560
570

580-630

650
660-670

680-710

720-740

750
760-810

820-840

850
B6o-910

See if first byte of code searched matches current
byte {at 490).

Loop for 256 bytes.

Increment base pointer to memory searched, decre-
ment byte total and return to loop if high byte of
total still not zero.

If low byte zero, finish.

Again compare first byte of code to current byte
(at 490).

Increment pointer, decrement low byte of total and
continue until zera, when return,

Compare current byte to first byte of code looked
for. If it matches, go to 540; otherwise, return to
the searching of memory.

Set pointer to code looked for at zero.
Save Y on the stack.

Treat ¥ as a pointer relative to current match
position and set to zero.

Store address of current match position in MATCH-
BASE.

Increment pointer to code looked for.

If all bytes have been matched, jump to address
print-out (at 760).

Otherwise load next byte of memory, compare with
next byte of code looked for, and if equai loop
back to 650.

If not equal, match unsuccessful. Restore value of
Y before entry to MATCH routine, and return to
searching of memory,

Routine to print out the address of the first byte
where match achieved.

Display high and low bytes of beginning of match in
memory, followed by a space.

Restore the old value of Y prior to entry to MATCH,
and return to searching of memory. This ensures
that if we are looking for, say, ABA then it is
found twice in ABABA. If Y were set to the position
immediately following the end of the match, ABA
would only be located once, since the search would
resume at the beginning of the second BA, instead
of at the beginning of the first BA, as here.

Routine to display byte on the screen.

Save byte on the stack, move top nybble to bottom
nybble position, and go to conversion routine (at
970).

154

920-950 Retrieve byte from the stack, set top nybble to
zero, go to conversion routine and return.

960 Converts a single hex digit to ASC!| and prints it
on the screen.

970-990 Using BCD, add 90. If digit is between 0 and 3, no
carry is generated. |f between A and F, a carry is
generated into the top nybble and thence to the
carry flag (e.g. 0B » [1]01},

1000 Add L0 with carry BCD. For 90 to 99 this gives 30
to 39. For E]OO to [1]05, this gives 41 to 46.

1010-1030 Clear BCD flag, output the ASCII digit and return.

10.7 PROGRAM &: MC-MONITOR

When working in assembly language or machine code it is very
important to be able to monitor the progress of a program, especi-
ally if it does not work in quite the way you wanted it to. What
is required is a program which will at least:

(i) display all the registers - SP, X, Y, A and each bit of the
flag (status) register;

{ii) display the contents of the stack;

{(iii) display any memory location, but especially the zero page
locations from &70 to &8F;

(iv) allow you to alter the X, Y, A or P registers or any memory
location; and

(v) allow you to go to any subroutine and return to the display
in {i)-(iii} above.

In addition, if it is to be an effective debugging tool, it
must allow you to jump into it from the program you are trying to
debug, and to return to the same point in the program when you are
ready.

This is the purpose of our last program, shown in Listing 10.6.
It is a very much bigger program than any other in this book,
occupying about 800 bytes, and it is assembled into the top of
memory using the HIMEM method (see 2.5). If you do not already
have the program on tape, type it in and save it on tape. We shall
look first at what the program does; and then at how it works.

LISTING 10.6

LOHIMEM=
Z2005WRC

= =0
$TE SRNCH=%FFEQ: DSNEWL=4FFE7 2 1SASCI=&FFE3:
HIM %= TQ 2 STEF 2
S

TI%

ART

OO LA
< TIXUoMMNT
DI/ W

195

e

= J -

> > > o

i w i ow
= P e e -
! L ++ 4+ 1 1 o
e 4 O L S) I T T
I 0 xu IIX =k I =g I > I UgeE U0 ULk FeeE 2 O 0 F
[} & 4y O0L x =ExD 00 0 - 0 32xS 00 D03 =0=xD € & & ¥ =Z
r = ol @il Wil oI SASE 1 © oo- F Rmwd 40 JJ8 WhEuf T = £ DOl
2 i n SxoIIZ QUZFHCISE SxNZ 8 & MEM B QZFE EENEEE AR O Z Z9ZIN00
[T e] Ol oW =0~ T30 o —iledt) W —07 oblded G Ui~ DOoieildid w2~ ZeiiGeOi
—CHD * FhS L0000 CI-D#D#00 £ SIHD @ oSH-d #N#00 NO#DREEH#HEEE o#OR0r—seQ#0# 0% Z -

3 T #* n s I i Z < =
Tt TOV—eTr 1T (1L > >< Gl <L 05 <L i Qi >l O > i <L > =L < LA <L = L€ X b I LT e <L L SR P L CLT O b (> TR L (20 (30 O3 Ly
T T ICGaHGMs 1O LI ZIRRAnNNNZ 2 Z0a0ainmoic ZOQMLEZ 2 oS in i Taoas W Z oo A= 0EnBaonE W WELHIF 20
YO T I o S T I 1 o T St SRR o W LT Lo e e T L O e e W W T T o MO N e [s Yo O Ly OB 611 R[0T T (L T O
Y elele e lutnlnialvinlolalele nlalnieinieteralnlnluiainielaletelnlalslelslv laeln nra e ialelaloiele i, alulalsl b uieluiele alelele [elvielsle sl lsluiolviee sw
et DI NG O3 0 o TR 30 OGN O i GO et T I I DN DO et O SR IO QO vt O 5O - O O I IO D0 S CA 2GSty
ittt gttt DT C O T TR IR TR I I s s s s S = = A U ISUIN N3N0 0O -G O PSP P P s P S I TG IR0 R 06 Dm0 o 02~

T a Bl B rra

196

L []
T_it =
CD(\. —
T i~ia U=
200 o
N Z T Zod aqZ
Q0L =#0

o

g
e~ — 4 E et et -
= = 7 = + + 3 ++ ++ + +
X < 0 m [%S <Y O o o
=z = = 0 Qb |} Lo Q9 [
It Fint s et Vet 0O O LT | S o a QO

OO a e -l - LW 103 T tuld
M-R-mr-NEorT—Emohln EEF-Iriz FX-E
==L i—<L T - Lt Z Ol SOl LU O >- L
m#M#G#R#CMNBMIW_&NPMMMBMHHNEV.;MM_H_M

O >
N R TTo A Us A TR T L A et e VR Ty v VR VR B YRR o (e {1 ATEP VI o e ol v bt 1 4 1 b 3 B
NZEZOxUE 2T I IO E W E L Z - k0T =2 E 00 WE D=1

SO I R A OROGO LGS 05 M S LU L e .
s s e et tta Ty e ta e tatatate!

Y

F Dumm

[
1T
[TR
T
Lo
N

B~-TEXT)

T
T

1
x5 g
wi Ton
= Oo%

W T Z a5

T S

> i

>

ST <L 0 Ll O =2 o L GHD
AnLnnLLMSHRDSGSW%TNNMEIMEIMENMNRS
3

[etelvielelalalotu slale alele lwlnle vl

P T
o ~0 ~-h 0
0 0 Ow @
wo o oo NrE3
quw 4w <dw I-0on
#r W HE HOOO
= > L]
e TR0 O 0L G WL

O 0D O 25

B A ot et e T e e tal et wtntel e folat o nie tuTe e sntu tuy e vis tolan e I e te] ; > >
D (G S C o D DT St A T T -O P 0 vt I (D D0 S C IO O ot
I10-00-5-0-0-8-00-DI P Pl

FRp IO Q0 0 S O O 0 St (4 I -0 P 000 2 A
OO DR O O O o Do o e o ot et et vttt Ao bt L] D S TAC-ICA AT CEC R IR IR S T N I o S o ot 8 e =HIIENWILINI]
1

)

el i

11

ket +of et el

~
o]
—

198

—
— >
+ — -
[N £ + & - hs
. P O T I > > o 4 a0] > >
AL tr T 3 = i E E N R o w (7] . E £
i » Q) 2 0 (] i = E E o r I I I] [=]
= - & & QL2 o @ lanm] = g O - Qo T O 0 -+ O 02 JdZ - 04D NS
> Lo = QUi — -4 = iz BILITS Ja R A TU e S =l e a=Ia i
et} oM W o o 8 J0 = iL [T el OSWSLEIFIG OOl I g O [=3UTid 14
Z —= 0 I WO~JulNE -~ Dk o a0 Z L L2 Zai i D eirteitei 2ot (B =) D a0
bt omerN_mﬁn a RW#DH%D#P NU_ LEZ OmId m":.. - RM#MI#D#D#D#D#U#DWQ#M <L DM O Mun

™ = > -
T o= D i DT T G 3 2 T G e - LA o < X e ST LT ST DT i L D0 L L (S G (> O W= T <>~ 0 Wi ST <ThaleT
T > -RE RN, - ZOMUNL LG 2156 I ZMEC_NNroTral-T . - Je-donn Ui Gror OrQONE ZIE X Z 12y ZraTorn
T e Tt 11 B R VI N L TR e eI T To e L L T o SO T (70 PN TS0) I S Tl T T o T v e I S Wi | R |
[efalelnleTelnlatatelstelalnialtoluln etaterelaielelalalaeia arerslels alaleteialaloelateleLnieleioletole e e lelelniale ale i niniaw i eleloLe le S el e o lele)
A0S0 St S B O R0 St O I N0 8 St O I I D D O o (M 1) O 000 QO N ISE U LS D00 Ot T4 IS UG~ Q0 0N G ot 4 IO (00 O (NI N0
RIS R GO I O CH B0 O~ O O O O (R SR B D O DT DD Dt ettt ot et bt et CU L LT CACE O A TR R A S0P ISt o b s o S P HNIOW
R T T e i g T T T o e B R R Tt T A T T TR I TR TR T TRl T T et T [[T AT [TR AL RN TR T

.
£
€
- - —
=} —— =y + + —
> > ++ ++ — + > o~ >
- E E = O o S s) 4 - I 8] E E &
Jome O ey €U I I QT Ul L0g0s E Ol r o z U Z E E E
2 42 O SO OS5 U 0 LEm Q0 02 00red 4 0= a0 Qo 00 5 =3 =3
- e d CIRTrGTITor Lo W il R I < iJ 4 oo Ia o 1] o
EELOE OE B O =0 >IERGE DL EEFEFNERQ O EZ b > E xQ T 1 25U]
SADWN ol DSOS SN WS OWOdi-wne Z LW L i U woo 20 00 Ol o 0
OO0 #E D _HT_I#0%0% JSITH0 FFOFFEFFFL o~ X0 W & X o E TJ# C# 4 O Il #* <
= = . R B B i b ~ = TIIT E_ - > i x o
NS LY TL > L - bl i U T 4 T ar > LT > 10 Z LI = > - L - T L T i1) 3 <L e W >l S <TG IO LT
IT—ONEQUZ I Z - O EQiEQioNOUOE QONZ ON=ZZ 27 2 ZIUZWZ 00, - - < 00NN -G Eed e lea T —TF Ol it T T
L v SO i e i dn o s e s JdOnOmran SN NG -0 I A0 <0 o0 W00 <000 0|
elwrelnletelaletatalaleelotalealalalotainialelelviaieialelelelule o eluln vinlwinleinlniaTelale e lalatuisTolelwiato e alololatele ol lase aie jole oy e te do o
o -G QDT St IVISH IO 000 S C A It IO Q00 St CAl It -0 QOEH S Gt 00 00N Crome Ot -0 (D0 St D) 000 M0 S Dt) O 00

=00 S
ARG ~0-00L0~0 G QG P T P P B A P P 00 D 0 0600 D0 QG O~ G O P B O OB B S S D O S G D bt bt ettt et ot GO DI CICCAC I IR VI LM E1)
CIEAC A CACACAC T T LA AT ACALACACA TATHEA T AT A AP AT AP A CACA T WA IR AR PRIV M 1 s b VIV IV T)

[=4]
(=]
L]

* ,
1
X ARG o o
* i ZEEZ o
= T F o @
* U uen b
» U — o g5 ¥
*< S 008 n
= S88e® 2
% SoBEE
m.r\.. *m @M m m Y m W)
= N g o
~ {0 a - B ﬂ 2
= o0~ E e @ owd [
o= H i < &8¢ © W.M -
M~ Ear 0 Sw g w< o
- T T o~ — PR
L o R I oh
Y D~~~ OO 3oL e L]
i iz T = x = @% ol
> akFEt o E LS LB
Z Zhees T oo a2 oo =
~ u0on & deAn O o
= M= v BL M .1mr.1t o
e Whyarsd x0 K — =4 Pk o~ 7]
T g=ud8 = @
T zul s > %oz |~ a9 5 3
=D ~0 « ¥ Epck # oo S e O o
o aL fe3< 3 Bl < O =g =
T QeI v WU E ~ P ek " N
okl Uy & LsELy -
FOZRLWT 3T W H2RE§ o
WO L) * gi e o]
~ W T % B2 +] 7S sm ﬂ
= E oW STl x0T I eﬂemi =
< Z Mogds R %LpE s ok o
— it fr2z =g s ws M g ~F —_“oTe >
: = T U s 5o 2
£ 1= bz WRE TR P
: oo 2 S SBA By BroBE 8
i = I =i X Lz 2 Hikibs 8} 3 Y]
i = 3 MEM wm HMW T [gy Wik Ze Ul e hoame X
S o> &3 i W ClE T uide > ui Omipue-T FZZZZILZ Kupl W Pl o
sz, TSUg et d Coepiopo, TRRREOL SR BpRet O
3 S0 £ g B ToORQLOE Sl IRZ 3 IDNEROSD sl S Deis e L 3
T e T b i W= WA SO o T B Tt | I
i T N G L T L T > G - (5 LW, s T Z e A Ll = — Gl I S owB D
m%%mmmﬁmwm_wmmw%mmmwmsmmﬂnﬁTIDSSPEPLENstLSTISMND.SMNRTGEEEEETEEnRrr.m_w_m_ e TS eE e
e T MG TR oy FMBUMhmummmwwmth:.mmWMMﬂﬂ.UWMWWFM.n.W..ﬂ.OD 55438 3
TS DL T ain e} ””“ el Faplwr Lt D T D L) .A. s, fm.l..f..f-..).(x.l. '. L lalc o .."llu.! - ;
=40 ..mmm_fmﬂmm.m i (1H.,.K45&78Womo.hw&m%%m%m?owa%ﬁ%%%W%%mM SEgnas ~ g m_cm m. m
I ot BOG-D B 0-0-3 NG N s tas 2 ! & TN in i ere i eretare are 3
MMM&& cbfﬁ%%&k.ﬂﬁﬂ?f? R e et e A A SR it S Fauog

ter visible. We have not displayed the program counter for reasons
1 shall explain in a moment,

The contents of &70 to &8F is the final display, followed by
the menu. € is used in conjunction with the JSR S% entry, which we
%ill consider in a moment, E returms to BASIC at the point of a
CALL {(but not a USR) imstruction. M displays any section of memory;
and A allows you to alter any section of memory. R allows you to
alter X, Y, A or P, G allows you to go to any subroutine you like.
Pressing any other letter will do nothing. However, you can press
CTRL-N (page mode on), CTRL-O (page mode off), CTRL-B (printer on)
and CTRL-C (printer off) and it will be accepted,

Let us now look at M, A, R and G in more detail. Press M, and
you are asked for the starting address of the 32 bytes to be dis-
played. This address must be given as 4 hex digits (so that even 0
must be given as 0000}. If you type in any number of digits apart
from 4, an indication of error will be displayed: try it, If you
attempt to input a non-digit it will not be accepted (this is true
of A, R and G alse): try this too, Finally, if you realise you
pressed M by mistake you can return to the display (from the
registers onwards) by pressing carriage return immediately. This
will work with A, R and G too, Try some addresses now, and display
their contents.

Pressing A will allow you to alter the contents of any memory
location. Again 4 digits exactly are required for the address, and
2 for the contents. Try 0070, and alter it to 8A; then 0071 and
alter to A8: and then 0072 altering it to 60. Notice how, if it is
user zero page you are altering (which is the most usual), then
the altered contents are shown immediately.

Pressing R will allow you to alter X, Y, A or P. Let us alter A
to 50, X to E3 and P to 81, Notice that these register contents
are only activated when you use C or G. Let us try G: go to 0070,
which now contains TXA: TAY: RTS and see what happens. Is this
what you expected? Ore final experiment in this phase: alter 01FE
to CF, OLFF to 78 and type E. Why does this happen? Press the
break key to get out of this, and notice the effect of line 4020.

Let us now examine how we can use the monitor to aid debugging.
Load Listing 10.5 into the computer now (make sure you have a copy
of Listing 10.6 on tape) and insert this line: 335 JSR S%. Type
RUN, and search for the bytes E® 00. You can follow the program
through LOOPL by pressing C after you have inspected the display
in the monitor: if you want to, you can change any locations you
like, In this way, you can easily see if the logic of the problem
is what you expect it to be.

On first entry, the stack is B3 8E; this holds the return
address to the CALL at line 210 (which is &8EB4). Zerc page holds
the correct data, with MEMTOTAL and SEARCHBASE both &8000 and
BYTECOUNT with 2. At this stage, MATCHBASE is immaterial, since
the accumulator indicates 4C as the current item of memory. Press
C again: now Y is 2, and A is IF. Press C again twice giving Y:3,

201

A:80; and Y:4, A:4C. Now press C again and lock at MATCHBASE: it
is 48004, so E9 must have been located here. A is 4 since it con-
tains the old value of Y (from line 730). Type M and then &8000 to
check the operatien is correct.

Now use A to alter &8E to BE and &8F to DO and use R to set Y
to 0l. Press C, and see what happens. There has been a match, but
print-out was too rapid to see; but X is equal to BYTECOUNT and
this is the clue. Use M to verify that DDBF and DDCOQ contain
E9 00.

Let us monitor the printout operation now: delete 335, and put
JSR S% at 1005, Search again for E9 00. We enter the monitor when
MATCHBASE is &864A. Let us examine the stack: EA 17 is the return
address to line 920; 86 is the high byte of the match (put on at
860}; D5 17 is the return address to line 780; 4A is the value of
Y at the beginning of the match; and 93 17 is the return address
to line 330. We note that A contains 38, the ASCII code for 8.

C again puts 36 in the accumulator (ASCII for 6). Press C twice
more, and check the registers, especially A and P. Continue in
this way to monitor the printout of the address &B673.

You should now have a good idea how the monitor can help you to
debug programs. By putting JSR S% into sensible points you can
quickly determine a fault. You will find this monitoring process
much easier if you have a copy of the program being monitored (a
printer is very useful in assembly code work, but copying out by
hand is net very laborious except for programs of the monitor's
length). Indicate by pencil on your copy where your JSR S% has
been put, so you can follow through the logic. Sipce putting in a
JSR 5% upsets the address location of the program, there is little
advantage of following the contents of the PC through, and so
little advantage in displaying the PC. You can, of course, use
more than one JSR 3% at the same time, but in many cases, you will
find it easier to take each small section of the program separately
with just one JSR S§%. However, there are times whem you want to
single-step through some small section of code, and this is easily
done by putting a JSR $% after each line you want to monitor.
Don't be tempted to single-step through large sections of code,
however. It is a very slow process, and is not usually very reveal-
ing. By using your intimate knowledge of the program being de-
bugged, you will be able to pinpoint the area where monitoring
will be most efficacious.

When you write assembly programs of even moderate complexity
you will often find that they don't werk first time! The break key
is a boon at these moments {which is why line 4020 programs it to
safeguard the relevant locations). The monitor too will be very
useful to you, but it should not be used as a first resort. There
are some simple checks you should always make first. In order of
regularity they are:

(a) Missing off the # in immediate statements e.g. LDA 10
instead of LDA #10,

(b) Missing off the & for hex e,g. STA 70 instead of STA &70.

202

{c) Forgetting to clear or set carry in ADC or SBC instructions.

(d) Forgetting to save a result after addition or subtraction
e.g. LDA &70: CLC: ADC #1: BCC NOCARRY: LDA &71, etc,
Here, we have forgotten to put STA &470 after the ADC #1,

(e) Forgetting that INC and DEC do not put anything into the
accumulator,

(f) Forgetting that CMP, CPX and CPY affect the carry flag.
(g) Using BMI and BPL where BCC and BCS should be used.

(h) Missing off the NEXT in a two-pass assembly {so only get-
ting one pass).

(i) Not allocating enough room in DIM START statements,

If none of these are the cause, then is the time to use the
monitor. Pay particular attention to the indexes in arrays and in
indirect indexed addressing: monitor code containing these first.
Be patient, systematic and sensible and debugging will not take
you long: approach it randomly, hoping for good luck, and it could
take you ages.

Let us finish now by looking at the details of the program
itself, Notice in particular the use of the function at 4040 to
4070: its purpose is to allow us to use multi-outputs (here there
are eight) without having to calculate their lengths. We could
change the contents of any of lines 3910 to 3980 and no other
changes will be required to the program.

The program is written so as to be as self-contained as pos-
sible. In particular, apart from the stack and registers, no
memory locations outside the space of the program itself are used,
Hence, the monitor cannot corrupt any memory locations, a very
important consideration. Omly two system routines are needed
(OSWRCH and OSRDCH), and since these are provided on all computers,
the program can, with very little modification, be used as a moni-
tor on any 6502 computer.

The program details are:

70-120 Put registers on the stack in the order PAYX.

130-140 Clear decimal and interrupt flags (if set they
will be re-set when P is retrieved from the stack),

150-160 Clear screen.
170-180 Put heading ''STACK".

190-230 Save adjusted stack pointer on the stack (adjusted
by 6 to skip over the four pushes in 70-120 plus
the two byte return address).

240-250 Point to last item on the stack before entry to
MONITOR, and put in X register. (Remember that SP
points to next free location - hence the need for
INX.)

203

260
280-350

370-390
400-520

530-660

670-690
700-760

780-810
830

840-940
950-930

1010-1300

1120-1170
1180-1190
1200-1270
1200

12190

1220-30

1240
1260-70

1290-1360
1290-1310

1320-1340
1350-1360

Jump to 370 if stack empty.

Otherwise print out contents of stack in hex.
Leave three spaces between each item.

Qutput a new line and print out register headings.

Print out contents of SP, X, Y and A under head-
ings.

Output 8 bits of P in the order most significant
to least significant. Prior to line 600, the
accumulator always contains ASCII| zero. If € = 1,
this is replaced in 610 by ASCI! one.

Output a new line and print "ZERD PAGE".

Pass parameters to subroutine MEMOUT (at 2680}.
These will cause 32 bytes to be output from loca-
tion &0070 onwards.

Print out menu.
Get a character from the keyboard {at 3820}.
Allow through page and printer contrel codes.

If E pressed, set stack pointer to point to return
to BASIC {i.e. first two bytes on the stack} and
return.

If C pressed, restore registers in order X, Y, A,
P and return to calling program. (1030 throws away
the adjusted stack pointer put on stack at 190-
230).

Branch to relevant section if M, G or R,
If not A, return to 830.
Coding if A pressed.

Go to 'get address' routine at 1870 {used by M or
A).

Put low byte of address (stored in X after return
from MORA} in low byte position of line 1264.

Put high byte of address (in X from BYTE at line
3040) in high byte position of 1260.

Get a byte from the keyboard (at 3660).

Put keyboard byte (stored in X} in address defined
by 1210-1230, and return to zero page display etc.
Coding if M pressed.

Go to 'get address' routine at 1870; store low
byte in 2820 and in 2740.

Store high byte Tn 2820 and in 2710.

Display 32 bytes from the address specified in
1290-1340, and return to the menu.

204

1380-1510
1380-90

1400-1410
1420-80
1500-1510

1530-1840
1530-40
1560-80

1530

1620-1720

1740
1750-1770

1780~-1820
1830-1840

1860-3890
1860
1870-1900

1920-1930
1940

1950-60
1970-2000
2020-2060

2080-2170

2180

Coding if G pressed

Go to 'get address' routine at 1870; store low
byte in 1500,

Store high byte in 1500.

Restore registers {as 1010-1100).

Jump to subroutine specified 1n 1380-1410 and on
return go to the start of the program.

Coding if R pressed.

Print out "WHICH {X,Y,A,P)7"

Get a character from keyboard {at 3820), If carri-
age return, jump to display via 1850.

Put stack pointer plus 2 into X (plus 2 to skip
over adjusted stack pointer).

Registers in stack are in the order X, Y, A, P.
Increment X to point to reilevant point on the
stack or else return to 1560.

OQutput the letter X, Y, A or P typed in.

Save X register on stack {used in INBYTE}, and go
to get a byte from the keyboard.

Achieves the result X = A, top of stack + X.

Put new value of register {now in A) in relevant
position in the stack (pointed to by X set in
1620-1720) and return to display.

Subroutines.

The 'get address' routine used by M or A,

Save return address in lines 2120 and 2150. This
allows stack to be used to pass parameters on
return.

Print "ADDRESS" (L4 DIGITS)?"

Ge to routine which puts digit plus CR onto stack
(at 2190}.

If five characters, input is OK.

If just CR, pull off stack and return to display.

If there aren't five characters, pull them all off
the stack, signal the mistake (at 3570) and ask
for address again (at 1920).

If five characters, throw CR away from the stack,
output a new line, translate low byte of address
from ASCI| to hex (at 3040}, put return address on
the stack (stored from 1880-1900) and return.

Routine to input a series of hex digits in ASCI|
from the keyboard,

205

2190-2220
2240
2260-2300

2310-2340

2350-2360
2370-80
2400

2410-2460

2480-2580

2600-2670

2680

2710-2790
2800-2890
2910-1980
2990-3020

3030
3040-3070
3080-3100

3110-3160

32170-3210

3220-3280
3290

As 1870-1900, but store in 2530 and 2560.
Set digit count to zero.

Get a character from the keyboard. |f delete or CR,
skip over check for a hex digit.

If less than &30 or more than &46, cannot be a
digit.

if less than &3A will be 0 to 9,

| f more than &40 will be A - F.

If character is suitable {i.e. it passes tests in
2260-2350) print it out (giving a new line if CR).

If delete, throw away last member input to the
stack (2440 checks that input not empty). Decre-
ment the character count (in Y) and return to 2260
for next character.

If not delete, increment character count. [f CR,
return from subroutine after restoring return
address. Otherwise return to 2260 for another
digit.

Routine to output string whose starting address is
indexed by X. The CR [s output also.

Routine to display 32 bytes. Starting address of
bytes is passed to line 2B20 prior to entry. The
low byte 7s also passed to 2740 and the high byte
to 2710 prior to entry.

Display address of current 8 bytes followed by a
colon and a space.

Display current 8 bytes, terminated by a new line.

Increment low bytes in lines 2740 and 2820 by 8,
incrementing by one high byte of 2820 and 2710 if
necessary.

Repeat for four sets of 8§ bytes, output a new line
and return.

Routine to convert a byte in ASCII to a hex byte.

As lines 1870-1900 except store in 3230 and 3260.

Put top of stack in X (this is the top hex digit
of the byte), and next item of stack in A (the
bottom hex digit of the byte).

Convert bottom ASCII digit to hex digit (at 3300],
shift bottom nybble to top nybble and store temp-
orarily in 3200.

Convert top ASCI| digit to hex digit, combine with
bottom digit already at 3200 and transfer te X.

Return.

Routine to convert single ASCHI diglt to hex.

206

3300-3320 If more than &40 (i.e. A - F) subtract 7 e.g.
A (= &41) + &3A (= &30 + &0A).

3340-60 Subtract &30 to give hex digit in accumulater and

return.

3370-3550 Displays byte on the screen (see 850-1030 of
Listing 10.5).

3560 Give visual and aural indication of an error.

3570-3630 Move cursor up, display a question mark, output a
short bleep and a rew line, and return.

3650 Routine to accept a single byte from the keybeard
and convert it to hex.

3660-3670 Print “ALTER TO(2 DIGITS)"

3680 Get a series of hex digits in ASCI} from the key-
board (at 2190).

3690~3760 If not 3 characters, pull characters off the stack,
indicate error {at 3570) and go back to 3660.

3780-3800 Otherwise, remove CR from stack, convert byte to
hex (at 3040) and return.

3810 Accept a character from the keyboard.

3820-3890 Get a character. If ESCAPE, acknowledge with &7E
through 0SBYTE and ignore. Otherwise return.

Exercise 10

(S0 that you can prove to yourself how much you have learnt, no
solutions will be provided for this exercise. That your programs
work will be proof enoughl)

1. Modify RETRIEVE so that instead of putting FF immediately,
it first checks if the next line would have had a valid line number
(i.e. greater than the last one}. If so, it then searches the next
250 bytes for OD, If it comes across any of the bytes 00 to 1F it
terminates and puts FF as before. But if it finds 0D, it modifies
the line length byte, accepts the line, and continues to examine
the next one.

2. Mpdify INTSORT and STRINGSORT so that a flag is set to zero
at the start of each scan through the data, and set to one if any
swop is made during that scan. Thus, if at the end of any scan the
flag is still zero, the sort can be terminated. Do you still need
to check that NUMBER equals zero with this modification? Under what
conditions is the sort speeded up significantly by this change?

3. Modify REMSPACE so that:
(i) it deals with multi-line assembler statements e.g.

LOOP LDA #3: LOOPT LDX #0

207

! (ii) it removes assembler comments e.g.

l LDA H1GH / Load high byte: LDX LOW

{Remember that unlike REM, / does not cause all later
text to be ignored by the assembler, and that in some
cases / can be replaced by a space.)

(iii) it deals with line number references to REM statements.

4, Incorporate the byte-searching routine of MEMORYHUNT into
the MONITOR, with suitable commands added to the menu.

208

Answers to Exercises

Exercise 1

2.

(i) The contents need to change.

(ii) The address must be permanently available, even when power

is off.

3. There is a limit to the number of pins economically available
in a package, Once 40 pins became established, it became very
difficult to produce other size packages. Another problem is
that, until recently, a 16-bit bus would be too slow - however,
16-bit processors are mow a reality.

4, Data can go into memory and out of memory. A memory location is
chosen, however, by sending an address towards it. No address
information needs to come from it.

5. Because each instruction needs to be translated every time it
is executed in an interpreted language. With compilation the
translation occurs just once, prior to execution.

Exercise 2

1, (a) Immediate {b) Absolute

&0D00 &0ODO1 &opoo &0DO1 &ODO2
A9 0E AD 49 7F
{c) Zero page (d) Absolute
&0D0O0 &0DDI 40000 &0DO1 &0DO2
AS 20 80 72 7A
(e) Zero page (£) Immediate
&opoo &o0DOY &0D00 &oDMM
Bs 0o A9 12
(g) Zero page (h) Zero page
&0D00 &0DO1 &opoo &oDON
8s 02 A5 0E

(i} Absolute

&0DO0 &0DOY &oD02
8D 0o 10

209

2. The contents of NUML is already in the accumulator,

Pt = &0DOO
NUMT = &70
NUM2Z = &71
LDA #17
STA NUM1
STA NUM2

&0p00 &0DO1 &0D02 &0D03 &ODO4 &0DO5

A9 11 85 70 85 7
3. P% = &0DOO
NUM1 = &70
NUM2 = &71
NUM3 = &73
LDA NUM3
STA NUM1
LDA NUMZ
STA NUM3
LDA NUM1
STA NUM2

Exercise 3,1

10OMUML =270 NUM2=5%7 1 : NUMZ=%7 21 SUML=%73: SUMH=%74
2ODIM L DO
ZOLOPTA
40.8TART
SOLDA NUM1L
HOCL.C
JOADC NUMZ2
SOSTA SUML
FOLDA #O
1005TA SUMH
110ADC SUMH
1208TA SUMH
130L.bA SUML
140CLC
1S0ADC NUM3
14608TA SUML
170LDA #O
180ADC SUMH
1208TA SUMH
200RTS:]
Z210REPEAT

210

r'——_" B

220INPUT"First number to be added", PNUM1
ZI0INPUT"Second number to be added”, ?NUMZ
240INFUT"Third number to be added", ?NUMI
230CALLSTART
260PRINT?NUMY + ?NUMZ-+7NUME, 256 % ?SUMH+7SUML
Z7QUNTIL FALSE

Exercise 3.2
1.

JONUMLL =270 NUMLIH=%&71 s MUMZL=%72: NUMZ2H=873: SUMO=&74:
SUMI=%75: BUME=%75&

20DIM P4 S0

JOLOFTE

40.8TART

HOLDA NUMILL.

6OCLE

708DC NUM2L

SO5TA SUMD

FOLDA NUMIH

100ADE NLIMZH

1i08TA SUML

120LDA ZO

1208TA SUM2

140ADEC SUMZ

1508TA SUMZ2

160RTSE: 3

170REFEAT

IBOINFUT"First number to be added", 'NUMIL

1POINPUT"Second nuwnber to be added", 'NUMZL

200CALLSTART

210FPRINT256XPNUMIH+PNUMLL 256X PNUMBH+PNUMEL , 65556 K PSUMD+ 2546
*PEBUML+PHUMO

220UNTIL FALSE

10DIM NUML CE) , NUM2Z (3 ,RESULT ()
2OFOR I%=0 TO ZaNUMLOIZA) =8 70+1%
ZONUMZ (Y)Y =874+ L4 RESUL T{IA) =& 78+ I K NEXTIY
40ODIM FA S0

SGLOFTE

&0, BTART

TOLDA NUML (O)

BOCLC

POADC NUMZE (O)

100GS5TA RESULT (O)

110LDA NUMI1 (1)

T204DC NUMZ (L)

1208TA RESULLT (1)

1AGL DS NUML (2

150ADEC MUME (2)

L&OETA RESULT(Z)

170LDA NUML (35

180ADC NMUME)

1208TH RESULT (35

SOORTS:]

ZLOREFEAT

OINPUTYFirst numbaer to be added”, 'MUML

DIMFUT"Second number to be added”, 'NUMEZOO)
aCALLETART

BEOFRINT PALML (O) + TMNUM2 (D), TRESULT (O}

ZHOUNT [L. FALSE

Symbolic representation is:

(NUMT(3); NUMT(2); NUMI(1)}; NUMT(0)}) + (NUM2(3); NUMZ(2);
NUMZ (1); NUMZ(D)) + RESULT(3); RESULT(2); RESULT(1); RESULT(L)

Exercise 3.3

1. LDA NUMIL
SEC
SBC NUM2L
STA DIFFL
LDA NUMTH
SBC NUM2H

STA DIFFH

A mathematical demonstration of why this works may be helpful
to you. In genmeral, for any numbers A and B, A - B= A+B.-B. - B,
where B. is the two's complement of B, = (A + B:) - (B, + B) =
A + Bg, if we ignore the 'carry'.

Now, if A and B are double bytes, so _that A = {AH;AL) and
B = (BH;BL) then Be = (BH;BL.), where BH is the one's complement
of BH. Hence, A - B = (AH + BH + C; AL # BL¢), where C is the
carry, Now, AL + BL. is achieved by the first three lines of the
program, If this is positive C will be one, if negative C will be
zerc. Either way, the second part of the program performs

AH + BH + C as required.

o

2.

10DIM NUML (), NUMZ (30, RESULT (3)

FOFDR I%=0 TO ZapUML (1% =270+1%

TONUMZ(I7) =874+ T X RESUL T (T4) =%78+ 1% NEXTIX
40D1IM FPY%L 50

SOCOFTE

212

L. BTART

TOLDA MNUML (0}
SOSED

FOSBT NUMI2 (O
1005TA RESULT (09
11aLDa ANUML (1)
1208BC NUMZ (1)
1E208TA RESULT (1
140L.DA NUL (2)
1SOSBC NUMZ (2
1608TA RESUL.T €2}
170LDA NUMI C35)
1BOSEC NUMZ ()
1905TA RESULT (3)
QUORTS: 11
Z21OREFEAT

e

COINFUT*First number®, 'NUML (G

A

ZTOINFUT"Number to be subtractedy, 'SHH12(0)
240CALLSTART

ZEOPRINT IRUML CO) = P NUMZ (), TRESLILT ()
FOEOUNTIL FALSE

Exercise 3.4

1.

n
It
n

&18 + &12
&aa + &CC

(a) &18 - &EE
(b) RAA - &23

828 (= 42)
[t]es7 (= -121)

Overflow can only cccur if the signs of the numbers subtracted
are different.

2231 1o 231 -1

. No adjustments necessary.

IF SUM(3) > 127 THEN RESULT = {((SUM{3) - 255) * 256 +

(suM(2) - 255)) # 256 + {SUM(1) - 255)) % 256 + SUM(D) - 256
ELSE RESULT = ((SUM(3) * 256 + SUM(2)) % 256 + SUM(1)) * 256 +
SUM(0)

Exercise 3.5

(a) ORA #388 (b) EOR #&80
AND #&EE ORA #8&40
AND #&EQ

213

Exercise 4.1

: 1. LDA NUM!

} cLe

ADC NUM2

BEQ ZERD

BPL POSITIVE
;| ZERO

POSITIVE .

2. LDA NUMI
SEC
SBC NuM2
BEQ ZERO
LDA NUMZ
STA NUM3
LDA NUMI1
STA NUM2
LDA NUM3
STA NUM?

ZERO

3. LDA NUM1
CLC
ADC NUM2
BCC NOCARRY
LDA #0
STA SUM
BEQ OVER (always branches)
NOCARRY STA SUM
OVER

214

Congratulate yourself if you got this. Congratulate yourself
even more if you got the following more economical version:

LDA NUM1
cLC

ADC NUM2
STA SUM

BCC NOCARRY
LDA #0

STA SUM ‘

NOCARRY

Exercise 4.2

1. LDA NUM
CMP #15
BEQ LESSEQ
BCC LESSEQ
LDA #0
STA NUM
LESSEQ

2. LDA NUM
BPL POSITIVE
CMP #&F6
BEQ EQUAL
BCS POSITIVE (or BPL POSITIVE)
EQUAL STA INDIG
JMP OVER
POSITIVE LDA #0
STA NUM
LDA #1
STA INDIC

215

OVER

NTEQUAL1

NTEQUAL2Z

OVER

Exercise 4.3

1.

LESS

LDA
CMP
BNE
LDA
STA
JHP
LDA
CMP
BEQ
BCC
STA
JMP

LDA
STA
STA

LDA
CMP
LDA
SBC
BCC

LDA
CMP

NUM1
NUM2
NTEQUALIT
NUM3
NUM2
OVER
NUMb
#16
NTEQUAL2
NTEQUALZ
NUM2
OVER

#0

NUM2
NUML

NUMIL
NUM2L
NUMTH
NUMZH
LESS

NUMIL
NUMZL

216

BNE NTEQUAL
cLe

NTEQUAL LDA NUMITH
$BC NUM2H
BCC LESSEQ

LESSEQ

3. LDA NUM1{0)
CMP NUMZ (D)
LDA NUM1(1)
SBC NUM2(1)
LDA NUM1{2)
SBC NUM2(2)
LDA NUMI1(3)
SBC NUM2(3)
BCS GTEQUAL

*

GTEQUAL .

4. LDA NUM(D) The accumulator will at the end
QRA NUM(1) contain ones in tbe positions
where ones occur in any of the
ORA NUM(Z) four bytes tested. Hence, only if
ORA NUM(3) all four bytes are zero will the
accumulator be zero.
BEQ ZERO

ZERO .

Exercise 4.4

(a) LDA NUMTL
SEC
SBC NUMZ
STA NUMIL

217

LDA NUMTH
SBC #0
STA NUMIH

(b) LDA NUMIL

' SEC

SBC NUM2 Three bytes are saved.
STA NUMIL

BCS NOBORROW

DEC NUMIH

NOBORROW

Exercise 4,5

1. LDA NUM1
SEC
SBC NUM2
BCC LESSEQ
CMP NUM3
BEQ LESSEQ
BCS GREATER

LESSEQ

GREATER

2. LDA #0

STA DiFF2
LDA NUMIL
SEC

SBC NUM2L
STA DIFFO
LDA NUMTH
SBC NUMZH
STA DIFF1

218

NTNEG

NOOVFLOW

NTNEG

NOOVFLOW

NTNEG

BCS
DEC

LDA
STA
LDA
CiC
ADC
STA
BuC
EOR
BPL
DEC

LDA
STA
LDA
SEC
SBC
STA
LDA
S8C
STA
BVC
EQR
BPL
DEC

LDA
SEC
SBC
STA

NTNEG
DIFF2

st

et e

#0
SUMH
NUM1

LR,

NUM2
SUML
NOOVFLOW
#&80
NTNEG
SUMH

et b

#0
DIFF2
NUM1IL

NUM2L
DIFFO
NUM1H
NUMZH
DIFFI
NOOVFLOW
#&80
NTNEG
DIFF2

NUMIL

NUMZL
NUMIL

219

A AT b, b 4 b L TP,

NOBORROW

OVERFLOW

eTTor message.

6. LDA
STA
LDA
CLC
ADC
STA
LDA
ADC
STA
BvC
EOR
NOOVFLOW BPL
DEC
NTNEG

7. LDA
SEC
SBC

LDA NUMIM
SBC NUM2H
STA NUMTM
! BCS NOBORROW
DEC NUMITH
BPL OVERFLOW

Overflow occurs here if NUMIH goes from &80 to &79, and the N
flag will register this. The V flag is not affected by DEC or by
INC, since the N flag tells us exactly what we want to know. The
OVERFLOW routine here would probably be designed to return some

#0
SUMH
NUM1L

NUM2L
SUML
NUM1H
NUM2H
SUMM
NOOVFLOW
#5480
NTNEG
SUMH

NUM1

NUM2

220

NOOVFLOW

GTEQUAL

NOOVFLOW
OVER

LESSEQ

GREATER

NOOVFLOW1

BVC
EOR
BPL

LDA
SEC
SBC
BVC
BPL

BMI
BM1
CMP

BEQ
BCS

LDA
SEC
$BC
BVC
BMI
BPL
SEC
SBC
BEQ
BVC
EOR

NOOVFLOW
#&B0
GTEQUAL

NUM1

NUM2Z
NOQVFLOW

LESSEQ (Since overflow occurred, this branches
if the result is negative i.e.
NUM1 - NUM2Z < O

OVER - and this branches if result positive)
LESSEQ

NUM3 Usual comparison between unsigned
numbers.

LESSEQ
GREATER

NUM1

NUM2

NOOQVFLOW

MORE Positive overflow must exceed NUM3.

LESSEQ Negative overflow must be less than
NUM3,

NUM3

LESSEQ

NOOVFLOW2

#8480

221

NOOVFLOWZ BPL MORE
LESSEQ

MORE *

10, LBA NUMIL
CMP NUMZL
LDA NUMTH
SBC NUMZH
BVC NOOVFLOW
EOR #&B0
NOOVFLOW BPL GTEQUAL

GTEQUAL

Exercise 5.1

1. Yes they will, For example, FOR X = -2 TO 50 in {e) will result
in just one cycle of the loop since it will be understood as
FOR X = 254 TO 50.

We solve such problems by using BPL and BMI instead of BCS and
BCC after comparisons (so that, if NUM is signed, it is the
second program in (d) which is correct). It is not quite this
simple in (f), however, since we can get overflow:

FOR X = 126 TO 10 STEP 20 is an example; FOR X = 50 TG 100 STEP
40 is another.

Hence we need a test for overflow also, and the solution to
question 3 deals with this.

! 2. (a) LDX NUM2 (b) LDX NUM2
LOOP . LOOP .
F DEX TXA

222

1
CPX #&FF SEC
BEQ OUT SBC NUM3
CPX NUMI1 BCC OUT
BCS LOOP TAX
ouT . CMP NUM1
) BCS LOOP
out
LDX NUM1
LooP
TXA
cLe
ADC NUM3
TAX
BVS QUT If overflow, loop must be finished.
CMP NUM2
BMI LOOP
BEQ LOOP
ouT

It is quicker still to work 'backwards' (although - (NUM3) may
turn out to be positive):
LDX NUM2
LOOP .

.

TAX
SEC
SBC NUM3

223

TAX

BVS OUT

CHMP NUM1

BPL LOOP
ouT

Exercise 5.2

1. After LDX #0 put LDA NUMH

BEQ LOLOOP
2, (i) In this case, all that is required is that we create a loop
with (NUMH; NUML) + 1 cycles., The most efficient way to do this
is:

LDX NUML

LOoP1

DEX

CPX #&FF

BNE LOOP1

LDY NUMH

BEQ OUT

INX
LOogP2

DEX
BNE LOOPZ
DEY
BNE LOOP2

ouT

224

(ii) N cannot be computed in any simple way from (i}, since N
does not decrease in strict descending order (in LOOPZ &00 pre-
cedes &FF). Also the high byte of N is given by Y - 1 in LOOP2Z.

We require a loop in strict order where N is (Y;X} in LOOP2 and
(NUMH;X) in LOOP1:

LDX NUML
Loopt

CPX #&FF
BNE LOOP1
LDY NUMH
BEQ OUT

LogpP2 .

CPX #&FF
BNE LOOP2

CPY #&FF
BNE LOOP2
out

Only (i) is an improvement over the forward loop,

Exercise 5.3

1. (a) TXA (b) STX MEMLOC+!
SEC SEC f
SBC M MEMLOC SBC #0 |
STA M ;
225 j
i

(c)

(e)

MEMLOC

(g)
MEMLOC

(i)

MEMLOC

MEMLOC

MEMLOC

MEMLOC1

MEMLOCZ

TXA
SEC
SBC
TAX

TXA
STY
CLC
ADC

STA
CPX

STX
TAX
LDA

STA
TXA
CcLC

MEMLOC+1

#0

MEMLOC+]
0

MEMLOC+1

#0

MEMLOC+1

ADC M
STA M

LDA

STA
TXA
SEC
SBC
TAX
LDA

STY
STA
TXA
CLC
ADC
TAX
LDA

#0

MEMLOC+1

#0

MEMLOCT + 1
MEMLOC2 + 1

#0

#0

(d)

()

(h)

STX
SEC
MEMLOC SBC
TAX

TXA
STY
SEC
MEMLOC SBC

STY
MEMLOC CPX

STX
STA
SEC
MEMLOC? SBC
TAX
MEMLOC2 LDA

MEMLOC+1

#0

MEMLOC+1

#0

MEMLOC+1
#0

MEMLOCT + 1
MEMLOCZ + 1

#0

NB. The use of the stack makes Qus.2, 3 and 4 easier to solve.
We will return to this in Chapter 9.

226

|
|
Exercise 5.4 |
\
|
\

1,
LOTERME =% 70 TERMH=:8:71 2 ROM= 720 GUML =875 SUIME=874:
SUMZE=575: PR75H=0

Z200IM STaRT 100

IOFOR IW=0 T 2 STER 2ePi=8TART ‘
AGLORTIY |
SOLDA #O @
SOTAX |
70STA HUM: .
gosTA SUME i
S05TA TERMH ?
1o0LDA #1

11087TA BUMl

L208Ta TERML.

130, 1L.a0F

140IMNY

1S500CP K NUM

140BERD FINISH

TTOSTY MEMLOO+L

18aCLes

190LDA TERML

200, MEMLOC

Z1L0ADE #O Dummy oper and
2ROSTA TEFRML.

DIORCE NOCARRY

24GLL
2EOINC TERMH :
260. NOCARRY !

L70LDA TERML
200ADC SUML
2908T#HA SUMI
Z00L.DA TERMH
J10ADE SUMZ
TEO08TA BUMZ

TIGBCC LOOF

JA0INC SUME 1
ISOBCS LOOF]
360, FINTSH ‘

T7ORTE: INEXTI%

T80CLS: REPEAT

IFQINPUT"How many terms", THNiM
400CALLETART 1

S1OFRINT ! SUM1
ZOUNTIL FALSE

Lines 140-160 stop the loop being entered if (NUM) = 1.
Lines 170-250 compute the (X + l)th term (Xth term + X}.]
Lines 270-350 add the (X + 1)th term to the sum for X terms to

get the sum for (X + 1) terms.

227

2.

:ETOTALI=%75: STOTAL2=76: STOTAL

Z20DIM
I0OFDR

START 100

In=0 TO 2 BTEF Z2:FA=8TART

A4GLOFPTIZ

S0LDA
LEOTAX
TAaGTA
BOBTA
FASTA
100L.DA
1108Ta
1205TA

0

SLIMZ
SUM3I
TERMH
#1
sUM1
TERML.

130.1L.00F

140INX
1500.DA
i &aCHF
170LDA
1808RC
190l D8
2005RC
Z210BCC
ZROBTX
2I0CLC
2400 DA

STOTALL
SUMI
STOTALZ
SUMz
STOTALSE
SUMXE
FINISH
MEML.OC+I

TERML

250, MEMLOC

LH0ADC
27068748
280RCE
290CLC
ZOGING

#0O Dummy operand
TERML.
NOQUARRY

TERMM

310.NOCARRY

T20LDA
IZ0MDOC
ZA05TA
A50LDA
S60ADC
I708TAH
IP0RCE
A0 INC
d00RCS

TERML.
=10 b
SUM1
TERMH
UMz
SuMz
L-O0F
SUM3
LDOF

410.FINIGH

420RTS:
430CL G
440 INFUT"Maximum total", !'STOTALI1

450PRINT ((USRSTART AND &OFFFFFFF)IMOD %10000)

INEXTI%
REFPEAT

460UNTIL FaALSE

As Q.1 except lines 150 and 160 are replaced by 150-210.

228

3,

10TERML =570z TERMH=%7 1 : SUM1 =272: BUMR=%731 SUM3=87 41 STOTAL 1 =875
STOTALZ=R74: STOTRLE=%77

20DIM ETART 100

TOFOR I%=0 TO 2 STEF 2sP%=8TART
A4QTORPTI%

S0L.DA #O

HOTAX

708TA BUMZ

OS5TA BUMI

PUESTA TERMH

100LDA #1

110G5TA SUML

1Z208TA TERML

120, LODP

140¥MX

1508EC

1&0LLDA STOTAL L

170SRC SUML

1808TA MEMLOCI+1

190LDA STATALZ

2008BC SUM2

210874 MEMLOCZ+1
220LDA STOTALS

ZTO8RC SUME
Z240HCC FINIBHL

250, MEMLOCT

ZH00RA #O Dummy operand
270, MEMLOCE

2BO0RA #0 Dummy operand
290BER FINISH2

ZOOSBC SUMZ

Z10LDA STOTALS

J208TX MEMLOC+]

JI0CLLE

J40L.DA TERML

I50.MEMLOC

ZSOADE #0 Dummy operarnd
3709TA TERML

IBORCC NOCARRY

IQ0CLC

400INC TERMH

410 . NOCARRY

4Z0LDA TERML

420ADC SUUML

44057TA SUM1L

450LDA TERMH

460ADC SUMZE

4708TA SUM2

480RCC LOOF

4G0INC BUMS

SOORCS LOOF

S10.FINISHL

S20DEX

SR0.FINISHZ

229

S40RTS: INEXTIX

GaQCLEG s REFEAT

SEOINFUT"Maximum total ™, !STOTALLL

STOFRINT ((USRBTART AND &OFFFFFFFIMOD &10000) DIV %100
SEOUNTIL FALSE

As Q.1 except lines 150 and 160 are replaced by 150-310 and
360 by 510-530.

Exercise 6.1

When an early part of the new locations overlaps a later part
of the old locations.

Exercise 6.2

1,

TOINFUTYHOW MANY BYTES", NUMBER
ZODIM ARRAY NUMBER-i:DIM START S50
SOFORI%=0 TO NUMBER-2 STER4: ! (ARRAY+IY) =RND:NEXTI%
AOFLAB=%70: TEMF=%7 1

WOFORIY%=0 TO 2 STEP 2:PL=START
SOLOFTIY

70.BEGIN

BOLDX #NUMBER-1

FOLDA #0

1008TA FLLAG

110.L0O0P

120LDA ARRAY. X

150CMP ARRAY-1,. X

140BCS OVER

1508TA TEMP

160LDA ARRAY-1,X

1708TA ARRAY, X

180LDA TEMF

1908TA ARRAY-1, X
2000 DA #1
21068TA FLAG

220.0VER
2EODEX
240BNE LOOF
2Z250LDA FLAG
260BNE BEGIN
270RTS: INEXTI%
Z280CALL S5TART
29¢ FOR I%=0 TO NUMBER-1: PRINT?{ARRAY+I%),:NEXT

(a) By reversing the comparison we gain space and time since
only one branch instruction is necessary.

230

(b} Usually, we put values into storage locations so that we do
not need to reassemble the program every time we change the values :
concerned. In this case, however, we will want to change the base !
address of the array (i.e. ARRAY) and this will require reassembly, g
We will see a way round this in the next chapter. :

2.

1OINFUT"HOW MANY BYTES", NLIMEER

20DIM ARRAY NUMEER-1:DIM S8TART SO

ZOFORI%=0 TO NUMBER-Z2 STEF4: ! (ARRAY+IX)=RNDsNEXTIY
AOTEMF =70

SOFORIW=0 TG 2 STER 2:FPL=BTART

&OLCOFTIY

FOLDY #0O ;
80.HEGIN i
FOSTY MEML.OC+1
190LDX #NLUMBER-1 i
110, 1L.00F ;
120.DA ARRAY, X

120CMP ARRAY~-1, X

140RCS OVER

150STA TEMF

160LDA ARRAY-1,X

1708TA ARRAY, X

1B8OLDA TEMF

1705TA ARRAY-1,X

200, OVER

210DEX

220.MEMLOC

2T0CFX #0 (Duinmy operand)

240BNE LOOF

SO0 INY

26QCFPY #NUMBER-1

270BNE BEGIN

ZBORTSE: INEXTIX

290CALL. 8TART

300 FOR I¥%=0 TO NUMBER-1: PRINT? (ARRAY+IX) , sNEXT

Notice that this is less efficient since we require an extra
cpY,

3.

10INFUT "HOW MANY BYTES™, NUMBER

20DIM ARRAY NUMBER-1:DIM START S0

TOFORIY=0 TGO NUMRER-2 STEF4: ' (ARRAY-+IX)=RND:NEXTI%
4OTEMP=%70

SOFORIY=0 TO 2 STEFP 2:P%=8TART

eOLOPTIA

FOLDY #1

BO.EBEGIN

QOSTY MEMLOC+1

231

1 G0, MEMLOC

P1CGLDY #0O (Dummy operand?
120, LOOF

120LDA ARRAY, X

! 1400CMP ARRAY—~1, X

i 1S0BCE QVER

H 14605TA TEMP

1 170LDA ARRAY-~1,X

1BOSTA ARRAY, X

1z0L.ba TEMP

ZOO8TA ARRAY-1,X
210.0VER

ODEX

SEOBENE LOOF

ZAOTNY

2HEOCFY #NUMBER

PHOBNE BEGIN

EEORTS: INEXTIV

2R0CALL START

290 FOR I%=0 T NUMBER-1: FRINT? (ARRAOY+I7) , s NEXT

Exercise 6.3

1. The flowchart is in Figure 6.7.

10DIM START So:VDUL4
PO DATUM=E 70 INDIC=.71:DIM BASMEM 2355
TOFOR [%=0 TO 252 STER4: ! (BASMEM+IY) =RND:NEXTIX
40DIM TESBT 256
SOX =0 ¥a=08 PINDIC=280
HOFOR I%=0 T 2 STEPZ:FL=LTART
FRLAORTIA
[OSTY MEMLOC+]
0. MEML.OC
1O0OCPY #0 (Dummy operand)
110RNE O
120L.0Aa INDIC
130BMYI 0K
1 4GBEC
1SORTS
1460, OF
170LDA #0
1805TAHA INDIC
170LDA BASMEM, Y
ZOOTNY
210CLC
220 RTS: INEXTIX
ZEOFGR I1%=0 TO 256
240 18,4045 1SR (START) ¢ X%=7R405: YL=?%406: P (TEST+I1%) =78404
SEOIF (PR407 AND 1) =1 THEN PRINT"ERROR AT YETRS (1%+1)
"TH WITHDRAWAL" : GOUTOZ270
260 NEXTIV
270FRINTT " WITHDRAWAL GUEUE"?

232

2BOFOR I%=0 TO 2355
ZFOFRINT T(BASMEM+I%) , P (TEST+IV) iNEXTIY
J0OVDULS

10DIM START1 S0:DIM STARTZ S0:VDUILZ2

20 DATUM=L70; INDIC=&71:DIM BASMEM 255

FOXY%=1281 YA=0: P IND I C=280

LOFORI%=0 TO 124 STEF4: ! (BASMEM+I%)=RND:NEXTI%

SOF0OR I¥=0 T 2 STEF2:FPU=START1

SOLOPTI%

7TOSTX MEMLDC+]

80. MEML.GC

FUCFY #0 (Dummy operand)

1OGRNE OF

110LDA INMDIC

1208FL 0K

1308EC

140RTS

150. 0K

160LDA #&BO

1705Ta4 INRIC

180LDA DATUM

1905TA BASMEM, X

200INX

210CcLC

220 RTS: INEXTIZ

FIOF0OR I%=0 TO 2 STEFZ2:FA=8TARTZ

240[0PTIN

2E08TX MEMLOC+1

260, MEMLOC

270CFPY #0 (Dummy operand)

280ENE D&

2Q0LDA INDIC

IO0OEMI Ok

T1Q8EC

I20RTS

IE0L0K

F40LDA #O

IS08TA INDIC

260LDA BASMEM, Y

E70QINY

380CLC

IR0 RTS: INEXTI%

400REFEAT

410INPUT® "DATA™, ?DATUM

420IF TDATUMC 128 THEN '%404=USBR(STARTL) ELSE '%404=USR(5TARTZ2)

AZOXA=2H409: YE="1404

4401F (7?2407 OND 1) =i THEN PRINT"ERROR"

4S0IF X%>YY% THEN LBTH=XXA-Y% ELSE IF X4U<YY THEN LGBTH=
2S5&~Y74+XY% ELSE IF PINDIC = O THEN LGTH=0 ELSE LGTH=2I&6

460FPRINT"HEAD "7 (BABMEM+YX)

233

1 47OFRINTYTALL. "7 (BASMEM+X%—1)
: ABOFPRINT"LENGTH"LLGTH
A90UNTIL. FALSE

{DIC,M?

O-+INDPIC,

Figure 8.7: Flow chart for
withdrawing an itermn
from a queue

[1~ J [ﬁUEUEhwd*Al

lINCREMENTY

End
Exercise 6.4

w8, All programs should begin in the usual way, defining labels as

necessary,
1. 50 LDX #0
60 JSR OUTPUTZ
70 RTS
80 LOUTPUT2

150 JTEXT e INEXT
160 §TEXT = "This is question one"

2. 50 LDX #0
60 JSR OUTPUT1
70 RTS
8o LOUTPUTI

234

160
170

60

60
70
80
90

170

180

Exercise 6.5

L.

LTEXT:INEXT
gTEXT = "This Is question two'

JSR OSNEWL
RTS:]

JSR QSNEWL
LDX #0

JSR OUTPUTI
RTS
LOUTPUT?

.

LTEXT:INEXT
$TEXT = "This is question four'

1OO0SWRCH=%FFEE : OSNEWL_=&%FFE7
20 DIM START S0

ZOFOR I%=0
AOPA=START

SCLOPTIA

TG 2 STERPZ

SOLDA HABC (")
70JSR DSWRCH
BOJSR &BLZO

QOLDX #HLFF

100, L O0FL
110INX

120LDA &700,X

1ZOCMP #1353

140BNE LOOF1

1SOCFRX #0

160BEC NOSTRING

170.L00F2
180DEX

190L.DA %700, X
200J8R OSWRCH

210CFX #0

2Z0OBENE LODFZ2

230, NOSTRING

240J35R OSNEWL

250JMP START: INEXTI%
260CALL START

235

1O0SWRCH=%FFEE : DSASCI=4FFEJ

20 DIM START S0
TOFOR I¥=(TO 2 STEP2
4UPL=8TART
SOLDOPTI%

&OLDA #ASC (117N
70JSR OSWRECH
S0JSR LBC2ZO
QOLDA R700
LOOCME #ASC Y %™)
L1IOBNE NTSTAR
1201.DA n701
130CMP #1735
140BEG FINISH
150 NTSTAR
1&60LDX #ibF
170.1.060F

1BOINX

190LDA 700, X
ZOOCHME #ASCT M)
210BER LODOF

OISR OSASCT

ZA40BNE |_OGF
2HOREQ START
2E0.FINTGH

270 RTS: INEXTIY
280CAHLL. BTART

100SWRCH=%FFEE

20 DIM START 250
IOFOR I%=0 TO 2 8TERZ
4OFL=58TART

SCGLORTIY

HULDA HTEXT MOD 2546
708TA &I7

goLDA #TEXT DIV 206
ROSTA &IB8

100LDA #ASC (T
110J5R OSWRCH

1Z20J5R %EBCZ8

1Z0LDX #%FF

140, L.OOF1

150OINX

L60LDA TEXT, X

170CHMP #13

180EBNE _OQF]

1R0CFPX $#0
ZO0OBRED NOBTRING
210.L00F2

236

Z2R0ODEX

2Z0LDA TEXT, X
2400CME #ABC" ")
ZO0RER LODOPZ2

2&0TNY

27OLDA #1Z=

2BOSTA TEXT, X

290, NASTRING

ZOORTS

F1GL.TEXT: INEXTIY
J20CALL START
DERINT"New length is "sLEN{SETEXT)
S4OPRINT? "Another?"

IO0A%=GEETH: IF As="Y" THENZZOQ ELSE IF A$="N"

Exercise 6.6

(a)

10DIM NUML (), NUMZ (5 RESULT (T
20DIM START S0

TOFA=8TART

40F0OR TY=0 TO ZTeMUML (T4 =2 70+1%
SONUMZ (1% =474+ 1A s RESULT (I X)) =&78+1%
AOGBOSUBI40:NEXTIY

7OLOFPTZ2

BORTS:]

FOREFEAT

THEN END ELSE 3

100INFUT"Numbers to be added", 'NUMI(O), INUMZ(G)

11QCALESTART

120PRINT ' NUML (0O) + FNUMZ (O) . TRESULLT ()
130LUNTIL. FALSE

140T0FPT2:LLDA NUML{TIZ)]

150IF I%=CG THEN COFPTZ:CL.Cs 1]
16000FT2: ADC NUMZ2(TX)

17058TA RESULT(I% =]

18ORETURN

(&)

10DIM NUM1 C3) NUMZ2 () W RESULT (3}
ZODIM BTART S0

ZOREFEAT

4OFRINT"Add or subtract (A/527"g
SOREFPEAT: A%$=GETS$

SUUNTIL A% ="A" OR As="8"
7OP4=5TART

BOFOR I%=0 TO 3JIeNUMIL (I%)=&70+I%
FONUMZ (174) =874+ [RESULT (%) =%78+1%
100GOSUBL 7O NEXTIY

11600PTZ

120RTS:]

237

P S ot

r:
-1

LEOTNPUT? "Numbers", 'NUML (O) , TRNUMZ(O)

140CALLSTART

1HDPRINTFNUM1(ﬂ)+(ﬁ$="8“)*!NUME(G)"(Q$#”Q“)#!NUME(O),
TREBILT (0}

160UNMTIE FALBE

170T0RT2:LDA NUML (%Y

1BOTF I%=0 AND A®="A" THEN [OFTR:CLC:] ELSE IF I%=0 THEN
[OFT2:SEC: 1

1901F As="4" THEN [OFTZ:ADC NUMZ(IX):1 ELSBE LORPT2: 5RO
NUMRETIXr e]

SOOLORTR2:8TA RESULT (I%X) 1

FTLORETURN

Exercise 7.1

1. INEWLOC < !OLDLOC or [INEWLOC » !OLDLOC + INUML.

2.

10CLS

PONUM=70: OLDLOC=272: NEWLDC=%74
FTODIM START 1040
40FOR I%=0 TD 2 STEF 2:PL=8TART
BOLDPTIY

&OLDA QLDLOC
70OCLe

BOADC NUM

FOSTA OLDLOC
100LDA OLD.OGC+1
110ADEC NUM+1
1205TA OLDL.OC+1
1ZODEC OLDLOC+1
1400L.DAa NEWLOC
150CLC

1606DC NUM

1708TA NEWLDC
180LDA NEWLDC+1
190ADE NUM+1
2008TA NEWLOC+1
Z1ODED NEWLOC+1
22OLDY #UFF
2I0L.DX NUM+1
ZA0RER LOLOOP
250.LO0F1
260L.DA (OLDLOC) ,Y
2708TA (NEWLDLCY,Y
280DEY

290CFY #%FF
JOOBNE LOORL
Zi0DEC DLDLOC+1
T20DEC NEWLOC+1
IZI0ODEX

I40BNE LOOP1

0. LOLoar

238

ZHOLDX NUM

I7OBREE FINISH

IHRO.LO0OF2

370LDA (OLDLOC) , Y

4005TA (NEWLOD) , Y

410DEY

420DEX

4ZT0ORNE LODFZ

440 FINISH

AS50RTS: INEXTI%

450INFUT "*How many bytes will be mowved", 'NUM

470INFUT"Starting address of memory to be moved".A%: 4
'OLDLOC=EVAL (A%) {

AOINFUT"Starting address of new lacation", B$; 'NEWL OQC=EVAL (B$) |

490CALL S5TART:FRINT"Mamory moved. Checking now." |

SO0A=EVAL (A%) s B=EVAL (B%)

S10F0R T%=0 T 284H%7 (NUM+1) +7PRUM-1

SE0IF TA+TLY T (R+HTY) PRINT "Error at move"IX+1:END

STONEXTINY

SAOPRINTYCheoclk " : GOTO4LO |

This works if INEWLOC > !OLDLOC or !OLDLOC » !NEWLOC + !NUML,

Listing 7.3 is more efficient.

3. (i) No provision for (NUM + 1) = 0. Put

65 BEQ NOHIGH and 175 NOH I GH i

(ii) In the move of the (NUM) residual bytes, a major fault
occurs. For example, if I0LDLOC = 89460, INEWLOC = &4000 and
INUM = &1040, when the residual hytes are to be moved !OLDLOC
is &A400, INEWLOC is &5000 and X = &40. The first move is &A440
to 45040 and the last &A401 to &5001. &A400 to &5000 has been
missed out, and &A440 has been moved erronecusly.

P

This is not correctable without reverting to the method in
Listing 7.3. The fault is obscured if (NUM) = 0, or if
(NUM + 1) = 0 and the correction in (1) is not made.

(iii) The routine fails if INUM » 33K or if I!COLDLOC - INEWLOC
< 256. Neither of these are correctable.

Exercise 7.2

1ONUMBER=%70: F IRBT=272: SECOND=%74 TEMP=%746: RECLENGTH=%773
FEYSTART=%78: KEYEND=&7%: BASE=%7A: LOOPCOUNTH=7

20DIM START 150

JOFOR I%=0 TO Z STEF Z2:FiU=8TART

4QE0PTI%

S0LDA BASE

S5Q08TA SECOND

ﬁ

239 i

7OLDA BASE+]L
BOSTA SECOMD+1
FOLDE #O

1005TX LLODFCOUNTH
110, BESIN

1:20LDY REYSTART
130L.DA SECOND+1
1408Ta FIRST+1
150L.DA SECOND
14608TA FIRST
170010

130ADPE RECLENGGTH
1508TRA SECOND
2008BCC LOORI
ZI0TING SECOMD+L
20 L0

2EOLDA (FIRST),Y
SA40CHMP (SECONDY . Y
2E0RCEC NEWRECORD
SLOBNE SGWAF
BTOINY
EEYEND

. LOOR1
GO
NEWREC{HD
0. SWAP

ILDY RECLENGTH
x40, LOOF2

EZEODEY

Z60OLDA (FIRST),Y
FZ705TA TEMF
IROLDA (SECOND) .Y
2908TA (FIREBTY Y
400LDA TEMF
4108TA (SECOND), Y
AROCPY #0O

A4TORNE LOOF2Z

440 . NEWRECORD
A450TINX

45GENE NTZERD
470INC LOOFPCOUNTH
480, NTZERO

A4FOCFX NUMERER
SOORNE BEGIN
S10LDA LODOFCOUNTH
H5ZOLMF NUMBER+1
SI0OERNE BEGIN
S40DEC NUMEBER
SSOBEDR LOWZIERD
S560LDA NUMBER
S70CMF #UFF
SBOBNE START
S0DEC NUMBER+1
HOORBFL START

&10. LAOWZERD

240

&H20LDA NUMBER+1
&LHIOBNE START
SAORTE: INEXT
&350 CL8S: INFUT"What 1s the record lengih".,R: PRECLENGTH=R+1
AGOINPUT? "What are the limits for the key", PREYSTART, PKEYEND
H70OINFUT" "How many records",N: ' NUMBER=N—1
SBODIM B P(RECLENGTH) ¥N: !BASE=E
HFOFRINT "Setting up strings now”
700 FDR [%=0 TO N-1:FOR J¥= O TO R-1:3?(B+IXX (R+1) +J%)
=RND (26) +64 s NEXTIY:2 2 (B+T%4 ¥ (R+1)+J%)=17 :NEXTI%
Z1I0FRINT"Sorting now, " CALLSTART : PRINT"Checking. "
FROFOR I¥%=0 TD (?RECLENGTH) ¥ (N-2) STEF (?RECLENGTH):
IF MID$ (${(B+1%), 7 (KEYSTART) +1, PHEYEND-7EEYSTART+1) *MID$
(B {B+1%+ (PRECLENGTH) } , T{KEYSTART) +1, PEEYEND-7KEYSTART+1)
THEN FRINT "ERROR AT"STR$(1%) :END
FIONEXT:FRINT"0O. K. "2 END

The reasons for this considerable increase in complication when
dealing with more than 256 records will be discussed in Section
10.3.

Exercise 7.3

10NUMRER=&7 Qe F IRBT=%72:1 SECOND=%74: TEMF=%756: BAGE=%77:
L.OOFCOUNT=%79

Z2O0DIM START 1350

JOFOR 1%=0 TO 2 STEP ZiFP%4=START

40L0PTI%

SOLDA BASE

&HOSTA SECOND

70LDA BASE+1

80STA SECOND+1

POLDA #O

1GOSTA LOGFCOUNT

1108TA LOOPCOUNT+1

120.BEGIN

130LDY #O

140L.0A SECOND+I

1508TA FIRST+1

160LDA SECOND

1708TA FIRST

180CLE

170ADC #4

2008TA SECOND

210BCC NDCARRY

220INC SECOND+1

2Z0 . NOCARRY

240L.DX #4

2508EC

260.L00F1

270LDA {(BECOND).,Y

2805BC (FIRST),Y

290INY

ZO0DEX

241

F10BNE L.OOF1
JROBVE NOOVFLOW

IHOEOR #0

E60BPL. OVER

T70DEY

IB80. LOOFE

IP0LDA (FIRST), ¥

4008Ta TEMF

410..DA (SECOND) , Y

A208TA (FIRST),VY

4T0LDA TEMF

4408TA (BECONMD), Y

45GDEY

46508FL LOOP2

470.0VER

ABOINC LOOPCOUNT

450BNE NTZERD

SO0INC LOOFCOUNT+1

S510.NTZERD

S20LDA LODPCOUNT

SIOCHP NUMBER

SA40BNE BEGIN

S50LDA LOOPCOUNT+1

SEHQCMF NLUMBER+1

S70BNE BEGIN

SBODEC NUMBER

SPORER LLOWZERD

&00LDA NUMBER

S610CMP #LFF

GLOBNE START

S6ZODEL NUMBER+1

H40EBPL. START

650, L OWZERD

&60L.DA NUMBER+1

&70BNE START

6BORTS: INEXT

&FOCLS: INFUT "How many numbers',MN: 'NUMBER=N-1:DIM B 4% NLUMBER:
*BASE=H

7O0FOR I%=O TO N-1:!(B+4%I%)=RND:zNEXTI%

FI1OFPRINT"Numbers assigned. Sorting now":CALLSTART:PRINT"Done
Checking now."

FROFOR I%=0 TO N-2:IF ' (B+4%I%) 1 (B+H4+4% 1N THEN PRINT
"ERROR AT "STR%(I%) tEND

TIONEXTIZ :PRINT"Checking D.F.":END

Exercise 7.4
Identical to changes made in Ex.7.2, with LOOP4 and LOOP3

instead of BEGIN and START respectively. The pointer allocation in
line 20 will need to be increased also,

242

Exercise 7.5

1. CHP #&61
BCC OVER
CHMP #8&78
BCS OVER
SEC
SBC #&20

OVER JMP BZE1BB

2. LDA #ASC({"'7")

JSR OSWRCH
JMP &DFAS

Exercise 8.1

1. Box 1 becomes
Box 2 becomes
Box 3. becomes
Box 4 becomes

0 - RES

0 > RES+t

0 + RES+2 ;
0 + RES+3

Shift (MULTER+1; MULTER) right

(RES+3; RES+2) + (MULTED+1; MULTED) i
+ RES+3; RES+2

Rotate (RES+3; RES+2; RES+1; RES) right

10MUL TER=%70: MULTED=%72: RES=874

20DIM BTART SO

JOF0OR I%=0 TO 2 SBTEPZ:PU=START

AO0L0OFPTIY
S0LDA #O
&03TA RES
708TA RES+1
80STA RES+Z
FOSTA RES+3
1O0OLDX #1é&
110, L00F
120LSR MULTER+1
1Z0R0OR MULTER
140BCC ZERD
150LDA RES+D
1/0CLE

170ADC MULTED
iBOSTA RES+2

243

190LDA RES+3

200ADC MULTED+1

Z2108TA RES+3

220, 7ERD

2I0ROR RES+HI

PAOROR RES+Z

FEOROR RES+1

2H0ROR RES

2TODEX

ZBORNE LOOP

290RTS: INEXTIZ

ZOOCLS: REFEAT

10 TMNEUT'Numbers to be multiplied",A,Br 'MULTER=A: !MULTED=B

ER0CALLETART

SZOPRINTA*B,16777216*?(HES+3)+6553$*?(RES+2)+2§&*?
(RES+1}Y+2RES

FAOUNTIL FALSE

The accumulator is used for the multiple precision add in lines
160 to 210 so it cannot be used to store part of the result.

1OMUL TER=L70: MUOLTED=%71 : REG=L72
FODIM START 150
ZOFOR 1¥=0 TO 2 STEPZ: PA=5TART
AOTDFTI%
SOLDY #O
HOLDX #0
TOLDA MULTER
JORPL. PLLBL
GOINX
1OOEGR #%FF
1104l C
1206DC #1
12087TA MULTER
140.PLLUSL
1S0LDA MULTED
160BRL PLUSZ
17ODEX
180EDR #%4FF
190CLC
200aDC #1
2105TA MULTED
FROLPLUBZ
2Z0TXA
ZHRORER FLUS
250LDY #1
ZHO.FLUS
L270L.DA #O
2B808TA RES
290LDX #8

244

60, LOOF
QLER MULTER

40ADEC MULTED

5. ZERD

I&OR0OR A

I70ROR RES

Z80UDEX

FIRORNE L.OOF

4Q08TA RES+1

410TYA

4Z20RER ANSPL

4Z05EC

44C1L.DA #O

4505RBC RES

4508TA RES

47OLDA #0

4B0SEBC RES+1

4908TA RES+1

SO0, ANSPL.

SIORTS: INEXTIX

S20CLS1REFEAT

SIOINFUT"Numbers to be multiplied",A,B

S40 IF ALC THEN C=256+A ELSE C=A ﬂ

390 IF R<O THEN D=2534+H ELSE D=B h

S60 PMULTER=C: "MULTED=D: CALLSTART :

STOFRINTA%E,

S8OIF P (RES+1) +127 THEN FRINT (7 (RES+1) 255 ¥256+7RES-256
ELSE PRINT?(RES+1) 425 6+7?RES

SPOUNTIL FALSE

The details are:

50 Flag for sign of result.
60 Indicator for each sign.

70-130 Check if multiplier negative, and if so increment X
and obtain two's complement of multiplier.

150-210 Check if multiplied is negative, and if so decre-
ment X and obtain two's complement of multiplied.

230-250 If X is not zero, result will be negative. Set flag
in ¥,

270-400 As Listing 8.3.

410-490 If result is to be negative, form two's complement
of result by subtracting from zero.

3. There are many possible solutions, one of which is to use
Listing 8.3, but the following is shorter and quicker. It does
the computation by evaluating 256 * Y + X - 6 * Y, It is often
the case that knowledge of the multiplier can allew quicker
routines than the general-purpose Listing 8.3, and this is such
a case.

245

1ORES=/710)

20DIM BTART 50

TOFOR I%=0 TD 2 STER 2
QOF%=8TART

SOLEOFTIY

&LOBTY MEMLOC+1

FOSTY RES+1

BOTEA

FOLDY #6

106, L00F

1108EC

120. MEMLOC

1Z08RC #0 Dummy operand
140BCE NOBORROW

1S50DEC RES+1

160, NOBDRR{W

170DEY

180ENE LOOF

1908THa RES

200LDY MEMLOC+]1

Z10RTS: INEXTI%

220CL5: REPEAT
PEZOINPUT"What are X and YY", X%, Y%
2AOCALLSTART
PHEOFRINTZSOKYL+XY, 256X 7P (RES+1) +TRES
Z&HEOUNTIL FALSE

Lines 70 and 80 compute 256 * Y + X (with X in the accumulator),
Lines 90 to 180 subtract Y six times, giving 250 * Y + X,

It is possible to use TEMP to save Y, instead of the internal
location MEMLOC, but whilst this saves 2 bytes it costs 4
cycles of time (see Appendix 1).

Exercise 8.2

Put 193 DEC NUMBER+1
196 BPL BACK

and change ?NUMBER to INUMBER in line 400.

Exercise 8.3

1. The REPWHILE loop executes infinitely. Put BEQ MISTAKE at 75,
where MISTAKE is some error-handing routine (see Listing 8.8).

2.

10DVID=870: DVIS=%72: QUOT=%74
20DIM START 50
JOFOR IX=0 TO 2 STEP Z:PL=START

246

AOL0OPTI%

SOLDX #0

&OLDA #O

FOSTA QUOT

SO8TAa RUDT+

FOLDA DVIS+]1

1CGORMI LOOF

1iQURA BPVIS

120RER FINISH

130, REFWHILE

14GINX

13S0ASL DVIS

160R0OL DVIS+1

170BFL. REFWHILLE

180, LOOF

1920LDA DVID

Z00CHMF DVIS

2101 Da DVID+i1

2208BC DVIG+1

2E0ORCEC LESSH

240INC QUOT

250LDA DVID

2608EC

ZFGSBC PVIS

ZBOSTA DVID

290L.Dé DVID+IL

TOOSBC DVIS+]

J105TA DVID+1
T20.LESS

II0DEX

Z40BMI FINISH

JO0LSR DVIS+]

ISHOROR DVIS

I70ASL QUOT

JIBOROL. QUOT4+

IQOIMF LOOF
400.FINISH

410 RTS: INEXTIY
420CL9: REFEAT
AZOINPUT"Di vidend", DD
440INFUT"Divisor ", DS
450! DVID=DD: ' DVIS=DS
450CALLSTART
470FRINTDD DIV DS,DD MOD DS
ABOFRINT256X7 (QUOT+1) +?RAU0T, 2567 (DVID+1) +7DVID
4F0OUNTIL FALSE

247

3. The following code should be inserted after line 390 in the
listing in Q.2, replacing BEQ or BMI FINISH in lines 120 and
340 by BMI ROUND, Alter lines 470 and 480 accordingly.

ROUND LSR DVIiS+1)
ROR DVIS
e orme | 93 Byieen by e
INC DVIS then round up.
BNE NOFRAC
INC DVIS+1
NOFRAC LDA DVID)
CHP DVIS Compare remainder (in DVID)
LDA DVIDHI " with half the divisor (in DVIS).
SBC DViS+?
BCC FINISH
INC QUOT)
e Fisn | 1f T o g deast it
iNC QUOT+1
FINISH RTS

4.

10DVID=&70e DVIS=&7 11 OUOT=872
FODIM START 150
AGFOR I%=0 TO 2 STEP Z2:FPU=8TART
4OLOPTIY

SOLLDY #0

HOLDX #O

JOLDA DVIS
BOBFPL FLUS1
FOINX

100E0R #&FF
110CL.C

120ADC #1
1Z208TA DVIS

140, PLUST

150LDA DVID
160BPL PLUS2
170DEX

180E0R #%FF
| 190CLE

{ Z200ADC #1
2108TA DVID

220, PLUSZ

2IOTXA

Z240BER FLUS
20LDY #1

260, PLUS

248

270LDX #O
2B05TX QUOT
290LDA DVIS
IOOBEE ANSFL.
F1O0.REFWHILE
J20BMI 1LOOF
TEIOTINX
S40A8L DVIS

SOOBFL REFWHILE

Z60.LDOF
I70LDA DVID
ZBOCHMF DVIS
IR0BCC LESS
400 INC QuOT
410LDA DVID
4205EL
4308ERC VIS
4403TA DVID
450, LESS
4H0DEX
470BMI ROUND
480L SR DVIS
490A5L OUOT
SO0IMP LOOF
S10. ROUND
520L8R DVIS
SFORCC NOFRAC
S40INC DVIS
S50 . NOFRALC
S560LDA DVID
S70CHMF DVIS
SBORLCE SIGN
S5F0INC QuoT
&00.515BN
610TYA
420BED ANSFL
&TOSED
S40LLDA #O
&50SEC QUOT
&605TA QUOT
&70. ANSPL

&BORTS: INEXTI%

&P0CLS: REFEAT

ZAOINPUT"Dividend" Az IF A<O THEN C=20&6+A ELSE C=A
710INFUT"Divisor ", B: IF B{O THEN D=25&4+kE ELSE D=B

7207DVID=C: ?DVIS=D: CALLSTART

7IOPRINTA/B

740IF ?RUOT»127 PRINT ?QUOT-226 ELSE FRINT?QUOT

7S0UNTIL FALSE

The details

50-250

are!

Virtually identical to first half of solution

Q.2, Ex.8.1.

249

for

270-500 Identical to Listing 8.7 {with the addition in Q.1).
520-590 Equivalent to Q.3 for 8-bit numbers.
610-660 ldentical to tast part of Q.2, Ex.8.1.

Exercise 8.4

10DVID=&70s DVIG=872: QUODTH=%7 4 DEWRCH=%FFEE
20DIM GTART 100

JOFOR [%=0 TO 2 STEFP 2:PA=ETART

4OLDPTI%

SOLDA
HOLRA
TORER
Bol.DA
FOBTA
100LDX

DVIS
DVIS+1
MISTARE
#O
QUOTH
#16

116, LOOF

120A%1.
1E0R0OL.
1 40ROL
1S50TAY
1 60ROL
17oCMe
180L.DA
19Q8RC
200BCC
Z210TYA
2208RC
2TOTAY
240L.DA
2508RC
2608TA
K7OING

DVID
DVID+I
a

EU0OTH
DVIS
ELIOTH
DVISG+1
LEESS

DVIB

AUOTH
DVISG+1
FUOTH
DVID

2BO.LESE

290TYA

ZOODEX

F10BNE LOOF

ERORTS

II0O.MISTAKE

F40L.DA #HABC (")

I50IBR OSWRCH

I&H0LDA #T7

I70JISR 0OSWRCH

ZHORTS: INEXTI%

IP0OCLS: REPEAT
4O0INFLT"Dividend" &
4IQINFUT"Divisor",B
420'DVID=As 'DVIE=R

4301 &4053=LISRETART
440FRINTA DIV B, A MOD B
ABOFRINTZ2S56X P (DVID+1) +7DVID, 256X ?QUDTH+?R4035
F4450UNTIL FALSE

250

The details

50-70
120-160

170-200
210-270

290-320

340-380

The program

Exercise 9.1

L. PHP
PLA
ORA
PHA
PLP

2. SEC
PHP

LOOP1 PLP

LDA

SBC

{NY

PHP

CPY

BNE

The first is

are:

Output error message if (DVIS+1; DVIS) is zero.

Shift left (DVIS+1; DVIS) one bit into {QUOTH; A)
saving the accumulator temporarily in Y.

Compare (QUOTH; A) to (DVIS+1; DVIS).

If quotient not less than diviser, retrieve the
accumulator, subtract (DVIS) {(the carry must
already be set), save the accumulator in Y, sub-
tract (PVIS+1) from (QUOTH) with any borrow, and
increment the dividend by one.

Retrieve the accumulator, loop 16 times, and then
return,

If a division by zero occurs, output a query sign
and a short beep, and return,

is shorter and quicker.

#&C0O

(SECOND), ¥
(FIRST), Y

#4
LOOP1

more efficient in memory space, since fewer bytes

are used; and more efficient in time in that the loop here
contains 2 excess instructions,

251

Exercise 9.2

1.

MEMLOC

(i1)

MEMLOC

Exercise 9.3

TAY
TXA
PHA
TYA
TAX
PLA

PHA
STX
SEC
SBC
TAX
PLA

PHA
TXA
STY
cLC
ADC
TAX
PLA

MEMLOC+1
#0 Dummy
MEMLOC+1
#0 Dummy
Code
SEI
PHP
PHA
TXA
PHA
LDX #t
LOOP1 LDA #c
STA DELAY
LOOP2 DEC DELAY
BENE LOOP2Z

252

Time

[YRT R TOR N NS TR R YR I

-

15

®

DEX 2
BNE LOOP1
2
TAX
PLA
PLP

[#5]

14

oA N B

15 + 14 + 10t - 1 + (8¢ - 1) * t = 2000t (:)

1991t - 28
= c= 8t

When t = 10, ¢ = 248; and left hand side of equation (:) is
19958, Hence we require 42 cycles.

Put NOP : NOP at @ and NOP at .

Exercise 9.4

1OCOLUMNS =870 ROWS=%71: COLCOPY=&72: L IMIT=&73; BEBINCONTROL=
278:HIBYTE=%75: L.OCA TON=87&: STORE=%78: OSBWRCH=&FFEE: OSBYTE=
“FFF4

SOFORIY=0 TO 2 STEPF Z2:F%=&D00:RESTORE
ZOLORPTIX

40L DA #3

S505TA LIMIT

&OLDX #O

7005k CONMTROL

BOLDX #4

aLDA #%85

100JSR OSBYTE

1108TY MEMLOC+1

120.DA #2284

1Z0J5R OSRBYTE

1408TY HIBYTE

150 . MEMLAOC

160CPY #O0 Dummy operand

170BNE ZERDMODE

180LDA #7

1908TA LIMIT
200L.DA #Z

2105TA BEGINCONTROL

220LDA #40

2I0BNE FOURMODE
240, ZEROMODE

250LDA #11

253

S608TA LIMIT

270L.DA #7

2808TA PEGINCONTROL

2R0L.DA HEBO

F00. FOURMODE
COLUMMNSG
8322
LOCATION
LI23

SE0BTA LOCATION+1
SZHOLDA #7332

J7OBTA RDWS
F80.BEGIN

SR0OLDA COLUMNS
4008TA COLCOFY
410L.0X BEGINCONTROL
A4Z2CGJE5R CONTROL
470 . L00F1

4401 DY #7

450, L00F2

460LDA (LOCATION) ,Y
4708TA STORE, Y
ABODEY

A4Q0BFL. LOOFZ2
500L.0DY #8

510, L00F2

D20LDX #7

5Z20L.DA #1

S40J8R 0SWRCH
530. LOOF4

D60ASL STORE, X
S570R0OR A

SB0DEX

S5P0BFL LDOF4
HEOOIER DBWRCH
&10DEY

&Z20BNE LOOPS
6Z0LDA LDCATION
&40CLE

&50ADC #8

&L&EOSTA LODCATION
HT7ORCLE NOCARRY
680INC LOCATION+1
&0, NOCARRY
TOODEC COLCOFPY
710OBNE LOOFE
720LDA #1

7I0JSRKR OSWRCH
740LDA #&0D
7S0J5R OSWRCH
7450LDA LOCATION+1
770BPL OVER
780L.DA HIBRYTE
7F08TA LOCATION+1
800.0VER

254

S1ODEC ROWS
HG20BNE BEGBIRN
BIOLDA #13

B406TA LIMIT
BHOLDY #11

B&OJER COMNTROL.
B7ORTS

880. CONTROL.
a?0LDA #1

FOOJER ISWROCH
Fl1uLDA TARLE, X
YOISR OSWRCH
FEIOIMNX

FAOTFEX LLIMIT
FSOBNE CONTROL
SLORTS

G700, TABLE s INEXTIN
PROFOR I1%=1 TO 13
FIOREAD 7TFU
TOO0OPY =4+ e NEXTI®
1010DATA27,¢5,B,27,7$,64,1,2?,?5,128;2,27¥50

The details are:

40-130 As Listing 8.6.

140 Only the high byte of physical screen memory is
required to be saved.

150-310 As Listing 8.6, 160-320.

320-350 Store start of actual screen memory (i.e. taking
into account changes due to scrolling) in
LOCATION. A1l addresses will be as a model B, even
in a model A machine, The 05 takes care of this.

360-750 As Listing 8.6, 330-720.

760-790 If we go beyond &7FFF, the high byte becomes
negative, and we replace it by the high byte of
the start of physical screen memory (i.e, the
start of actual screen memory when there has been
no scrolling).

800-1010 As Listing 8.6, 730-930.

Notice that this program is longer, and so if we know that
there will be no scrolling (typically so when using the high-
resolution graphics), Listing 8.6 is the better choice if memory
is at a premium.

255

Appendix 1 6502 Instruction Set

It is convenient to divide the 56 instructioms wp into four
groups, depending upon how many of the bits in their op-codes are
fixed.

GROUP 1: FIVE BITS FIXED

Instructions in this group have fixed (f) and variable (v) bits
as follows:

fEfvvvEf

There are two subgroups to consider:

GROUP 1A: 8 ADDRESSING MODES

These modes are:
a'a’s Mode

000 Indexed indirect (see Appendix 3}
001 Zero page

010 Immediate (not STA)

011 Absolute

100 Indirect indexed

101 Zero page, indexed X

110 Absolute, indexed Y

111 Absolute, indexed X

The instructions in this group are:

ADC, AND, CMP, EOR, LDA, ORA, SBC, STA,

257

GROUP 1B: 5 ADDRESSING MODES
The modes are:
vvv Mode

Q00 Immediate (not ASL, LSR, ROL, ROR}

001 Zero page

010 Accumulator (not LDX, LDY)

011 Absolute

101 Zero page, indexed X (indexed Y in LDX)
111 Absolute, indexed X (indexed Y im LDX)

The instructions in this group are:

ASL, LDX, LDY, LSR, ROL, ROR

GROUP 2: SIX BITS FIXED

There are two subgroups:

GROUP 2A
These have fixed (f) and variable (v) bits as follows:

fEfvvEff

The addressing modes are:
vv Mode

00 Zero page

01 Absolute

10 Zero page, indexed X (indexed Y in STX)
11 Absolute, indexed X (not STX, STY)

The instructions in this group are:

DEC, INC, STX, STY

GROUP 2B
These have fixed (f) and variable {v) bits as follows:
vy Mode

0o Immediate

258

01 Zero page
11 Absolute
The instructions in this group are:

CPX, CPY

GROUP 3: SEVEN BITS FIXED

There are two subgroups:

GROUP 3A
This has a fixed (f)} and variable (v) bit pattern of

fEfevfff

The modes are:
v Mode
0 Zero page

1 Absolute

The only instruction in this group is BIT.

GROUP 3B
This has a fixed (f) and variable (v) bit pattern of

fEvEffff

The modes are:
v Mode
0 Absolute

1 Indirect

The only instruction in this group is JMP,

GROUP 4: ALL BITS FIXED

These are the implied and relative addressing mode instructioms:
BCC, BCS, BEQ, BMI, BNE, BPL, BRK, BVC, BVS, CLC, CLD, CLI, CLV,
DEX, DEY, INX, INY, NOP, PHA, PHP, PLA, PLP, RTI, RTS, SEC, SED,
SEI, TAX, TAY, TSX, TXA, TXS, TYA. Also the absolute mode for JSR.

259

As an example of this, consider LDA. This in in group 1A, and
the fixed bits are 101vvv0l. Taking each set of values for vvv in
turn we arrive at the opcodes Al, A5, AS, AD, Bl, B5, B9 and BD.

In the detailed summary which follows the fixed bytes will be
given for each mnemonic, and then each addressing mode will have
attached its own variable bits. This information is useful if ome
wishes to construct an assembler or disassembler, for example.
(The disassembler on Tape #1, available with this book, uses this
information to speed up disassembly.}

i

260

ABBREVIATIONS IN TABLE A1.]

LOOP

N 0 = 22 o T H = O N Z

| ~ (:) + = =+ > 4

Plus 1 cycle if page boundary crossed

Plus 1 cycle if branch occurs; plus 2 cycles if branch
crosses into another page

Number of bytes comprising the op-code and operand
Number of machine cycles needed to complete instructien
A variable bit in the opcode

An arbitrary memory location {i.e. an address)

The contents of M.

The contents of bit & of M,

The one's complement of (M)

A signed byte (i.e. 800 to &7F is +0 to +127; &80 to
&FF is -128 to -1).

An arbitrary label (i.e. an address)
The negative flag

The zero flag

The carry flag

The overflow flag

The interrupt disable flag
The decimal mode flag

The break flag

The accumulator

The index registers

The processor status register
The stack pointer

Program counter {(containing the address of the first
byte of the Iinstruction)

Copy to memory location or register
Copy to stack (i.e. push)

Transfer from stack (i.e. pull)

OR

AND

Exclusive-OR

Signed addition (i.e. second byte is treated as a
signed byte)

Flag is affected by instruction

Flag is not affected by instruction

261°

Table Al.l1: Alphabetical summary of instruction set

ADC
Description of ADC M 5_ymhoﬁc optration of ADCM Flags affected Fixed it pattern
Add the. contents efM A *(M)*C —— A
Fa bhe accumuiatar, v SHvwval
ther whith ony Corry il c°"5 -
store the result n \’?\; 0sle v
Accumulator and am
Cabvy in the carry qs
immesixe | Zero Fage| Absciute |Zero pageX| Absclu X | Absolute ¥ [{incinect) Y | Arcomulatod (indirect X)
oF
coot| * G2 2 |68 2 a3 18l Tola (783 []2 al|2
- » *
T vvv 2 |loel® [ooij4a lona o4 (1l |a4[Ike]|S [l @ oo
Ari
Bescription of ANBDM Symbolic operation of AND M Flags affectad Fixed it pattern
Ferform bhe logieal AND AA (M) = A
operabion bt b:j\n\f an [
Ha terresponding biks Alell N[Z | ¢V ool VYV G
{M)and Hhe accumulator, d : i 2 BV W
I-amr\a e resuits 1 Hea L L
aceumulabar
Immediate | Zaro Page| Absolute 1Zero pageX| Absolute | Absolute ¥ |(Indirect) ¥ | Accumulator (ndirect X)
or
cooe| " (23] 2 [25]2 |20| 3 |35]|2 |20|3 (223 |B1|2 zZLj2
»
t[vv] 2 ool 3 oot| 4 o |a e]| 4% i |47 wel B s & |ood
ASL
Descriprion of ASL M Symuo[i: operation af ASL M Flags affected Fixed bit pattern
Meve the conten® of M MT My Mg g M3 Ma M M
lef!‘mbi'r:hil--f%acs | I .]= Nz o v
£ 3 Sobry . Zers qoas ink - SOOVVVIIO
bit O, Favas
Tha resulr s i M, c
Immediate | Zero PagJ Absolute Iz:m pageX| Absolyte X | Absolute ¥ [(indirect) ¥ | Acumolator (ndirect X}
T
op
cooe| ™ oslzlnt 3le|2 [IE|3: oAl
[i Vil i A
tofewv 5‘@!1@ el |G [1el]| T [2 oto|

262

Boc

Description of Symboiic aperation of Addressing mode Opcace n T Flags affected
Bee Loop Bee F
, Jnizlelv
lj Cro,branch lf cee>: Relative D 2 2
te inwtruchon labelled PC+Z @r = PC — - |-
Loop Ife=1:

he oparabion

BCS
Description af Symbolic operation of Addressing mode Opeode o 1 Flags affected
BeS LaaP BCeS B Nz
Ifcxl, branch b ifcnt: . A clv
Me insbrochion lebelled PO~ 2@r + P Relafive Bo 2 2 _ || |-
LaopP fc=o
Ne operation
REQ
Description of Symbaiic operation of Addressing mode Opcode n 1 Flags affected
BES LooP BES r
N1Z|C |V
Iflzl,branr_hh: lfz_nl:
e Instruction lobeled Poazgr = Po Relabive o 22t -|-|-1-
ook ,} Z=ey
ro operalion
BIiT
Description of BIT ™M Symbolic aperation of BT M Flags affected Fixed bit pattern

Tha 1. imlANDe}MnnAA
i per m,nw...,uu-mt\u‘.? AN(M) -7

L T set tu | f e rew N|Z|C [V
% Zero, oherise Zi4 Taro. Mae >V
Finally bits caend T of M ae Copied My — N

taVand M. Ais uwr.hcnaed.

OOHDVIOO

MT v | — |Ma

Immediste | Zere Page| Absolute [Zero pageX| Absakute K| Absolute ¥ |(Indirect) ¥ | Accomuiator (ndirect X}

3:;" 242 [2¢(3
tv 3lc|a]t

263

Flags affected

N[Z|C|V

Flags affected

NI1Z |C |V

Flags affecred

N1Z|C|V

BMmI
Description of Symbolic aperation of Addressing mode Opcode n j_
BMI LoaP BEMI T
- If M= .
N ,[' brﬂ,k'h ¥ Relialiue 2o 12 2+
b the inslruction lobeled Po 2 @r = PC
loop = o
no operalion
|
|' BNE
i Description of Symbalic operation of Addressing mode Opcade n t
BMNE Loo® BMNE v
lfl:o, branch Yo 'f 10" R
Hhe tnaliuchion labellad Pe~o@mr = Pc Relative Do 2 2
LooP '.f Zal:
ne aperakion
B
Descrspton of Synbalic operation of Addressing mode Opcode L3 t
BPL Loow RPL
If M=o braneh fo =0 Zelatt +
. Ll o
Hie nalruction jaballed PL+ 2 B = PC ate 2z
Loop 1 wr= 0
ho opwration
B
Description of Symboic operation of Addressing mode Opcade n T
82w BRY
A software inferrupt . b Pe a2 .
(Hos a wpecial Use in S-2+5S EMP“EA oo LA
te

tha BBLC microcomputer,

Progya)

Baat not Lued in =ss¢nbl5 Hel= 5

(FreF FFFE} = PC

264

Flags affected

NJZ|(C |V

Bois Set B
bafare Pis Pusiwd
onte Fhe Shock.
Iin et be i
after P is pushed
onts the whock.

BVC

Descriptian of Symbeiic operstion of Addressing mode Opeade n ¥
BVC loof Bve v
i v=o, branch e l_f veao:
toa inbruction labetled PC+ 2 @r ~ PC Relative S 2 2
Lookf Ifv=1[:
ho operalion
BV
Dascription of Symbalic operation of Addressing moode Opeode n 1
BVS LooP BYS ¥
V=i, branch & we i
fusts braneh fv= Rela tive To 272
e imafrochian lobeiled Do+ 2 @b = PC
Laap]5. Ve O
no operabian
Lol W
Description of Syrmbolic operation of Addressing mode Opcode T
cue cec
The. carry flag iv O —+c Implied % 1z
Set & mre (cleared)
C D
Descriphion of Symbolic opersnon of Addressing mode Opcode n ¢
[~y =] O
The decimal \qs "% - Tmpliest D2 P2

et & O leweared).

All arithmahic will paw
ba Shandard b\n:r:j

265

Flags affected

N|Z2|C

V

Flags affected

N|lZ|C

v

Flags affected

NIlZ|C

Vv

b S =

fl ags affected

- TR
Deacrigtion of Symbalic operation of Addressing mode Opesde T Flags aFected
cu [|
N|ZIC |V
The i ¥ etk bt
The infrrup Bl o1 ImP\ic.d se e _ [T 2
It Set b Zavro 5 Bo
enabiy inrerupts
"3 ® lis ser O
LY
Description of Symbolic operation of Addressing mode Opcode t Flags affected
(= cLv
N[Z|C |V
The overflow floa O Implied B3 2
i Set & Zero (glesred) il il el
[S
Description of coape m Symbolic operation of CMP A Flags affected Fixed bit pattern
(M) is subkrachud fram A, A~ (1) = ragult {hat sturad)
bub Hig regult in not Shared |5A<fM)llno,c.° N lz o v
and & % :n:\-\ur\j.d. Z wl ‘E“'(M) 2et.c0 N flovwval
on equall 5,5.‘-‘1&‘%@4\) ' . G P N P
does hot exceed A, Kol ih A (M). Zao.eml ?
it biv '?-E fha rasulvr s |
Immedizte | Zero Page | Abspiute |Zeno pageX| Mosaiute X]Absolute ¥ [(Indirect) ¥ | A Jedirect X}
QF
cooe] T 1€B) 2 €52 |ep| 3 [Dg|2 (Oo|B om(R DU |2 |2
-)
£ ovv| 2 joid 3 ool 4 |oti|a |ior| 4 (1| dF o] & j1eo) & |oc
P X
Description of CPx m Symbolic operation of CPX w Flags affected Fixed bit pattern
(M0 15 Subkrached fromi, X =(M) > Tasult-(not Srered)
but the resucit i not shoed
and x 5 unchanged. Zig ihx (D 200,00 Nz V1 wowvveo
Ton aguality, civ 1 §{m) ifra), 2atcnl P NE T
de‘s Notexcand X, py ;5_,‘ . (M) Teo.anl LIS
s l"!- Bt 7ol ine reault
i1’
Immediste | Zero Page | Abgbiute [Zero pageX| Mosalute x| Absolute Y (indinecs) ¥ |Accumuiatod Gedirect X)
oP
cooel ™ |Eo| 2 |Ea|2 Eo |3
t v |2 oo |oifa |t

266

ey

Description of CP s Symbaiic operation of CPY M Flags affacted Fixed bit pattern
(MY1s Bubbracted freeny Y= () = stk (nok Storad)
but Hhg result (i Aot Sbyred
and ¥ it unchanaed . Zis | PRSI N|ZC |V Nasvwwoo
on equality, 3 Lig(m) §Yea D Tar.Cm N=
ot not wSccned X, N . \ rasuity [=
WL B Tt the AR OREL
reaolt s 1.
Immediate | Zero Page] Absolute |Zero pagex| Absclute ¥ | Absoiute Y{(indirect) ¥ | Accumulatod (indirect X}
o] ¥ eo|2 feal2 el ®
Pt |2 |eo| 3 (el |a il
DEC
Description of e m Symboiic operaficn of DEC m Flagy affecteg Fixed bit pattern
™ Contents of t 1 {M) | -
decruacted bbl.(xs NIZ|C |V
(M) 18 2ars it brcames o= tevvio
£ FFJ The msolt it Shored G
lImmediate | Zero Page| Absolute |Zero pageX| Absclute X | Absolvte ¥ [(indirect) ¥ A ! direct X}
QP "
cook Cal?2 Ce| a2 DE|S
1t v Sloe e ol o T {11

DE >
Description of Symbolic operaton of Addressing mode Opcoge T Flags atfected
Dex DX -
The conFants ofx it X~ | =X Impliad ca 1 2 A
reducd By 1. (1§ %is A | =] —
Zese it becomas RER D
DEY
Description of Symbolic operation of Addressing mode Opcode o ¢ Flags affected
DEY DEY -
Tha Contants FYis I . N|Z CiV
rudoced by b, (1§ Yis ACHIE S ¢ mplied 8.1 [-

fere i+ bacames BFED

267

EoR

Description of Ec@Z Symbolic operation of EcR M flags affected Fixed bit pattern

F\a—gel—n ﬂlt‘tulut.l\Jl -or A A (M) o+ A
operation Bk hbbﬂ'er\h\n. NTZ|C IV
Corraspending bits of (W) Alot ! otevvvol
and bae accumulator, cle |1 PRV B
teowing the renulkin the | ! =
accumuliater,
|imesediste | Zero Page| Absciute [Zem page)] AbsaluteX |Abselute Y [(inclirect) ¥ | Accumutator| (ndirett X}
ol las|2 sz lap|s (=8]2 |50|3 [59]3 [S1]3 4|2
-
t uvv| 2 |oie| B oolj 4 jan | 4 1o11a®it |4t le|s oo @ oo
{~C
Description of 1N M Symuolic operation of inac M Flags affected Fixed bit pattern
The contents eE [T Y
neruased bt (ls(u} (MY 1 == ™ NlZ o v
15 & FF it becomes Tara)) nvwue
The nmult B Shored tn M. adfl Bl Bt
limmediai | Zero Page| Absclute |Zero pageX; Absclyex Absolute Y |(ncivect) ¥ | A direct X)
cond] ™ Ew 2 EE|3 Fa|Z |FE |3
L 5 loo|e |ot |G 10T |1
it
Description of Symbolic nperation of Addressing mode Oprode n L Flags affected
1% L X
connrants of X1
W] = i 12
y oyl Elgx Imp'uc.d Es o= |
% £FF 7 bacomes Zarc)
INY
Description of Symbolic aperatioa of Addressing mode Opcode a1 Flags affected
MY LY
— _— NiZ|C |V
Tra confunts ‘S- A N+ 1= I.P\P\I".d cs I 2 || — =

increased L US o

1 ETF il becares ’Lﬂh).

268

Desceiprion of Jmp Loor

dme

Symbelic oparation of Jwap tewe Flags affected Fixed bit patfern

Tha eddven reprenantad
By tre ool Loak is LooP —= Pe NIz |c v
loadad ints the e
Counter Cavsing & mp [R SiIvol oo
fe acqur o the tnabuchan
at el cddrens ,
‘tinediste | Zaro Page| Absoiute |Zerp page | Alsclute X | Absalute ¥ (indirect) ¥ | Accumulated (ndirect) | ndivact
oP
cooe| aci g 3
t | ¥ 3 o it
ISR
Description of Symbolic operation of Addressing mode Opcoe n Flags affected
Jor LeckP Jor LooP
— - N|Z|C
Tha pﬂ:ﬁmu\ Counrer plt
2 (the addrass miaus ana of tee Perz b ptselote Zo 3G |27 |—
instrockian follawsing the I3R) | oop P
is Savad on the Sheck. The
address reprunented LexaP
% looded ink tne pregram
Countar,
LD A
Description of LA~ Sympolic operation of st Flags affected Fixed bit pattern
Te Contents of m it {tn) ~= A w1z 1c [y
ch“al inls the accumulabar, 1oLV Ol
v — —
iminiediate | Zere Page| Absoiute |Zero pagex] Abaciute X | Absptute Y [{incivect) Y| A Cndivest X)
e
o " |An| 2 |as|2 |ac|2 |Bsiz Bo|z [Bm(z (B2 aifz
* *
tlovvi 2 ol 3 oot a o la e a®|wila |Uo|S lea @ oo
269

LDX
Description of LDX Symbolic operation of LDIX ™M Flags affected Fixed tit pattern
The Contents Oj' Mis (M)
—t
Copied inte X. * N|Z|C [V lol vy io
S =1=
Immedizte | Zero Poge| Absolute [Zerc pagey] Kbselute X jAbsolute Y [(indirect) ¥ iyt drdirect X}
Solnlazi2 el |Ae|2 [ee| 2 Be(2
t |2 Jose 3 (oo 4 |oll | 4 1o a1
LD
Description of LY M Symbolic eperation of LDY 4 Flags atfected Fixed it pattern
The Contenls :.E s
(v) =+ N|Z|C |V

Capied inlks Y.

lelvvvoo

SN

Ireediate | Zero Page | Atolte [2aro pageX| Absclue¥ |Absolute Y (indirec)) Y| Accomulater (ndtrect K)

Lrlg

cooedl A0 2 MalZ |A2|B (B4 2 [Be|3

|
t |ovv| 2 oot 2 joot| 4 o] 4 [1e1| 4 |11

LR
Description of LBR m Symbolic operation of LGR t Flags affecred Fixed bit patfern
Mova fhe CA:!‘\"..\'\T‘QS ot | My Ma Ma M, My Mg ML Mo
hsh“cne_bﬂ‘:bil'ce’us 2TTTTITTT N|{Z{C |V
ints ca .Z:.\'Dy» nts —_— SBYVVILE
. o |vivy |-
b 7. The resdtt is inta. c O
Immediate | Zero Page| Absoite [Zero pagex| Abseluie k| AbsiuteY|(tadirect) Y| A direct X)
cone| " 26| 2 |ae| 3 |50 2 |se|2 an | 1
LA 5 ootie ot |6 [lol 7 (1M Z o]
No P
Description ot Symbolic operation of Addressing mode Opcode n Flags affected
NaP No &
P NS N[Z|c|v
Does No\hu‘\% ?or —_ I,,,Pl;gd EA 2
2 cycles. hal i Bl R

270

o2 M,

Descrigtion of DRA Symbolic operation of ora M Flags affected Fixed bit pattern
Rrj',o\—m e Inclosive -om AV (M) - A
operation bit by bit en Vo N|Z|C |V
the correaponding Bits PR —/ OODVVVE|
of (M) and the accumulater, i T il Bl

teauing Hoe metult in the accomulatar,

Immedisie | Zero Page | Absoiute lnmpag:x sbsatute x| Absolute ¥ |(Indirecf) ¥ | Accumulated (indirect X}
o jomi2 |es|2 [co|a w2 ie|a |2 ol |2
*»
t [vv| 2 [o] B looi|a o] 4 |4 in |4 ie| B |lox & oo
PHA
Description of Symbelic Gperation of Addressing mode Oprode n t Flags affecred
=718 PilA,
Toa Conttnly of e NIZ|IC |V
accomotalor (S copiad t A I.h\pil'o.d. 4% A% (R IS I S
e Ma shick , and e S|y
ok peinter i4 decraosed
by sne.
PHP
Dascription of Symbelic operation of Addressing mode Opcode . T Flags affected
PHP PP w1z lclv
The confents °5' the Skalia ’
regislir is copied fo P [mplied o Y i
e shale, and the slocke S—l=5
poinfer is decreaned byl
PLA
Description of Symbolic operation of Addressing mode Opeode n Flags affected
PLA, PLA
— — N|Z1C [V
Tha conbents -S'Hq. ; A
Qecomulaber i filled I""Pll'.é [75" t a1 = |-
bﬁl\\q, last bﬂtb, P""h‘d S+ -
on the thack , and tee
Shocke poinltr 16 increcnad
by one,
271

FPLP

Description of Symbolic operation of Addressing mode Opcode o t Flags affected
PLP PLE
N|[Z1C
The, stabus mﬁ’-;t‘nr is ; P
g Imptied 2% tal-|iv|v
S‘n:,:t:\m the. tast bule G5 P
‘e
P onfe the s&‘m . B.0 and T ore
and the Slack pointer
. slac oi‘ig:,l‘cd.
s Increas.ed I:nione.
Resl

Description of ol ™
Mave the contenl of ™

Symbolic operation of Bow Flags affected Fixed tit pattern

My Mg My Mg Ma M2 M, M
oft ane it it Topas [T LT T T b Nz |V
L tar Hhe prowant
Cohl'en;B- Corry hnr.m {/ | = Sotvvvia
I it & T el =]
i,
1mr§ema Zerp Page| Mbsolute Zero page)| Mesaiuty £ Absolute ¥ (indirezt) ¥ | Accumulated (indirect X)
ap §
cuosn' 262 (2813 |2a 2 BRE|D Za |)
ey 5 joatl @ jon| e frot | T 11t 2 o
RoR
Description of Ra@wm Symbolic operation of 2e s Flags affected Fixad bit pattern
Mave the contents gj M, My Mo Ma Mg My Me M Mo —
ﬁg\\l’ ene Bit: Wike NilZ|C |V
aees. info Catry afrer - [=YRRavavdt-1
We present Contents c - |-
cotry gt qena ints BIFT
Tha rasult ie in M,
immediste | Zero Fage| Absoiute Zero pagek] Abseivte X Absolule Y [(Indirect)) Accumvriatod (ndirect X)
op
coe| * ol 2 e (T2 |T8|3 Gl T
t fevy 5 oot & fotl |G [tet]|T | 2 o
BT\
Description of Symbalic operation of Addressing mode Qpcode n t Flags afected
RT) 2T ' N
Ratirn & meim s g . Z|elv
an tervupl has bean Berviced . IH\Pl'I»d- ao V @
Tus Statvl vegisber and ram Svi=5 L R
covntyr sre resberad ;rm ok, ¥ PC
and e steck peinter 18 adjushed . 847 =5 B&.D and I are

alys qgt;eg.hd .

272

BT

Dascription of Symbalic operation of Addressing mode Optade n t Flags affected
2T 2T Nz
Reforn be Cally rom fram c|v
a Servetine . Mo vekorn 4 YPc Implied o | @
tha inabrockan fgu«_.‘.mb the, QA — -] =| =
calt (l-.fall.-..»}na ISR} The BC. o - e

Preatam cCounter L reabered
frort the Wlachk and incremenhd
oy 1. The sback pointer 18 adjusted,

SBC
Descrprion of sBeM Symoolic cperation of S®EC M Flags aféacted Fixed bit pathern
sumtract the conten® of) _
M trer wiith baorrow A-(ry-C = A
h%'l:\' “:.cdmu.::ar Th — N Z C V
e se s e Borrow + C Ihvvv ol
result e lq.S\' in the. accomuloter S B
ond any Borrows In the. carvy
fleay
Immediate | Zero Page| Absolute [Zero pageX] Absolute) Absoiute Y| (indireet) Y| Accumuttor Godirest X3
1
onl® |E2|2 [esf2 Eo!3 [Fa|2 [Fo|2 [F= |2 [Fi |2 £l |2
t |vev| 2 lonol 3 [ont| 4 jou|a [lof |4 W 4" 1o (S tso e loco
SEC
Oescrigtion of Syrnbalic operation of Addressing mode Opcode T Flags affected
SEC SEC
e N|Z|C |V
The corry flag is st | —= Teplied a2 |, [~
o one
SED
Dascription of Symbolic operation of Addressing mode Opeode n t Flags affected
—y e NIZ|C IV
The decimal [logis Sex .
he one . Al orithmaebic \a | =D IMPlud Fs | 2 _ _

R in Ben (e, ADe ond

She vate accardna h .
B.r_b? Dis sek o |
SET
Descnption of Symbolic operation of Addressing mode Opcode n t Flags affected
SEY Su1 Nlzlc
T infarrupt mask bir L= T Lt v
M oSat 5 | Se sisakling mplied s el -
illl‘qryupl“.

Lin Set e |,

273

SThA

Description of STam Symbalic operation of STa M Flags affected Fixed bit patfern

The conbents aj e
aesumulabor is gt [
Inta the lacatian . NjZ|C |V loovvvol

\metediate | Zero Page| Absbiute [Zero pageX| Aossiote x| Absalute ¥ [(Indirect) Y Accurmulator] (ndirect X)
oP
cone| ™ 85| 2 [sp[3 [o5)2 |2ol3 |23|3 |2 B2
L 3 ook 4 o |a o1 |8 |0 |S |io|e |loo @ [poo)
STx
Description of 5T M Symbolic operation of STx M Flags affected Fixed bit pattern
The Contenls x s pul
P contenty o e o N|{ZIC |V
e the lecafian M. loo vy ile
| Immediate | Zevo Page| Absoivte (Zero page¥] Absclute X Absolute Y I(Indirect) Y| A (ndirect ¥)
f o] .
' coot| |2 (83 (2] 2
Ty 3 lon|4 o la 1o

5TY
Description of STYm Symbalic operation of ST Flags affected Fixed bit pattern
The conteniof ¥ s put
Y=m Njz e |V loovvioo

infe Mhe locafion M.

Immediak | Zero Page| Misviute |ZeropageX| Absolute | AbsolubeY {Indinect} Y [Accusmiatod ndirect X}
ap
coot| 4|2 |8c| D |24 2
L 3 leoja o1 4 o
Tax
Descrption of Syenbolic operation of Addressing mode Cpeode 0 t Flags affected
T TAX -
NLlZ|C |V
Tha contenls s e .
A - IF\P\lul AA 1 2 3 2N P

accumulator it cepiad
s the X nj.m\-cr,

274

Tax

Description of Symbolic operation of Addressing mode Opode n t Flags affected
Tay TAY
& et N|Z|C |V
e Conlen The.
Qecomularar :5 Cepl-ﬂd A -.-Y L'PIF"eA. Aa t 2 [- —_
ik the ¥ renicter
Ta&X
Descriphion of Syrhbalic operation of Addressing mode Opcgde n % Flags aMecred
Ts% TaX
Tha contents L2 ; . \ NI1Z|c |V
stoch poinler it copled S--x MP""'&' Ba 2 P I U
infe the ¥ reqisher
TXHA
Deseription of Symbolic operation of Addressing mode Opeode n Flags affected
T A, T A N -
_TXA _txa v
The corntents af the -
isler 16 Copied o= A ImP\'md oA [P P R
 fe ceccumualabec
TXS
Dascription of Symbolic operation of Addressing made Opcode n Flags affected
TXS THS
—_ N|Z|C |V
The contents wf the.
- * ; 1
% raginter b Copimd -= Implied DA [[P [P
k& e atnck poinher
Tya,
Daacription of Symbolic operation of Addressing mode Oprade n F Flags affected
TYA T A
N[Z|C|V
Tr
ha c,t;n\-m\\ of the Y =A Impﬁtd e) I
Y ftsl‘i"r in c‘.P'“d —_ |-

to Hu accumulatar

275

PABLE Al.2: Instruction set in numerical order of opcodes

In this table the following abbreviations are used:

Zp Zero page addressing mode

Abs Absolute addressing meode

Imm Immediate addressing mode

ZP,X Zero page indexed addressing mode
IP,Y

Abs ,X * Absolute indexed addressing mode
Abs,Y

(Ind),Y Indirect indexed addressing mode
(Ind,X) Indexed indirect addressing mode

{Ind) Indirect addressing mede

A Accumulator addressing mode

LSN Least significant nybble (e.g. A in &EA)
MSN Most significant nybble (e.g. E in &EA)

- Reserved for future expansion

276

BRK

BPL

JSR

BMI

RTI

BVC

RTS

BVS

BCC

LDY
Imm

BCS

CPY
Imm

BNE

CPX
Imm

BEQ

ORA
(Ind,X)

ORA
(Ind),Y

{Ind,X)
AND
(Ind),Y
EOR
{Ind,X)
EQR
(Ind),Y
ADC
(Ind,X)
ADC
(Ind),Y
STA
(Ind,X)
S5TA
(Ind),Y

LDA
(Ind,X)
LDA
(Ind},Y
CMP
{Ind,X)
CMP
(Ind),Y

SBC
{Ind,X)}

SBC
(Ind),Y

LDX
Imm

BIT
ZP

STY

STY
ZP,X

LDY
zp
LDY
ZP,X

CPY
ZP

5
ORA

ORA
ZP,X

AND
Zp

AND
7P, X

EOR
iP

EOR
ZP X

ADC
P

ADC
ZP,X
STA
zp
STA
Zp,X
LDA
zp
LBA
ZP,X
cMp
Zp
CMP
ZP,X
SBC
zP

SBC
P, X

]

ASL
Zp

ASL
ZP,X

ROL
P

ROL
IP,X

LSR
p

LSR
zp,X

ROR
FAY

ROR
Zp,X

5TX
FAY

STX
P, Y

LDX
FAY

LDX
7P,Y

DEC
P

DEC
ZP,X

INC
FAY

INC
ZP,X

277

PHP

CLC

PLP

SEC

PHA

CLI

PLA

SEI

DEY

TYA

TAY

CLV

INY

CLD

INX

SED

9

ORA
Imm

ORA
Abs,Y

Imm
AND
Abs,Y

ECR
Imm

EOR
Abs,Y

ADC

ADC
Abs,Y

STA
Abs,Y

LDA
Imm
LDA
Abs,Y
CMP
I'mm
CMpP
Abs,Y

SBC
Imm

SBC
Abs,Y

TXA

TXS

TAX

TSX

DEX

NOP

BIT
Abs

JMP
Abs

JMP

STY
Abs

LDY
Abs

D E
ORA ASL
Abs Abs
0ORA ASL

Abs,X Abs,X
AND ROL
Abs Abs
AND ROL

Abs,X Abs,X
EOR LSR
Abs Abs
EOR LSRR

Abs,X Abs,X
ADC ROR

(Ind) Abs Abs
ADC ROR

Abs ,X Abs,X
STA STX
Abs Abs
STA

Abs X
LDA LDX
Ahs Abs
LpA LDX

LDY

Abs,X Abs,X Abs,Y

CPY
Abs

CPX
Abs

CMP DEC
Abs Abs
CMP DEC
Abs,X Abs,X
SBC INC
Abs Abs
SBC INC
Abs,X Abs,X

Appendix 2 Full block diagram of
6502 architecture

- (pe3r1Two Iejunod uwexBoxd eyi woxF sdemyjed
ssaIppe [BUISIUT YiTM) IassedoadordTw zpgg 9yl Jo wexdeIp ¥201d

Z xipuaddy

N

sNg vlva

A

£

u-{—)

BH=4=)

278

<D

/AN

—] HId ~ T0d

1suno) wesbosy

HAY

pa
L4
~

snq ssaippy

&
~

1av

Appendix 3 Indexed indirect
addressing

There is one more 6502 addressing mode which we have not
covered in the book: indexed indirect addressing. This omission is
quite deliberate, for you are not likely to want to use this mode
of addressing in your work on the BBC Computer. The designers of
the 6502 included indexed indirect for a very specific purpose:
multiple peripheral programming.

In this appendix we shall first describe briefly the operation
of the indexed indirect mode, and then describe the sort of appli-
cation for which it is suitable.

Consider a list of pointers stored consecutively in memory.
Then the contents of the location to which any pointer is referenc-
ing can be loaded into the accumulator by writing LDA (PNTER,X),
where PNTER is the base address of the pointers and X is a suitable
even number. Similarly STA (PNTER,X) stores a copy of the accumu-
lator in the lecation pointed to by (PNTER,X). Only the X register
can be used for this purpose, just as only the Y register can be
used for indirect indexed addressing., Again, like indirect indexed
addressing, indexed indirect requires the location PNTER to be in
Zero page.

The diagram below illustrates the pair of instructions
LDA (PNTER1,X): STA (PNTER2,X), where X equals 6.

[~ /. ADDRTH; ADDR1L ACCUMULATOR

ADDRI1H
ADDRHL

(a) LDA (PNTERL,X)

+6

PNTER1

{a} LDA (PNTER1,X}

A /- ADDR2H; ADDR2L [J——— AcCUMULATOR

ADDR2ZH
ADDR2L

+6

PNTER2Z (b) STA (PNTER2,X)

{b) 5TA {PNTERZ2,X)

279

6, the contents of X, is added to the base address PNTERL to
give the location containing the low byte of the address, the
contents of which is ADDRIL. The next location will always contain
the high byte of the address, in (a) ADDRIH. Hence the contents of
the address ADDR1H; ADDRIL are put into the accumulator. Similarly,
in (b) the accumulator is put into ADDRZH; ADDR2L.

Now, the indexed indirect addressing mode cannot be usefully
used to access strings in memory by referring to a list of pointers
to those strings, such as we constructed in Section 7.6. The
reason for this is that each character of the string could then
only be accessed by using ordinary indexed addressing, and we can-
not combine both modes in the same instruction. That is, we cannot
write LDA (BASE,X),Y (it is unfortunate we cannot do this - it
would be a most powerful combination). Because most lists of
pointers in the sort of assembly programs we are likely to write
will be used to access a base address from which we will index,
indexed indirect is not of much use to us. The methods used in
Section 7.6 are still the best ones to use in these cases.

However, it is worth understanding the sort of applications
where indexed indirect is useful - the sort of applicatien, indeed,
for which the addressing mode was designed. Consider a whole
series of peripheral devices, say teletypes, each of which will be
serviced by one 6502 microprocessor. Each teletype is connected up
to its own specific VIA port {see Appendix 7). Each teletype is
sending a message to the microprocessor, which will be terminated
by a carriage return. As each character of the message is ready to
be processed, the VIA to which the teletype is connected will
interrupt the 6502, At this stage, the microprocessor will enter
an interrupt service routine which will interrogate in turn the
status registers of the VIAs to see which teletype has sent a
character. Since teletypes are very slow, the order of polling is
of no consequence: any multiple interrupt would be dealt with
quite transparently to the user of any of the teletypes.

Each teletype has a small section of memory reserved for it
which acts as a buffer. We shall assume here that the buffer is
never overfilled. Five sets of pointers are required for this sys-
tem, the order for the set of tables being arbitrary, although the
order for each table must be the same.

(a) TABLEl The addresses of the input register for the
incoming character from the teletype.

(b) TABLEZ2 The addresses of the buffers for the teletypes.

(¢} TABLE3 The addresses of output to the teletypes for
acknowledgement,

(d) STATUS Addresses of the status registers for the
teletypes.

(e) COPYTABLEZ A copy of TABLEZ.

280

(a)-(d) must be in zerv page, (e) can be anywhere. The function of
TABLE3 needs to be explained, When a key is pressed on a teletype,
the action of the print-hammer is caused not directly by this key
but by the computer reflecting the key. In this way, an instant
verification is performed that the correct data has been received.

Here, now, is the simplified code for performing this polling
sequence (we simplify by ilgnoring parity checking, among other
things):

1 LDX #2 * (NUMBER - 1)

2 LOGP1 LDA (STATUS,X)

3 BMI STOREDATA

b DEX

5 DEY

6 BPL LOGP1

7 BML OUT

B STOREDATA LDA (TABLET,X)

g STA (TABLE3,X)
10 CMP #&0D

1 BEQ ENDSTRING

12 STA (TABLEZ,X)
13 INC TABLE2,X

14 BNE OUT

15 INC TABLEZ+1,X
16 BNE OUT

17 ENDSTRING LDA COPYTABLE2,X
18 STA TABLEZ2,X

19 LDA COPYTABLE2+1,X
20 STA TABLE2+1,X
21 JSR ANALYSE

22 ouT

In line 1, NUMBER is the number of teletypes comnected. The
beauty of this program is that it will work for up to 32 teletypes,
with no change whatsoever required in the program (32 x 2 x 4 =
256, the limit of zero page).

In lines 2 to 7 we examine the status register of each VIA in

281

turn, beginning with the one at the top of the STATUS list. If

bit 7 is 1, this indicates that the teletype to which this VIA is
attached has sent a character, and we go to line 8 to process it.
Otherwise, we decrease X by 2, and look at the next status register
down the list. If we happen to go through the entire list without
finding the source of the interrupt (a ‘phantem' interrupt) we go
to some suitable exit code at line 22 onwards.

Assuming we find the appropriate teletype, we then load the
contents of the input and store it in the buffer (lines 8 and 9).
Notice how indexed indirect allows us to recover the appropriate
set of pointers by using just one index value (this is why the
tables must be arranged in the same order, of course). If we have
reached the end of the message (lines 9 and 10} we go to perform
some analysis in 17-21. Lines 17-20 reset the pointers in TABLEZ,
which have besn altered in lines 13-15, and line 21 jumps to a
subroutine which perfoirms some analysis on the basis of the message
(and which will output a line feed, when the analysis is complete).
During this analysis, interrupts will be enabled so that further
input can be received. One function of the ANALYSIS routine will
be to deal with the case where 2 or more teletypes have messages
to be analysed simultaneously, using some time-sharing principle
which need not concern us here.

If the end of the message is not yet reached, the current
character will be stored in the buffer (line 12} and then the
address of the buffer will be incremented by one to point to the
next free space., This is slower and more cumbrous than the indirect
indexed method used in 7.6, but it is suitable in this case since
teletypes are relatively slow anyway, and relatively few incremen-
tations are required (at least compared to the sorting requirements
of 7.6).

The size of this program is very small considering the complex
task it performs, and this is due entirely to the use of the
indexed indirect mode. The overall speed of processing is very
favourable too, and this is why the designers of the 6502 included
this addressing mode. Unfortunately, we are unlikely to be able to
profit from it on the BBC computer, About the only time we are
likely to use it, is in the case where we want a simple indirect
mode and the Y register is not available. In this case, using
indexed indirect with X equal to zerc will suffice, since LDA
(BASE),Y and LDA (BASE,X) give identical results when X and Y are
both zero.

282

Appendix 4 Floating point
representation

In this book we have only considered the integer (or fixed
point} representation of numbers. The discussion of the floating
point representation has been outside our scope. However, for the
sake of completeness, we will here discuss this representation,
although we will not be considering how arithmetic may be per-
formed upon such numbers.

The number four in base two is 100; if we divide by two we
obtain 10, or more suggestively 10.0; divide by two again and we
get 1.0, which is one, of course. Now it would seem reasonable to
write the result of dividing by two again as 0.1, by two yet again
at 0.01, and by two still again as 0.001; and so on. Hence 0.1 is
3, 0.01 is 4, 0.001 is &; and so on, This is bicimal representa-
tion, the direct counterpart to the base-ten decimal; and we refer
to the point as the bicimal point.

Any decimal can be written in bicimal; and any bicimal in
decimal, For example, 0.75 is 0.11 in bicimal; and 0.0101 in bici-
mal is 0.3125, Now, fractions which can be written as terminating
decimals may give recurring bicimals. For example é is 0.0011 im
bicimal. However, any fraction which terminates in bicimal will
terminate in decimal, because all such fractions will have a
denominator of a power of two, all of which terminate in decimal
(just keep halving 0,5 until you get there). It follows that there
may be a loss of precision in translating from decimal to bicimal
if we cannot use the recurrence notation (the dots over the rele-
vant repeating digits). Moreover, bicimal takes up many more
places than decimal, so we may have to round to get our decimal
into a fixed number of bicimal places, Hence, we see that a pos-
sible error can be introduced in translating from decimal to
bicimal (and vice versa if the number of significant figures
allocated to decimal output is fixed). This must be borne in mind
when dealing with floating point numbers {in assembler or in
BASIC), for in certain circumstances these rounding errors can
compound considerably, resulting in significant errors.

When storing bicimal numbers in a computer it is convenient to
first write them in a normalised form. So, we write 11011.01011 as
0.1101101011 x 2%, and 0.00010101011 as 0.10101011 x 273, for
example. The convention is to move the bicimal point until the
most significant digit is the one just after the point: that is,
move it right or left until all digits to the left of the point
are zero and the first digit to the right of the point is one. The
power of two attached to this adjusted number reflects the number

283

of moves that the bicimal point has had to make. Applying this
power to the adjusted number will set the bicimal point back to
its ggﬁrect place (5 places rightwards in the first case, i.e.
071101701011 + 11011.01011 as required, and 3 places leftwards in
the second). Thus the point is allowed to float across so that a
normalised form is achieved, and so we call the representation the
floating point representation. Whole numbers can also be repre-
sented in this way, of course, For example, 110001011 is
0.110001011 x 2%,

The BBC micro, and most others, use 5 bytes to represent such
numbers. The least significant byte represents the power, or as it
is usually called, the exponent. The next four bytes represent the
number, or as it is usually called, the mantissa. The cxponent is
in two's complement form with one difference: the sign bit is
reversed. Hence an exponent of &90 represents &10 or 16, whilst
870 represents -&10 or -16. The reason for this is connected with
the representation for zero. Clearly zero gives a zero mantissa
(which cannot be normalised since there is no ome). It is logical
to have the minimum expoment associated with this, which is the
maximum negative exponent., This is reasonable since a maximum
negative exponent is associated with the smallest number which
can be represented for any given mantissa. Without the change in
the sign bit this would give &80 00 00 00 00; with the change it
gives &00 00 00 00 00, much more sensible.

Apart from zero, all mantissas will have their most significant
bits as one. We can therefore assume that the most significant bit
is one, and use the actual bit in this position to reflect the
sign of the number: 0 is positive, 1 is negative.

Figure A4,1 shows the format for a floating peint number:
notice that the byte on the extreme left (carrying the exponent)
is the lowest in memory of the five. Moreover, in the next four,
the most significant byte is Iowest in memory, and the least
significant, kighest in memory. This is in distinction to integer
{fixed point) numbers, where the most significant byte is the
highest in memory, The comvention with integers is chosen to fit
in with the 6502 convention; with floating point, there are
standard routines for arithmetic and there is no gain in using the
specific convention of the 6502 microprocessor.

sign
bit
exponent mantissa (with leading one removed)
Byte 1 2 3 4 5
(lowest in {highest in
memory) memory)

Figure A4.1: Floating point storage in the BBC Computer

284

The larpest numerical values are, on the positive side
FF 7F FF FF FF and on the negative FF FF FF FF FF (i.e. *1.70141183
x 1038 to 9sf, the limit of precision in the BBC computer). The
smallest numerical values (apart from zero} are 00 00 00 00 01 and
00 80 00 00 O (i.e. *1.46936794 x 10-3% to 9sf).

In order to acquaint vourself with this representation, load
the monitor (program 10.6) and use CALLS%,X, with X set at various
values. For example:

X = 2500: CALLS%,X

Now type M 0600 and the address pointed to should be &25E4.
M 25E4 gives 8C 1C 40 00 00, which is &0.9C4 x 212 (i,e,
0.1001 1100 0100 x 2!2), Now moving the hexadecimal point across
each hex digit is equivalent to multiplying by 2%, so we obtain
&5C4, which is indeed 2500.

Again, X = -2500: CALLS%,X, gives 8C 9C 40 00 00 i.e.
-&p.9C4 x 212 or -89C4, as required. Remember, the sign bit of
the second byte is the sign of the whole number.

Finally, X = 0.3175: CALLS%,X gives 7F 20 00 00 00, which is
&0.A0 x 271 i.e. 0.0101, as required.

Try more yourself - you will soon become very familiar with
this form of storage,

285

Appendix 5 Flowchart symbols and
conventions used in this
book

Assignment of values

D Input/output

Q Decision
@ Start or stop

L.
S R
: : Structured flowchart symbol:
i |
N (i) FOR..... NEXT
l {ii) REPEAT..... UNTIL

(iii) REPEAT WHILE

286

Appendix 6 Linking programs on
the BBC Computer

(A) THE USE OF PAGE

In one sense, PAGE seems a pretty simple statement to use, Just
type PAGE = 82000, say, load your program from tape, or type NEW
and input a new program from the keyboard, and there you are, If
you have another program at 8E00, which isn't too big, it will
still be there when you want it. In this way, you can store as
many programs in memoTy as your computer can hold,

But there is more to PAGE than this, as these simple experiments
will show:

In &EGO put
i A% = "It works!"
20 PAGE = &2000
30 GOTO 10
40 P.~TOP

Type PAGE = &2000, NEW, and input

10 P. AS

20 BE = "It still works!"
30 PAGE = &3000

Lo GOTO 10

Finally type PAGE = &3000, NEW and input

10 P. BE
20 PAGE = &EOD
30 GOTO 40

Now follow these instructions, in each case noting what appears
on the screen:

(a) Type PAGE = &E00, RUN
(b} Type OLD, RUN

287

(¢} Type PAGE = 82000, OLD, PAGE = &E00, RUN
{d) Now press the ESCAPE key and type P.~TOP

(e) Type PAGE = &2000, OLD, PAGE = &E00, 50 REM, P.~TOP, LIST,
PAGE = &2000, LIST

(£) Finally type 782000 = &D: 742001 = 0: 782002 = 1:
782003 = 5: 742004 = %41, and LIST.

We can draw the following facts from these experiments:

(i) Changing the page does not change TOP, the first freo loca-
tion where variables can be stored (cf (a) and (c)).

(ii) TOP is reset to the top of the program in the current page
if we type OLD, or LIST, or ESCAPE (or with any program
error).

(iii) Programs can share the same variables in a common TOP
(cf (a), (b) and (c}).

(iv) When adding new lines to a program, it is PAGE which
dictates where the mew line will go, but if TOP does not
match, a program in another page will have its pointers
fouled up. Cf (e) and (f), where we cause the program in
PAGE 42000 to move up 5, so it begins at &2005. Of course,
if you want this to happen, the technique is useful, bhut...

Hence, we see that great care must be taken with PAGE. The most
usual use of PAGE is to store lots of programs in memory and to
pass manually from one to the other. The safest way to do this is
always to leave enough space at the top of each program for all
the dynamic variables and machine code. Then, always reset TOP by
using OLD.

For example, suppose one program is in &E00, a second in &2800
and a third in &4000. Program the soft keys as follows: f, — PA.=
&E00| |M OLD||M RUN|[M; £1 — PA. = 82800 |M OLD| M RUN| M, "etc. Now
you can pass effortlessly and safely between programs by pressing
the appropriate programmable key.

A second use of PAGE is to chain between programs in memory,
sharing variables. This is useful, but needs great care. You might
be tempted to feel that you can use PAGE to add procedures and
subroutines to a program. However, this is fraught with difficulty;
in any case, there is a much better way as we shall now see.

THE USE OF *LOAD

There is a very simple way of appending one program onto
another. Here is the method:

(a) Make sure that the program to be appended is stored on tape

with all its line numbers greater than the program in the
computer to which it is to be appended. With procedures,

288

and subroutines (BASIC or assembler), this is most conveni-
ently done by creating a library with all the line numbers
beginning at 30 000. Do not allow line numbers greater than
this in your normal programs. (Actually, you can append
programs with lower line numbers than the program in the
computer, but any GOTO's, IF THEN's or GOSUB's will not be
renumbered correctly. Indeed, the RENUMBER command will
even cope with line numbers which are the same! However, it
is safest to follow the advice given above.)

{b) Type P.ATOP-2, and note the value given.

{c) Type *LOAD " " XXXX, where XXXX is the number in (b), and
load up the subroutine from tape.

(d} Renumber if necessary.

(e) Type LIST or OLD to reset TOP, It is essential to reset TOP
when using *LOAD with BASIC programs. However, if you re-
numbered in (d), TOP will already have been reset, and so
this precaution will be unnecessary in that case.

Reference to Section 10.2 on the structure of a BASIC program
should help you to understand why this works.

289

Appendix 7 The user port

The user port on a model B is part of a 6552 Versatile Inter-
face Adapter (VIA). This is a fairly complex input/output chip,
which provides two ports, handshaking, interrupts, two timers and
a serial register. It is quite possible to write a book on the
applications of this chip, and there is not space here to do this.
However, information on the VIA in accessible and digestible form
is not easy to come by, and in this appendix, a brief but full
account is given of its workings. This should allow you to do most
of what you want with the user port,

A7.1 OVERVIEW OF THE 6522 VIA

(This section should be read quickly on first reading, and
returned to later.)

The VIA which is used to create the centronics printer port and
the user port is memory mapped into the locations &FE60 to &FE6F.
Table A7.1 shows the purpose of each location. Since port A is
used exclusively for the printer, we shall not consider it or its

associated control lines in any detail (though if you require
up to 10mA of buffered 'sink' current, port A could be used
without modification to the circuits).

port B at &FE60 has each of its bits connected to a correspond-
ing pin on the user port. There are also two control lines, CBl
and CB2, which are connected to the other two pins on the user
port: your manual contains the relevant circuit diagram. Each bit
of the port can either be used for output or for input: the data
direction register at &FE62 controls this.

The 6522 contains two timers, timerl being more complex than
timer2, and both are available for use. The VIA supports inter-
Tupts on both these timers, and also on each of the control lines
(CB1 and CB2 for the user port). There is also a serial register
which can output and accept bits one at a time and shift them
accordingly, and this can also generate interrupts. In the BBC
computer all user port interrupts vector through an address con-
tained in 80204 and &0205 (i.e. JMP (80204) is performed). This
means that the user can write his own interrupt service routines
in connection with port B, the serial register and the timers. The
interrupt enable register (&FEGE) controls which interrupts are
allowed: the interrupt flag register (&FESD) displays which items
are calling for an interrupt (regardless of whether they are
enabled), and bit 7 of this register is one if an interrupt is
asked for and enabled. Tables A7.2 and A7.3 show these registers.

250

There are two control registers: the peripheral control register
is concerned with the operation of the four control lines (CAl,
CA2, CB1, CB2); the top nybble controls CBl1 and CBZ, the bottom
CAl and CA2 {which are reserved for the printer port). The
auxiliary control register determines how the imput ports, serial
register and the timers behave. Tables A7.4 and A7.5 give the
details.

A7.2 CONFIGURING THE 6522 FOR INPUT/QUTPUT

Each bit of each port of a VIA can be programmed to act as an
input source or an output source. The data direction registers at
&FE62 and BFE63 are used to specify this, A ome in the relevant
position in the data direction register specifies output for the
corresponding bit in the port. A zero in the data direction regis-
ter specifies input for the corresponding bit in the port. Using
zero for input is a safeguard, for momentary power failures,
faults, resets etc. usually zeroise memory locations, and random
output is far more dangerous than random input.

Location &FE63 contains &FF, since all the bits on port A are
to be outputs to the printer and this location should not usually be
touched by the programmer. Location &FE62 controls the user port
and is at the disposal of the programmer. Here are some examples:

(a) All bits inputs: LDA #0

STA &FE62
{b) Bottom mybble outputs, top nybble inputs: LDA #&(0F
STA &FE62
(¢} 0dd bits outputs, even bits inputs: LDA #&AA
STA &FE62
(d) Bit 7 output, rest inputs: LDA #&80
STA &FE62

You can read the contents of port B even if one or more of its
bits are designated as outputs i.e. LDA &FE60 will always give a
valid reflection of the contents of &FE60. This is not true of
port A, however, where the bits can be validly read only if they
are deslgnated inputs - fortunately, port B and not port A is the
user port (port B is also a more powerful driver, and with suit-
able circuits, can drive solenoids etc.).

A7.3 HANDSHAKING

Suppose we wish to send data to a teletype. The teletype has
a parallel buffer which can store 8§ bits, we shall assume. So
we configure the userports to be all output (i,e. LDA #&FF: STA
&FE62)}, We deposit the byte we wish to send into port B (STA
&FE60, assuming the byte is in the accumulator), wait until the
teletype has processed the byte, and then send the next one.
But how do we know when the teletype is ready? And how does it
know when we are ready to send the next byte? The answer lies

in the concept of handshaking.
291

Port B has two control lines, CBl and CB2. CBl is always an
input, and so will be used to transmit the signal from the tele-
type; CBZ can be an input or an output, and in this case we will
use it as an output {(how we specify this will become clear in a
moment).

CB1

User

port Teletype

(a) The teletype is ready to Teceive data

User

poTt Teletype

CB2

(b) The microprocessor deposits a byte in Port B, and signals
to the teletype (the handshake)

User DATA
port

N Teletype
/)

7

{c) The data is transmitted and processed (e.g. a character
is printed)

Figure A7.1: An output handshake

Refer to Figure A7.1. The idea is that, when the teletype is
ready to receive a byte, it sends a signal on CBl to the user port
(A7.1). The microprocessor now deposits the byte in port B and
sends a signal on CB2 to the teletype indicating that output is
now valid (A7.1b). The teletype reads and processes the byte
(A7.1c), sends a signal on CBl asking for the next byte {A7.13),
and so the process continues.

This method of establishing connections between the user port
and the teletype (or any other peripheral) is called handshaking:
the teletype extends its 'hand' (signal on CBl), and the user port
extends its 'hand' in recognitionm (signal on CB2). Now the infor-
mation can pass between them. Sometimes CBl and CB2 are referred
to as strobes in this context: a strobe is simply an input and/or
putput line which indicates the availability of data to be trans-
ferred or the occurrence of a successful transfer. A strobe is
usually a short pulse, one or two cycles long.

292

CBl

User

port Teletype

{a} The teletype signals that it is ready to send data

User P DATA
port (Teletype

(b) The data is transmitted and perhaps processed

User

port Teletype

CB2

{c) The microprocessor signals that data has been
successfully received (the handshake)

Figure A7.2: An input handshake

Figure A7.2 shows the same idea when port B is used for input
(perhaps again from a teletype). When data is ready to be sent,
the teletype sends a signal on CBl indicating that data is ready
(A7.2a). The user port responds by reading in the data (A7.2b),
and sending a signal on CB2 indicating that the data has been
successfully read (A7.2c} - this is the handshake. Again the pro-
cess continues, with the teletype signalling the next byte is
ready for transmission (A7.2a).

Notice that for output the handshake takes place before the
data is sent, but that for input the handshake takes place after
the data has been read. This is because the handshake is always
finalised by the microprocessor.

Now the user port needs to provide the following facilities for
these handshaking activities (we focus here only on port B - port A
has almost identical features, but it is reserved for the printer
in the BBC Computer):

{a} To designate CB2 as an input or output line.

293

{b) To fix the levels of input of CB1 and CBZ if relevant (i.e.
is a signal to be interpreted as high to low voltage - a
falling edge, negative transition - or vice versa - a
rising edge, positive transition?)

These and other functions are the purpose of the top nybble of
the peripheral control register (&FE6C): Table A7.4 shows the 8
possible configurations of bits 5 to 7, which control CBZ, and the
two configurations of bit 4 which control CBI.

You will notice in this table reference to the interrupt flag
register, Bit 3 of this register will be set to 1 if there 1s an
active transition (as defined by the peripheral control register)
on CB2 and bit 4 if there is an active transition of CBl. Table
A7.3 shows the entire register, and we will consider other flags
later.

The difference in Table A7.4 between the handshaking and inde-
pendent input modes of CBZ lies in this: in the handshaking mode,
reading or writing to port B will clear bit 3 of the interrupt
flag register automatically (to make way for the next handshaking
operation), whereas in the independent mode one can read or write
to port B without the interrupt flag being cleared (this is useful
if CB2 is being used for a purpose unconnected with what occurs on
port B}.

However, in our applications here we are interested in the out-
put modes of CB2. The handshake output mode sets CB2 low when data
is written into port B by the microprocessor, and sets it high
again on an active transition of CBl. The pulse output mode sets
CB2 low for one clock cycle following a write to port B (a brief
strobe). The last two constant modes are useful if we wish to pro-
vide output signals directly under software control, independently
of what occurs at port B.

Now let us consider our output application again. We begin with
LDA #&FF: STA &FE62, to create an output port at B. We will assume
that active transition of CBl is negative, Thus we write:

LDA #&80
ORA '&FEGC
STA &FE6C

to configure CBl and CBZ as required (ORA then S5TA, so as to pre-
serve the information for port A)., The handshaking sequence is now:

BEGIN LDA #&10

WAIT BIT &FESD
BEQ WAIT
LDA OUTPUT
STA &FE6O

o W M

294

Repeating this, with suitable changes in line 4, is all that is
needed to output as much data as required. Lines 1-3 walt until
CBl goes active, signalled by bit 4 of the interrupt flag register
being set. At this stage, CBZ is automatically high (a feature of
handshake output mode}. Line 5 sets CB2 low and also clears the
CBl interrupt flag, all automatically. We can now return toc line 1
to wait for the next CBl signal. The signal on CB2, negative trans-
ition, has automatically cccurred at line 5, and no doubt the
teletype will respond in due course.

Consider now the input function. We set port B to input, and
configure CBl and CBZ as before. Lines 1 to 3 of the handshake are
as before. We then write:

4 LDA &FE6D
5 STA &FE6D
6 STA OUTPUT

We have to write the data back te pert B in line 5 in order to
activate the CB2 line: in handshake output mode CB2 is only acti-
vated on a write (port A does mot have this limitation, however,
CAZ being activated by a read or write).

One final point in this section. To guard against changes in
input before the input port is read - this is especially important
if the microprocessor is doing much more than just the wait
sequence in lines 1 te 3 - it is important to hold the input
stable. To achieve this, the VIA is provided with Iatches which
can protect input from corruption by changes on the input lines.
To set the latch on port B we write a one inte bit one of the
auxiliary control register (at &FEG6B} before entering the hand-
shake (this need only be done once). Hence we write LDA #202:

STA &FE6B. Other functions of the auxiliary control register will
be considered shortly.

A7.4 INTERRUPTS ON CB1 and CB2

If we consider the input application above, it is clear that it
is rather wasteful of processor time to wait until the teletype
sends its next byte. Few teletypes work faster than about 30 char-
acters per second, so the microprocessor could be doing other things
most of the time. One strategy is to inspect the CBl flag every
1/50 second - we will see how this is done in the next sectiom.
Another is to obtain an interrupt on CBl.

This 15 easily done: the interrupt emable register at &FEGE is
the relevant register - see Table A7,2, We need to set bit 4 to 1
to enable interrupts on CBl, Once this bit is set to 1, an inter-
Tupt will be generated as soom as bit 4 of the interrupt flag
register is set. In this case bit 7 of the flag register will also
be set - this is used by the interrupt servicing routine when it
is polling the potential causes of interrupt (see Section 9.3). In

295

the case of the BBC machine, if this bit is set, a test is made to
see if bit 1 of the enable and flag registers are also set. If
they are, the printer has caused the interrupt - if not, the user
port service routine will be entered by a JMP (&0204) .

Since hit 4 of the interrupt flag register may already be one,
it is essential to clear it before enabling the interrupt. This
can be done either by writing 1 to bit 4 of the flag register i.e.
LDA #&10: STA &FE6D; or by reading port B i.e. LDA &FE60. Clearly
the latter is slightly quicker, but not if taken together with the
enable for we can neatly write LDA #8&90: STA &FEGD: STA &FE6E, as
we will see below (writing one into bit 7 of the flag register
does nothing).

If vour interrupt routine is going at location &0D0O0 onwards,
you will write 780204 = 0: 780205 = &0D. Now all interrupts on CBl
(and on CB2, Tl, T2 and SR) will go to a routine at &0D00. The
routine will consist of lines 4-6, with 6 suitably amended and
expanded if necessary, and will end with JMP &DF09 (this restores
the registers and returns from interrupt]).

The interrupt enable register can only be altered by writing
ones into the relevant bit positions: writing zeros has no effect
at all, To enable CBl interrupts we must write a one into bit 4
with bit 7 equal to one: to disable CBl interrupts we write a one
into bit 4 with bit 7 equal to zeroc. Thus, to emable CBl: LDA #3%{:
STA &FE6E; and to disable: LDA #810: STA &FE6E, These operations
will only affect the CBl enable - all other bits will be
unaffected.

A7.5 USING THE PROGRAMMED TIMELRS

There are two timers in the 6522, and both are at the program-
mer's disposal. Timer2 is the casier, and we shall consider this
first.

Timer2 has two uses: it can generate a single time interval or
it can count pulses input to bit 6 of port B. Bit 5 of the auxili-
ary control register determines which (see Table A7.5). The timer's
counter consists of two bytes: the low byte at &FE68 and the high
at &FE69. Always load the low byte first: loading the high byte
clears the interrupt flag and starts the timing operatiom,

Suppose we wish to create an interval of 10,000 (&2710) clock
cycles and then generate an interrupt. Here is the coding:

0 LDA #&DF

1 AND &FE6B Set bit 5 to zero

2 STA &FE6B

3 LDA #8A0 Clear T2 interrupt flag
4 STA &FE6D

5 STA 4FEGE Enable T2 interrupts

296

6 LDA #810 Load low byte with &10

7 STA &FE68

8 LDA #827 high byte with &27 and start
9 STA &FE69 the countdown

If desired, this configuration can be done from BASIC using the
query (?) operator,

In the service routine at &D00, just before JMP &DF09 is en-
countered, the statement LDA AFE68 must appear: this clears the T2
interrupt flag.

Note that a clock cycle here is one half the 2 mHz machine
cycle e,g, 10,000 cycles is 1/100th of a second. This is because
the clocking is done by the phase 2 clock which times memory
operations, and this runs at 1 mHz.

The pulse counting mode is used to access an external clock or
to synchronise with a set of external events. Changing lines 0 and
1 above to LDA #&20: ORA &FE6B will count 10,000 pulses incoming
on bit 6 of port B. ’

Timerl has more interesting applications. Instead of genmerating
just one time interval it can generate a whole series of intervals,
Bit 6 of the auxiliary control register determines this (Table
A7.5). When the high byte is loaded countdown will begin: if bit 6
of the auxiliary control register is 1, at the end of countdown
the counter will be re-loaded with the original contents of the
counters which are stored in latches (at &FE66 and &FE67), and
countdown will begin again.

Consider the teletype input again. We can generate an interrupt
every 1/50th of a second by loading timerl with 20,000 (84E20)} in
continuous mode:

0 LDA #840

1 ORA &FEEB Set bit 6 to one

2 STA &FEGB

3 LDA #5C0 t Clear Tl interrupt flag

4 STA &FE6D

5 STA &FEBE Enable Tl interrupts

6 LDA #320 ; Load counter and latch with low byte
7 STA &FE64

8 LDA #&LE Load counter and latch with high

g STA &FEBS ‘ byte and start count

Again in the service routine at &D00 include LDA &FE6€4 to clear
the T1 interrupt flag. And again, BASIC can be used for the con-
figuration if desired.

297

It is possible to alter the contents of the latches while the
countdown is proceeding without affecting it in its present run.
On the next run, however, new contents will be loaded. This is
particularly useful with the other feature of timerl, the genera-
tion of pulses out of bit 7 of port B (clearly this bit must be
configured as output)., In the continucus mode (bit 6 = 1), the
level on bit 7 of port B will begin low, then at timeout will go
high, then at timeout again low, etc. Hence it is possible to
create complicated waveforms, if the contents of the latches are
also changed.

If we want to generate considerably longer delays, we can build
this into our interrupt service routine. Let lines 0-9 be as
before, but suppose we require an operation to occur every 1
second. To do this, we will require to reserve one location for
the service routine, say &8F. The idea is that we load it with 50
and decrement it every interrupt, When it reaches zero we perform
the required operation.

As an example of this, let us write a small routine which
swtiches logical colour 3 from flashing yellow-blue (actual colour
11) to flashing cyan-red (actual colour 14), the transition occur-
ring automatically every second. We will configure as before
(lines 0 to 9), stored but not yet called. We also require a
location, say &8E, where we store the actual colour. Begin by
loading it with &0B(11). At &D00 we put:

i INC &8F 11 EOR #&05
2 LDA &8F 12 STA &8E

3 CMP #50 13 LDA #0

4 BNE OUT 14 JSR &FFEE
5 LDA #19 15 JSR &FFEE
6 JSR &FFEE 16 JSR &FFEE
7 LDA #3 17 STA &8F

8 JSR &FFEE 18 OUT LDA &FE6L
9 LDA &BE 19 JMP &DF09
10 JSR &FFEE

Notice the trick used in line 11 which switches bits 0 and 2 of
&8E so that &0B -+ &0E and &0E -~ &0B. The beauty of this interrupt
method is that the timer will decrement on its next cycle regard-
less of whether the last interrupt has been completely serviced.
As long as the last interrupt is serviced before the next one
occurs the timing will be almost exact,

Finally change &204 and &205 to 0 and &D, respectively, load

&8F with zero, and call the configuring program (lines 0 to 9).
The effects will be seen in all the colour modes: try mode 1 first.

298

A7.6 THE SHIFT REGISTER

The 6522 has a shift register (at &FE6A) which will input or
output bits one at a time under timed control. The timing can
either be provided by an external clock, the internal machine
clock or else timer2. Bits 2, 3 and 4 of the auxiliary control
register determine which (Table A7.5).

If the teletype in our previous examples lacked a parallel
buffer, it would be possible to input and output bits synchron-
ously using timber2 and the shift register, To achieve hand~
shaking, it will be necessary to choose the mode which disables
the timer each time, and to provide a suitable set of inter-
rupts, The software turns out to be quite tricky, and it is
better to use a UART (such as the 6551 ACIA which does not need
an external clock}: this will sort out all the parity and
framing errors, and provide the stop and start bits. This can
generate its own interrupts, but the circuitry might be easier
if comnections are made to the user port, utilising the VIA's
interrupts instead (by using the expansion bus). Of course,
for a 300 baud teletype the computer's own RS423 port can be
used, and handshaking here is very simple to implement.

There are really only two main uses for the serial registers as
far as we are concerned. Cne is to provide a source of memory
clock pulses, or to receive them from another computer, so as to
achieve synchronisation between the computers. Use (10 or 110 at
bits 2-4 of the auxiliary contrcl register to achieve this. The
other is to output a variety of square waves independently of
microprocessor control. This allows frequencies from about 2 Hz

Address Function
FE6O Port B
FE61 Port A, with handshaking (printer)
FE62 Data direction register for Port B
FE63 Data direction register for Port A (printer)
FE64 Timerl counter, low byte
FE&5 Timerl counter, high byte
FE66 Timerl latch, low byte
FE&7 Timerl latch, high byte
FE68 Timer2 counter, low byte
FE69 Timer2 counter, high byte
FEGA Serial shift register
FE6B Auxiliary control register
FE&C Peripheral control register
FE&D Interrupt flag register
FE6E Interrupt enable register
FE6F Port A, no handshaking (printer)

Table A7.1 User port and printer VIA

299

{loading the shift register with &0F and timer? with LEFFF) to
500 kHz (loading the shift register with &55 and timer2 with 1).
0100 at bits 2-5 of the auxiliary control register is the com-
figuration in this case.

7 6 5 4 3 2 1 0
Set or
clear T1 T2 CB1 CB2 SR CAl CA2
control
bit
1 = interrupt enabled; 0 = interrupt disabled (bits 0 to 6)
1 = writing a one sets that bit to 1 k (bit 7)
0 = writing a one sets that bit to 0

Table A7.2 Interrupt enable register

7 € 5 4 3 2 1 0
lIRQITllTZICBlICBZlSRICA]]CA2J

Bit 7 is 1 if any of bits O to 6 are set to 1 in both this register
and the interrupt enable register.

Bits 0-6 are set and cleared by the following operations:

Bit Set by Cleared by #*
0 Active transition on CA2 Reading or writing &FE6l
1 Active transition on CAl Reading or writing &FE6l

Completion of 8 shifts (not | Reading or writing &FE6A
in free-running mode)

3 Active transition of CB2 Reading or writing &FE60
4 Active transition of CBl Reading or writing &FE60
5 Time-out of TimerZ Reading &FE68 or writing 4FE69
6 Time-out of Timerl Reading &FE64 or writing &FE65

*NB. Interrupt flags can also be c¢leared by writing 1 into the bit
position.

Table A7.3 Interrupt flag register

300

T0¢

Bit 4: 0 Active transition on CBlL is high to low

1 Active transition on CBl is low to high

Bits 5-7: 000
001
010
011
100
101
110
111

CB2 handshake input mode | Active
CB2 independent " mode (B2 1s
CB2 handshake " mode | Active
CB2 independent " mode CB2 is
€B2 handshake output mode | Active
CBZ pulse output mode CB2 is

Constant low output on CB2
Constant high output on CB2

transition on
high to low

transition on
low to high

transition on
high to low

Bit 4 of interrupt flag
register is set on
active transition

Bit 3 of
interrupt flag
register is set
on active
transition

Table A7.4 Peripheral control register (bits 4-7 only; bits 0-3

are identical in function but are for port A)

Z0%

Bit 0:

Bit 1:

Bits 2-4:

Bit 5:

Bit 6:

Bit 7:

- O

000

010
011
100
101
110
111

=g RO RO

Disable input latch on Port A
Enable input latch on Port A

Disable input latch on Port B
Enable input latch on Port B

Disable shift register
Shift in at Timer2 rate

Shift in at machine clock rate iilcggtput
Shift in at extermal clock rate on CBl
Free-running output at Timer2 rate

Shift out at Timer2 rate A1l input

Shift out at machine clock rate on CB2
Shift out at external clock rate on CBl

Decrement Timer2 in single-interval mode using machine clock
Decrement Timer2 on external pulses via bit 6 of Port B

Single-interval mode on Timerl
Free-running mode on Timerl

Disable output via bit 7 of Port B - Timerl only
Enable output via bit 7 of Port B - Timerl only

Table A7.5 Auxiliary control register

Appendix 8 Some important zZero
page locations

Location (Hex) Purpose

00-01 LOMEM

02-03 Top of dynamic variables in BASIC

04-05 Pointer to first free area in BASIC stack

06-07 HIMEM

0A (&0B) + &0A = current positien in BASIC text,
either in a program or in the input buffer (&700
onwards)

0B-0C Beginning of current piece of BASIC text

12-13 Tap

18 PAGE

19-1A As 0B, 0C, but used for expression evaluation and
conversion

1B As 0OA, but for 19, 1A

2A-2D Accumulator for integer work

2E-35 First floating peint accumulator

3B-42 Second floating point accumulator

42-47 Reserved as a work area for calculatien

4B-4C Location of current variable

70-8F Guaranteed free for user's assembly programs

D7 Keyboard scan value of current key pressed

D8 Shift/caps key lock:

10 sets shift lock
20 sets caps lock
30 releases locks
40 sets both locks

DB Shift key pressed if equals FF; zero otherwise
FD-FE Location of last error message output
FF Negative of ESCAPE pressed.

303

Appendix 9 Operating System
Differences

Almost all the information in this book is independent of the
particular version of the operating system (0S] your computer
uses:; but there are a few major differences which need to be high-
lighted here between 0S 0.1 and all later versions (i.e. 0S5 1.0
onwards). Use *FX0O to discover which 05 you have.

A9.1 INTERRUPTS
(a) Vectored interrupts

0S 1.0 onwards supports a vectored interrupt on IRQ. After
checking for BRK, the computer indirects to the interrupt service
routine through &204 and &205. It is therefore possible to incor-
porate top priority interrupts into the system, testing for a
particular device before jumping to the standard service routine.
It is also possible to add one's own code to existing interrupts,
but care must be taken to differentiate between all the possible
sources of interrupt. In general, it is better to use the user
port interrupt if possible. In all cases, however, it is essential
not to use CLl in your own service routines. (Recall that when the
6502 responds to IRQ it puts the status register on the stack and
then sets the interrupt disable flay automatically. The flag will
be cleared on RT1 when the old status register is recovered.)

(b) Returning from interrupt

JMP &DF0Y is specific to 05 0.1. In later versions, the equiva-
lent is easily found by disassembly of the interrupt service
routine; alternatively you may write your own return sequence,
which will normally be PLA : TAY : PLA : TAX : PLA : RTI.

(c) BRK

0S 1.0 onwards preserves the status register on the stack on a
BRK, and saves the accumulator in &FC (rather than in &DE in
0S 0.13.

A9.2 MEMORY-MAPPED INPUT/OUTPUT ACCESS

It is not possible to access any first processor memory directly
from a second processor down the Tube, In particular, this applies
to the user port from &FEGD to 8FE6F. 0S 1.0 onwards provides an
OSBYTE routine to accomplish access from the otheyr side of the

304

Tube. Instead of LDA &FE60 one writes LDA #&96 : LDX #&60 : JSR
&FFF4, and instead of LDY #&FQ : STY &FE62 one writes LDA #R97 :
LDX #&62 : LDY #&FO : JSR &FFF4, In general one reads from

8FEXX by putting 496 in the accumulator and XX in the X-register,
and one writes to SFEXX by putting &5%7 in the accumulator, XX in
the X-register and the value to be written in Y-register: in both
cases the subroutine is at &FFF4,

I[f you do not think that the routine you write will be used on
a second processor then there is no need to worry about this, but
if there is any chance of your having the Tube at some future
date, then to ensure compatibility, use this OSBYTE formation.
(By the same token, if you intend to use the Tube then you will
need to use OSWORD with zero in the accumulater to accomplish the
equivalent of INPUT, instead of the interpreter's routine
recommended in Chapter 6.)

A9.3 TURNING OFF THE SCREEN WHEN USING THE PRINTER

In the high-resolution screen copy it was necessary to precede
every output to the printer with LDA #1 : JSR OSWRCH to protect
the screen display. 0S 1.0 onwards provides an easier way to do
this, using an OSBYTE call. One needs to execute the following

code once onpiy at the beginning of the program:

LDA #3 : LDX #2 : JSR &FFF4

At the end of the program one restores the screen with:

LDA #3 : LDX #0 : JSR &FFFL

305

Assembly Language Programming for the BBC Microcomputer

Two software cassettes are available to accompany this book.
They cost £9.00 each, if hought separately, or £16.00 for
both when ordered together.

TAPE 1

Contains all the listings in Chapters 2 to 9
Plys these two extra programs

GRAPHPLOT which draws up to two graphs in the highest
resolution available on your computer. (1f vou have
an Epson printer, you can also cobtain a hard copy of
the graphs}

and
DISASSEMBLER which will translate any secction of machine
code back into standard 6502 mnemonics. This program

is written entirely in BASIC, se it can be loaded into
any page.

Cassette 1 [ISBN 0 333 34587 8 £9.00 (inc, VAT)

TAPE 2

Contains all the listings in Chapter 10 and in the
Answer section
Plus these two extra programs

FINDCODE which will locate any sectieon of code in
a program and display all the lines containing that
code

and
REPLACE which will locate any section of code and replace
it by any other

Cassette 2 ISBN O 333 35016 2 £9.00 (inc. VAT)

These cassettes are available through all major bookshops ...
but in case of difficulty order direct from

Globe Book Services
Canada Road
Byfleet

Surrey KT14 7JL

£5.00 each

or
£16.00 for the two

Every BBC Microcomputer is equipped with a powerful assembler.

Sooner or later you will want to learn how to use it: this book will
teach you. No prior knowledge of assembly language programming
is assumed, and the reader is taken from the basics to their
complex implementation.

The book will appeal to three sorts of reader. First, all those
owners of BBC Microcomputers (Model A or B) who want to
extend their knowledge into machine code. To help them in their
self-study, the author has provided many exercises together with
full solutions. Second, the teacher or student of computer science
who wants a text for a structured course; the book is based on
the author’s own experience and approach as a teacher. Third,
those who already know how to program in BASIC and are
considering buying a BBC Microcomputer. The author’s
demonstration of the powers of this machine’s assembler and
operating system will persuade many to take that decision.

The book contains some 73 listings, many of which are helpful
utilities, such as a full machine code monitor, a suite of machine
code sorting programs, a high resolution screen copy and a
program compactor.

Software Tapes

Two cassettes are available to accompany the book, each
containing two additional programs not contained in the book.

Further details of these may be found inside the back of the book.

ISBN 0 333 34585 1

