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Preface 
 
 
 
 

With the rapid advance of computer technology has come a substantial reduction 
in the price of computer hardware. In the coming years the price of peripheral 
devices will also tumble. This means that users with a limited budget, who 
previously had access only to the most elementary computing devices, will soon 
be able to afford the most sophisticated computers. They will also be able to 
escape from the limitation of tabular numerical output and buy microprocessor 
attachments for television monitors or inexpensive special-purpose  colour 
graphics devices. Software, however, does not appear to be getting cheaper. 

Because of the enormous capital expenditure that was required to set up 
graphical output in the past, both for machines and for software, the subject of 
computer graphics has so far been the preserve of large research groups. This 
inaccessibility has led to a mystique growing up around the subject and it has 
thus achieved a false reputation for difficulty. This book is an attempt to lay the 
ghost of complexity; it will also show that complicated (and hence expensive) 
software packages, which are naturally of great value in research organisations, 
need not frighten away the average computer user. For most purposes these 
packages are unnecessary. This book, as well as being an introduction to 
computer graphics, may be considered a (very inexpensive) software package: it 
is a lot cheaper than commercially available packages! Naturally, because of this 
fundamental approach, users have to achieve a reasonable understanding of their 
graphics device before pictures, other than those provided, can be drawn. This 
need not be a disadvantage; the amount of groundwork required will be seen to 
be very limited and, as a direct result, the user'  s knowledge grows along with the, 
package and he is far less likely to misinterpret any of the graphical procedures. 
References are given and relevant further reading material is also recommended 
in order to expand the reader'  s horizons in the subject. 

It is assumed that the reader has an elementary knowledge of Cartesian 
coordinate geometry (the authors recommend books detailed in Cohn, 1961, 
Coxeter, 1974 and McCrae, 1953 - see the references) and also the BASIC 
programming language (see the BBC User Guide - page numbers are not given 
because this excellent handbook is constantly being updated as the BBC micro is 
being extended). Many interesting programming exercises are proposed, and these 
should raise the standard of the reader'  s BASIC expertise. BASIC is a 
universally popular language that is available (in various guises) on all types of 
microcomputer,  so the programs can be easily adjusted to run on micros other 
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than the Model B: it is also a good medium for transmitting the algorithms that are 
used in computer graphics, so enabling readers to translate these ideas readily into 
any other computer language of their choice. 

The concepts necessary for the study of computer graphics are organised as a 
combination of theory and worked examples; these are introduced as and when 
they are needed in the natural progression of the subject. Program listings that 
form part of the examples may be considered not only as algorithms that describe 
solutions to fundamental graphical problems, but also as a computer graphics 
software package in BAS1C, or just as programs to draw patterns. Alongside the 
examples are a series of exercises that expand on these ideas. The practical 
problems that are implicit in programming the various concepts of computer 
graphics are often more a source of difficulty to the student than the concepts 
themselves. Therefore it is essential that readers implement many of the program 
listings given in the book in order to understand the algorithms, as well as 
attempt a large number of the exercises. As an extra learning aid, two companion 
audio-cassette tapes are being made available; these contain most of the larger 
program listings that are given in this book. If readers are frightened by the 
mathematics they should run the programs first before studying the theory. 

This approach to the subject has been used with great success in teaching 
computer graphics to undergraduates  and postgraduates at Royal Holloway 
College. Quickly producing apparently complex pictures results in the positive 
feedback of enthusiastic interest. The ability to construct pictures on line-drawing 
and colour interactive graphics VDUs makes a long-lasting impression on the 
student; and the step by step approach brings him very quickly to the level of 
very sophisticated computer graphics. That level is outside the scope of this 
book, but where necessary the reader will find relevant references to guide him 
into the more advanced topics. 

This book is aimed at those who are competent BASIC programmers but who 
are complete beginners in graphics. It contains the elementary ideas and basic 
information about pixel and two-dimensional  graphics which must be mastered 
before attempting the more involved ideas of character and three-dimensional 
graphics. This is followed by a section relating to character graphics and the 
display of data (in line drawings and colour) - probably the most important non- 
specialised, commercial use of computer graphics. Later chapters introduce the 
reader to the geometry of three-dimensional  space, and to a variety of projections 
of this space on to the two-dimensional  space of graphics devices. The related 
problems of hidden lines and hidden surfaces, as well as the construction of 
complex three-dimensional  objects, are dealt with in detail. Finally we return to 
advanced ideas in BASIC programming and give a large worked example of a 
video game (to be found on cassette 2). 

Graphics is one of the most rapidly expanding areas of computer science. It is 
being used more and more in the fields of Computer Aided Design (C.A.D.), 
Computer Assisted Management (C.A.M.) and Computer Assisted Learning 
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(C.A.L.). At one time it was only the big corporations such as aircraft and 
automobile manufacturers who used these techniques, but now most companies 
are realising the potential and financial savings of these ideas. What is more, not 
only is computer graphics profitable, it is fun! The BBC microcomputer  is an 
ideal machine on which to learn the basics of computer graphics, and an excellent 
springboard up to the most sophisticated (and expensive) graphics devices. 

We hope this book will display some of the excitement and enthusiasm for 
computer graphics experienced by us, our colleagues and students. To 
demonstrate just how useful computer drawings are for illustrating books and 
pamphlets, all the pictures in the following chapters were drawn by computer 
specifically for this book. 

 
Ian O. Angell 
Brian J. Jones 
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This book may be read at a number of different levels. Firstly, it can be 
considered as a recipe book of graphics programs for those who simply want to 
draw complex pictures with their BBC microcomputer. We naturally hope that 
the reader, having drawn these figures, will be inspired to delve deeper into the 
book in order to understand how and why the programs were constructed. 
Secondly, some of the programs can be used as a package to produce and to label 
data diagrams (pie-charts, histograms and graphs) for business and laboratory 
applications. Finally, and the main objective in writing the book, it is an 
introductory text to computer graphics that leads the reader from the elementary 
notions of the subject to such advanced topics as character graphics, construction 
of three-dimensional  objects and hidden surface (and line) algorithms. 

The complex programs given 1ater in the book are much too involved to be 
compiled as single listings; furthermore, there is a great deal of repetition in the 
use of elementary algorithms. Therefore the top down or modular approach is 
used in writing and in explaining programs. The solution to each major graphics 
problem is conceived as a series of solutions to sub problems. These sub problems 
can be further broken down into a set of problems to be solved (modules). Such 
modules are programmed in the form of BAS1C procedures. Each is given an 
identifier (in lower case characters) and will solve a particular subtask. 
Submodules are then combined to solve the major graphics problem. The program 
listings present the algorithms that are needed for the solution of subtasks, and the 
naming of the procedures makes an understanding of the algorithms easier. We 
use lower case characters for procedure identifiers (and groupings of procedures 
in the text) only: all other program variables are in 
upper case characters to avoid confusion. 

Two cassette tapes are available to accompany the text; they contain all the 
larger listings in the book, as well as the data for diagrams and character sets 
used in later programs (which would otherwise have to be constructed by the 
readers themselves - a rather time-consuming  process). The first cassette consists 
of the two- and three-dimensional  geometrical programs, and the second contains 
the character graphic manipulation, diagram construction and video games etc. 

A list of complete programs is given at the end of each chapter, together with 
suitable data values, for those who want nothing more than to run these 
programs. 1n fact it is a good idea for everyone, including the more serious 
readers, to LOAD the relevant programs from the tape and run them before 
reading any particular chapter. 

There are many REMarks in the program listings, however, and hence some 
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of the programs approach the storage limits of the BBC micro. 1n these cases 
you should delete the REMarks before saving the programs. To make the listings 
easy to read we advise readers to L1STOl the programs in MODE 7. We have 
placed a REMark in red before each procedure (on lines with numbers that end in 
0) so that they stand out: all other REMarks are in green (on lines with numbers 
that end in 9). You may find that the latter REMarks take up too much store in 
which case you should strip them away by typing AUT09, 10 and by holding the 
RETURN key down. Even then some of the programs are too big to fit into the 
store, in which case you must LOAD them after setting PAGE=&1100. 

As an example of what to expect we give the program that is required to draw 
figure 1.1, a drawing of a body of revolution in which all the hidden surfaces 
have been suppressed. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.1 
 

The program requires the listings 2.1 (‘start’), 2.2 (two functions FN X and FN 
Y), 2.3 (‘setorigin’), 2.4 (‘moveto’), 2.5 (‘lineto’) and 2.7 (‘triangle’). This 
combination of procedures will be called '  libl'  , and it was designed for drawing 
line figures on the television screen. 

To '  lib1'   must be added listings 3.3 (‘angle’), 8.1 (‘multt3'    and '  idR3’), 8.2 
(‘tran3’), 8.3 (‘scale3’), 8.4 (‘rot3’), 9.1 (‘1ook3’) and 9.2 (‘main program’). 
Procedures, which when combined we call '  lib3'  , are used for transforming and 
for observing objects in three-dimensional  space. 

Listing 10.5 (‘revbod’) is also needed, together with the '  scene3'   procedure 
given in listing 1.1. 
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Listing 1.1 
 

6000 REM scene3 / flying saucer 
6010 DEF PROCscene3 
6020 LOCAL I% 
6030 DIM X(12),Y(12),XD(6),YD(6) 
6040 DIM A(4,4),B(4,4),R(4,4) 
6050 DATA 0,3, 3,2, 5,1, 5,0, 4,-1, 0,-3 
6060 RESTORE 
6069 REM INPUT horizontal data 
6070 NUMV=5 
6080 INPUT"NUMBER OF HORIZONTAL LINES",NUMH 
6090 INPUT"INITIAL ROTATION",PHI 
6099 REM READ definition set 
6100 FOR I%=1 TO NUMV+1 
6110 READ XD(I%),YD(I%) 
6120 NEXT I% 
6130 PROCidR3 : PROClook3 
6140 PROCrevbod 
6150 ENDPROC 

 
Figure 1.1 requires this data HORIZ = 12, VERT = 9, EX = 1 , EY = 2, EZ = 3, 
DX = 0, DY = 0, DZ = 0, number of horizontal lines; NUMH = 16 and initial 
rotation PHI = 0. Each value has to be typed in individually, when requested by 
the machine. Run the program with different data values. What happens if 
HORIZ = 6 and VERT = 4 and the other values stay the same? Set HORIZ = 16, 
VERT = 12, EX = 1 , EY = -2, EZ = 3, DX = 1, DY = 0 and DZ = 0. Try NUMH 
= 20, PHI= 0.1. You will have to read up to and including chapter 10 to 
understand the details of what is happening. 

This example illustrates the reasoning behind the layout of this book. 
Assuming that you are a fast typist, or that you have bought the accompanying 
cassettes, then a relatively complex three-dimensional  picture cal1 be constructed 
very quickly with a minimum of effort. Even one-finger typists (like the 
authors) will have little difficulty in implementing this and the other programs, 
before they go on to study the book in detail. 

We hope that this example will inspire you to implement all the programs in 
this book, to try most of the examples, and then to go on and draw your very own 
computer graphics pictures. 

Now read the rest of our book and we wish you many happy hours with your 
BBC microcomputer. 
 



 

 
 
 
 
 

1 Graphics Operations of the BBC 
Model B Microcomputer 

 
 
 
 

Throughout the course of this book it will be assumed that the BASIC 
programming language of the BBC micro is reasonably familiar to the reader. In 
this first chapter, therefore, we shall be looking at some of the BASIC commands     
those concerned wholly or partly with graphics. The display capabilities of the 
micro will be explored by means of a series of example programs and simple 
exercises. In the chapters that follow we shall use this knowledge to develop a 
sound understanding, both practical and mathematical, of computer graphics. 

Initially we shall consider the hardware and software facilities that are available 
for producing pictures. On the BBC computer there is a choice of eight different 
display MODEs numbered 0 to 7 (the last of which is the special TELETEXT 
mode which is discussed separately in chapter 13). All the modes produce 
television pictures by using raster scan technology; this is also true of most of the 
newer commercial mini and main-frame computers. An area of memory at least 
1K(ilo)byte long (1 Kbyte = 28 bytes = 1K for short), known as the screen 
memory, is reserved out of the available RAM (Random Access Memory    the 
area available for programming use) to hold the display information for the screen. 
This memory is examined, bit by bit, as the electron beam sweeps across the raster 
screen. The display is composed of dots or pixels (from picture- cells) each of 
which, in the simplest case of modes 0, 3, 4 and 6, is represented 
by a single bit (a binary on/off switch) in the memory. Whenever a binary-on is 
detected during the raster scan, the beam is switched on for a short period, so 
producing a dot of light on the screen. in the other modes more than one bit 
corresponds to each pixel (see later). The screen can be considered in two ways; 
either as a grid of individual points that are addressed by graphics commands or 
as a grid of blocks in which characters can be placed by text commands. 

 
 

The MODE Command 
 

On the BBC micro there is a palette of sixteen different actual colours/effects 
(numbered 0 to 15) and the MODE command is used to decide how many 
different colours from this palette will be available and what type of display is 
used. 
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MODE N switches to display mode N and decides how much memory must 
be set aside for the screen memory. The number of pixels (known as the 
resolution) and TEXT characters available, as well as their physical size, alter 
with each MODE. The various modes are detailed in table 1.1. 

 
Table 1.1 

 
MODE  TEXT characters Graphics pixels Number of  Memory  Pixel 
 (column x row) (horizontal x 

vertical) 
colours used  

0 80 x 32 640 × 256 2 20K 2 × 4 
1 40 x 32 320 × 256 4 20K 4 × 4 
2 20 x 32 160 × 256 16 20K 8 × 4 
3 80 x 25  2 16K  
4 40 x 32 320 × 256 2 10K 2 × 4 
5 20 x 32 160 × 256 4 10K 8 × 4 
6 40 x 25  2 8K  
7 TELETEXT 40 x 25 80 × 75 16 1K  

 
In this chapter neither the TELETEXT mode (7), which is dealt with 

separately in chapter 13, nor the two text-only MODEs (3 and 6) will be 
considered. 1n the two-colour modes (0 to 4) each pixel is represented by one bit 
in the memory. This bit defines which logical colour is used for that pixel and 
initially it is set to display a white pixel for a logical 1 and a black pixel for a 
logical 0. It is possible to change these default assignments (see listing 1.9) so 
that any actual colour may be displayed for either logical colour. In the four- 
colour modes (1 and 5) two bits of memory are used to represent each pixel. 
These two bits represent, in binary notation, a number between 0 and 3 which is 
the numerical code of the logical colour displayed for that pixel. This allows us 
to distinguish between four types of pixel and to use a different colour for each 
type. In the sixteen-colour mode (2) four bits are used per pixel to make up a 
logical colour between 0 and 15. For all the standard graphics modes the number 
of pixels vertically is 256; however, since more memory is required to represent a 
sixteen-colour pixel compared to a four-colour pixel, the number of points 
available horizontally varies inversely with the number of colours used. 

 
Screen Memory 

 
This type of screen picture is referred to as a memory mapped display since it 
corresponds directly to the contents of an area of memory. On the BBC micro the 
memory used for the display, called the screen memory, starts at location 
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HIMEM (which is reset by the MODE command) and ends at location 32767 
(the end of RAM). A simple exploration of how the screen is affected by changing 
the contents of the memory can be made with a program such as listing 1.1 . 

 
Listing 1.1 

 
10 REPEAT 
20 INPUT'" Which mode ",M 
30 MODE M 
40 ?HIMEM=137 
50 UNTIL FALSE 

 
This program uses the indirection operator ‘?’ (see the user guide) to indicate the 
intention of placing a number (VALUE) in the memory location with address 
HIMEM. This is the first location of the display file and it holds the information 
for the top left-hand corner of the screen. Run the program and select mode 4 (or 
0). Since each location, or byte, contains eight binary bits, the first eight pixels on 
the display are affected in such two-colour modes. These change to show a 
pattern of dots that is equivalent to the binary representation of the VALUE, in 
this case 10001001. Run the program again but now choose a four-colour mode 
(1 or 5). This time only four pixels will be affected since two bits are used per 
pixel. Try the same program with the sixteen-colour mode (2) and you will see 
that only two pixels are now affected since four bits per pixel are used. Table 1.2 
shows how the eight bits in one byte are split up by different modes to represent 
the logical colours of the different number of pixels that use the specific value 
10001001. 

From the above we see that it is possible to construct a complete picture by 
storing various values in the locations of the display file. This is tedious for two 
colour pictures, and extremely complicated for pictures with a greater number of 
colours. Obviously we need a simpler method for altering the contents of the 
display file. BASIC provides the graphics commands that deal precisely with this 
problem. The first command to be considered is PLOT, a very complicated 
command that offers many options, as we shall see later. For the time being, 
however, we shall limit ourselves to using just three options, PLOT 69, PLOT 4 
and PLOT 5. Two of these are considered so important that they are given 
alternative names: PLOT 4 is MOVE and PLOT 5 is DRAW. 

Because the number of pixels and their relative positions are MODE- 
dependent, a new object is defined for the BBC micro, the addressable point (or 
point for short). All the graphics commands treat the display as a grid of 1280 
addressable points horizontally by 1024 addressable points vertically (1 310 720 
in total). Each point is uniquely defined by a pair of integers such that point (X, 
Y) is X addressable points to the left and Y points above the screen origin (point 
(0, 0) at the bottom left-hand corner of the screen). We have already seen that the 
number of available pixels is mode-dependent;  in fact each pixel is composed 



4 Advanced Graphics with the BBC Model B Microcomputer  
 
 
 
 

Table 1.2 
 

Two-colour MODES 
1  0  0  0  1  0  0  1 

pixel 1 =  B7        = 1 = logical colour 1 
pixel 2 = B6       = 0 = logical colour 0 
pixel 3 =  B5      = 0 = logical colour 0 
pixel 4 =   B4     = 0 = 1ogical colour 0 
pixel 5 =    B3    = 1 = logical colour 1 
pixel 6 =     B2   = 0 = logical colour 0 
pixel 7 =      B1  = 0 = logical colour 0 
pixel 8 =       B0 = 1 = logical colour 1 

Four-colour MODES 
 

1  0  0  0  1  0  0  1 
pixel 1 =  B7                                           B3                                            = 11 = logical colour 3 
pixel 2 =          B6                                            B2                                = 00 = logical colour 0 
pixel 3 =                    B5                                           B1                    = 00 = logical colour 0 
pixel 4 =                              B4                                          B0        = 01 = logical colour 1 

 
Sixteen-colour MODE 

1 0  0 0 1 0 0 1  
pixel 1 =  B7 B5  B3  B1  = 1010 = logical colour 10 
pixel 2 = B6 B4  B3  B0 = 0001 = logical colour 1 

of a small block of addressable points (see the last column of table 1.1). This 
correspondence  between points and pixels is all worked out by the computer and 
means that, since we are working with addressable points, we can switch between 
MODEs without having to change the programs. Any command that affects one 
point will actually affect the whole pixel that contains this point. The use of 
points is a great help when changing between MODEs since point (640, 
512) always represents the middle of the screen, whereas if we counted in pixels 
then pixel (80, 128) is close to the left side of the screen in mode 0, one-quarter 
of the way across the screen in mode 1 and the middle of the screen for mode 2 
only. The graphics commands help in constructing pictures by allowing us to 
control a graphics pen, which is initially positioned over point (0, 0). 

 
PLOT 4, X, Y or MOVE X, Y moves the pen from its current position and 
places it above the pixel that contains the point (X, Y). 
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PLOT 69, X, Y moves the pen to the point (X, Y) and plots a pixel there. 
PLDT 5, X, Y or DRAW X, Y draws a line from the pen’s current position to 
the point (X, Y). 

 
After the execution of these commands the pen remains over the last point 

that was visited, while awaiting the next command. Before examining the other 
more advanced graphics commands, a simple example and some exercises will 
serve to demonstrate what can be achieved with only the few commands that 
have been dealt with so far. 

 
Example 1.1 
PLOT 69 can be used to scatter pixel dots over the screen. The program in listing 
1.2 illustrates the flexibility of addressing the pixels via the overlying grid of 
addressable points. 

 
Listing 1.2 

 
10 INPUT"Which mode",M : MODE M 
20 REPEAT 
30 PLOT 69,RND(1280),RND(1024) 
40 UNTIL FALSE 

 
Exercise 1.1 
Alter listing 1.2 to DRAW lines, either between the random points as they are 
generated or from the middle (point (640, 512)) to each point. 

 
Exercise 1.2 
Write a program to calculate the position of lines that form a grid on the screen. 
DRAW them by using two FOR. . .NEXT loops (one for horizontal lines, the 
other for vertical lines). 

 
Exercise 1.3 
Write a program that accepts the INPUT of N pairs of addressable point 
coordinates from the keyboard, and then DRAWs an irregular polygon of N sides 
by joining the points in order. (Remember to join the last point to the first.) 

 
 

PRINT, LIST and VDU 
 

So far we have not discussed the most obvious method of changing the display, 
namely the text commands PRINT (PRINT TAB), LIST and VDU (consult the 
user manual for a full description of these commands). This is because these use 
character-size text blocks and are designed primarily for use with low-resolution 
graphics. This will be dealt with in chapter 5, but since the BBC micro allows 
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high-resolution  and low-resolution graphics to be freely intermixed we shall give 
a minor example here. Suppose we alter the program from exercise 1.2 to draw a 
grid of the appropriate size for character blocks. If we run the program, select a 
MODE and press control E (mix text and graphics) followed by LIST, followed 
by control D (separate text and graphics), we get a display similar to figure 1.1, 
which shows the size and position of the character blocks. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.1 
 

Example 1.2 
We can use the PLOT command to demonstrate the high-resolution  capabilities 
of the BBC micro by drawing fractals (see Mandelbrot, 1977). 

To draw a simple fractal we proceed as follows. Imagine a square with sides 
of length 4n. This may be divided into 16 smaller squares, each with sides of 
length 4n  1; the smaller squares are numbered 1 to 16 in accordance with the 
pattern of figure 1.2. Four of these smaller squares, numbers 2, 8, 9 and 15, are 
rearranged to produce figure 1.3. 

Each of the squares in the pattern is now split up into 16 even smaller squares 
in the same way and these are similarly rearranged. This process is repeated until 
we have squares with sides of length 1. The resulting fractal pattern consists 
entirely of unit squares which we can PLOT 69 as single pixels (since we know 
how many pixels are available in each mode we can work out the area covered 
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by one pixel in terms of addressable points). The program in listing 1.3 starts from 
a square with sides of length 64, which is 43; thus in the program there must be 
three FOR. . .NEXT 1oops nested inside each other. The final picture 
produced is shown in figure 1.4. 

 
Listing 1.3 

 
10 MODE 1 
20 D1M X(16),Y(16) 
29 REM assign an X and Y coordinate to each square 
30 FOR 1%=1 TO 4 
40 FOR J%=1 TO 4 
50 K%=4'1%+J%-4 
60 X(K%)=J%-3 : Y(K%)=1%-3 
70 NEXT J% : NEXT1% 
79 REM move squares 2,8,9 and 15 
80 X(2)=0 : Y(2)=-3 
90 X(8)=2 : Y(8)=0 

100 X(9)=-3 : Y(9)=-1 
110 X(15)=-1 : Y(15)=2 
119 REM plot each square inside a square inside a square as 

a single pixel 
120 FOR 1%=1 TO 16 
130 FOR J%=1 TO 16 
140 FOR K%=1 TO 16 
150 XX=16'X(1%)+4'X(J%)+X(K%) 
160 YY=16'Y(1%)+4'Y(J%)+Y(K%) 
170 PLOT 69,640+XX'4,512+YY'4 
180 NEXT K% : NEXT J% : NEXT 1% 
190 END 

 
We shall now consider the options that affect the colour of the lines and the 

points that are placed on the screen. There are two commands that allow us to 
select a new logical colour (one affects text and the other affects graphics). 

COLOUR COL is the command used to change text colours. COL is an 
integer between 0 and the number of colours available in the present mode, and 
represents the new foreground colour for text. If we use COLOUR 128 + COL 
we can change the background colour of the text. All subsequent printing of 
characters will be affected by this command. 

 

13 14 15 16 

9 10 11 12 

5 6 7 8 

1 2 3 4 

Figure 1.2 
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Figure 1.3 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.4 
 
 

GCOL G, COL (0    G    4) is the command that affects the colour produced by 
further PLOT (and DRAW) commands. As with COLOUR above, COL can select 
a foreground colour and the colour for the lines and points plotted, or with GCOL 
G, 128 + COL a background colour. Graphics background colours will be seen 
only when a CLG (clear graphics) command is executed, so filling the whole of 
the graphics area with the background colour. 

Before we go on to explain the other part of the GCOL command (the G 
option), try the program in listing 1.4 which uses the simplest form of GCOL 
(GCGL 0) to change the colour that is used for drawing lines. This sort of 
pattern, joining equivalent points on two curves, is known as a Lissajous figure. 

The G-parameter in the GCOL command affects the way in which the colours 
are added to the screen. The effect produced by various values of G are explained 
opposite. (For further explanation of the operators AND, EOR and OR see the user 
guide.) 
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Listing 1.4 
 

9 REM Lissajous figures 
10 MODE 2 
20 MOVE 1140,512 
30 FOR I=0 TO 2*PI STEP PI/100 
39 REM calculate the 2 points on 2 curves and join with 

a line drawn in a random colour 
40 S=SIN(I) : C=COS(I) 
50 S2=SIN(2*I) : C2=COS(2*I) 
60 X1=640+C^3*500 : Y1=512+S^3*500 
70 R=(C2^3+S2^3)*500 
80 X2=640+R*C : Y2=512+R*S 
90 GCOL 0,RND(7) 

100 MOVE X1,Y1 : DRAW X2,Y2 
110 NEXT I 

 
 

G Operator  Effect 
 

0 REPLACE  All pixels affected are changed to the colour that is specified 
by COL 

1 OR  Pixels affected become the colour that is given by their 
present (logical) colour OR COL. For example, in mode 1 a 
pixel that was colour 1 (binary 01) replotted in colour 2 
(binary 10) would become colour 3 (binary 11 = 01 OR 10) 

2 AND  Pixels affected become the colour that is given by their 
present (logical) colour AND COL. Thus, in mode 2 a pixel 
that was colour 5 (binary 0101) replotted in colour 6 (binary 
0l10) would become colour 4 (binary 0100 = 0101 AND 
0110) 

3 EOR  Pixels affected become the colour that is given by their 
present (logical) colour EOR COL. For example, in mode 2 a 
pixel that was colour 5 (binary 0101) replotted in colour 7 
(binary 0111) would become colour 2 (binary 0010 = 0101 
EOR 0111). It is worth noting that two identical EOR 
operations have the effect of cancelling each other out. 1f we 
were to PLOT the same pixel again with colour 7 it would be 
returned to colour 5 

4 INVERT  Pixels affected become the colour that is given by inverting 
all the binary digits in their present (logical) colour. Note 
that this is exactly the same as EOR with 15 (binary 1111). 
Thus, in mode 2 a pixel that was colour 5 (binary 0101) 
replotted in any colour would become colour 10 (binary 
1010 = 0101 EOR 1111) 
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Exercise 1.4 
Experiment with the program in listing 1.4 by using different GCOL options and 
perhaps by making the colours change in a non-random way. Try different 
equations for calculating the radius at each angle of the Lissajous figures. 

 
Example 1.3 
Using these options for the GCOL command we can produce simple programs 
that generate seemingly complex patterns. Listing 1.5 gives a program that uses 
option 3 (EOR) for GCOL combined with a method of creating complicated 
patterns. 

On a display that is composed of discrete points (pixels), angled lines will be 
drawn as a series of short, horizontal or vertical steps. Many of the steps on the 
lines will overlap when two such lines are drawn close together at slightly 
different angles. Consider figure 1.5, which is drawn by listing 1.5. The lines that 
form the central area overlap each other many times and so this area would have 
been solid white if EGR had not been used. However those pixels that lie on an 
even number of lines are not affected (as noted above) and only those that are 
PLOTted an odd number of times are lit up. This produces the striking pattern at 
the middle of the figure. On the other hand the outer area of the pattern is 
produced by holes (of pixels not lying on any line) that are left by the line steps. 

 
Listing 1.5 

 
9 REM joins points around a square to form a Moire pattern 

10 MODE1 
20 GCOL3,3 
30 FOR I%=0 TO 1023 STEP 12 
40 MOVE I%+128,0 
50 DRAW (1023-I%)+128,1023 
60 MOVE 128,I% 
70 DRAW 1023+128,1023-I% 
80 NEXT I% 

 
Exercise 1.5 
Alter listing 1.5 to INPUT the value of the STEP-size used and also INPUT the 
variable that indicates which GCOL option is to be used. 

 
Example 1.4: Simple Animation 
We note from listing 1.5 that the EOR option ensured that the display changed 
with each new command, even if the previous command was repeated by 
DRAWing the same point, or line. This property may be used to display an object 
briefly by drawing it twice    the first to put it on the screen and the second to 
take it off. Listing 1.6 moves a dot around the screen by PLOTting it at its new 
position and immediately PLOTting its last position again to remove the old 
point. 
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Listing 1.6 
 

10 MODE 2 : VDU 19,0,6,0,0,0 
20 GCOL 3,1 
30 SPEED=8 : X=0 : Y=0 
40 XADD=SPEED : YADD=SPEED 
50 PLOT69,X,Y 
60 REPEAT : OLDX=X : OLDY=Y 
70 X=X+XADD : IF X > 1279-SPEED OR X < SPEED THEN XADD=-XADD : 

SOUND 1,-15,200,1 
80 Y=Y+YADD : IF Y > 1023-SPEED OR Y < SPEED THEN YADD=-YADD : 

SOUND 2,-15,100,1 
90 PLOT 69,X,Y 

100 PLOT 69,OLDX,OLDY 
110 UNTIL FALSE 

 
Example 1.5 
We may extend this program to allow keyboard control of the moving point 
(listing 1.7). The cursor control keys (either singly or in combination) enable the 
point to move in eight separate directions under our control. If a ‘p’ is typed then 
the point leaves a trailing line that indicates its past movements: if a ‘q’ is typed 
then the point ceases to leave this trail. 

This type of animation is an important and commonly used technique. We 
shall use it extensively both in programs such as the game in chapter 15, and in 
programs such as the ‘cursor’ routine in chapter 6. 
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Listing 1.7 
 

10 MODE 1 
20 GCOL 3,1 
30 X=0 : Y=0 
40 PLOT69,X,Y 
50 REPEAT 
60 XADD=0 : YADD=0 
70 OLDX=X : OLDY=Y 
79 REM check cursor keys for direction of movement 
80 IF INKEY(-58) AND Y < 1019 THEN YADD=4 
90 IF INKEY(-42) AND Y > 0 THEN YADD=-4 

100 IF INKEY(-26) AND X > 0 THEN XADD=-4 
110 IF INKEY(-122) AND X < 1275 THEN XADD=4 
119 REM check 'p' to  leave a trail 
120 IF INKEY(-56) THEN GCOL 0,1 
130 IF INKEY(-17) THEN GCOL 3,1 
140 IF XADD=0 AND YADD=0 THEN 80 
150 X=X+XADD : Y=Y+YADD 
160 PLOT 69,X,Y 
170 PLOT 69,OLDX,OLDY 
180 UNTIL FALSE 

 
Example 1.6: Relative Plotting 
All the PLOT commands that have been given so far have used the absolute 
coordinates of the points that we were drawing; however, there are equivalent 
relative commands for PLOTting. These commands move the pen to the position 
that is X points to the left of and Y points above the original point. Listing 1.8 
uses the relative version of the DRAW option to produce an animated effect over 
a large area simply by changing the lines around the edge of the area. 

 
Listing 1.8 

 
10 MODE 2 : UP=255 : ACROSS=159 
20 X=0 : Y=0 : DIF=1 : I%=1 
30 REPEAT 
39 REM draw the ever decreasing or ever increasing rectangles 
40 GCOL 0,I% 
50 MOVE X,Y 
60 PLOT 1,0,UP*4 : PLOT 1,ACROSS*8,0 
70 MOVE X,Y 
80 PLOT 1,ACROSS*8,0 : PLOT 1,0,UP*4 
90 X=X+DIF*8 : Y=Y+DIF*4 

100 UP=UP-2*DIF : ACROSS=ACROSS-2*DIF 
109 REM if rectangle is a trivial line then start drawing outward 

if it is the outer rectangle then draw inwards 
110 IF ACROSS<0 OR ACROSS=159 THEN DIF=-DIF : I%=(I% MOD 7)+1 
120 UNTIL FALSE 

 
 

Logical and Actual Colours (VDU 19 and VDU 20) 
 

On the BBC microcomputer  there is a palette of sixteen different colours/effects 
known as actual colours, any of which can be assigned to an available logical 
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colour. We can redefine the relationship between logical and actual colours with 
the VDU 19 command. The format of this command is the characters VDU 19 
followed by a list of five integers, these numbers being the code for the logical 
colour, the code for the actual colour and three zeros (to allow for future 
‘expansion of the number of colours in the palette). The program in listing 1.9 
allows us to see all the colours available in each mode, and to redefine them. 
VDU 20 will restore all logical colours to their original (default) settings. 

We can make a simplified interpretation of the pixels on a colour television 
screen by imagining them as groups of three dots of light that are packed closely 
together at the vertices of an equilateral triangle. For each pixel there is one red, 

 
Listing 1.9 

 
9 REM N(I) is the number of colours in mode I. 

C(I,J) is the actual colour of logical colour J in mode I 
10 DIM N(6),C(6,15) 
20 FOR M=0 TO 6: READ N(M) : NEXT 
30 FOR M=0 TO 6 : FOR C=0 TO N(M)-1 
40 READ C(M,C) 
50 NEXT C : NEXT M 
60 REPEAT : CLS : INPUT "Which mode ",M 
70 MODE M 
80 PRINT TAB(0,1);"MODE ";M;" : ";N(M);" COLOURS" 
90 PRINT TAB(0,3);"LOGICAL ACTUAL" 
99 REM for given mode draw a table of logical/actual relationships 

100 FOR I=0 TO N(M)-1 
110 COLOUR 128+0 : COLOUR (N(M)-1) MOD 8 
120 PRINT TAB(2,I+4);I 
130 PRINT TAB(7,I+4);"= "; 
140 COLOUR 128+I : PRINT" "; 
150 COLOUR 128+0 : PRINT"  ";C(M,I) 
160 NEXT I 
170 COLOUR 128+0 : COLOUR (N(M)-1) MOD 8 
179 REM"change array C for a new logical/actual relation 
180 PRINT TAB(0,21); : 

INPUT"Do you want to alter colour settings ",A$ 
190 IF A$<>"Y" THEN 260 
200 PRINT"Alter LOGICAL colour "; : VDU 8,8,8 : INPUT A 
210 PRINT"to be ACTUAL  colour "; : VDU 8,8,8 : INPUT B 
220 A=A MOD N(M) : B=B MOD 16 
229 REM"change the display table 
230 VDU 19,A,B,0,0,0 : C(M,A)=B 
240 PRINT TAB(14,A+4);C(M,A);" " 
250 GOTO 180 
260 UNTIL FALSE 
270 MODE 7 
280 END 
289 REM"DATA about mode/colour 
290 DATA 2,4,16,2,2,4,2 
300 DATA 0,7 
310 DATA 0,1,3,7 
320 DATA 0,1,2,3,4,5,6,7,8,9,10,11,12,12,14,15 
330 DATA 0,7 
340 DATA 0,7 
350 DATA 0,1,3,7 
360 DATA 0,7 
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one green and one blue dot, and the binary value of the actual colour is used to 
control the illumination of the three different dots. A location in the screen 
memory holds the information that indicates the logical colour of a particular 
pixel, and the equivalent actual colour to be displayed is looked up by the 
computer. The lowest three bits (bits 0 to 2) of the actual colour are used to 
decide whether the red, green and blue dots of that pixel are on or off. Our eyes 
contain only three types of colour sensor (red, green and blue). Our brains take 
the signals from the three dots and combine them into a single pixel of composite 
colour. So if the last three bits of the actual colour are 111, equivalent to colour 7, 
we get red plus green plus blue, which corresponds to white light. The other 
colour codes, when written in binary form, can be translated in this way: see 
table 1.3. 

 
Table 1.3 

 

Colour Number Binary Illuminated dots  

Black 0 000  
Red 1 001  Red 
Green 2 010 Green  
Yellow 3 011 Green  + Red 
Blue 4 100 Blue  
Purple 5 101 Blue  + Red 
Cyan 6 110 Blue  +  Green  
White 7 111 Blue  +  Green  + Red 

 
If the actual colour has the fourth bit set (bit 3), then the colour will flash 

between the colour that corresponds to the lower three bits and the inverse of this 
colour, that is colour EOR 7 (binary 111). The speed of flashing depends on a 
counter in the computer, and the setting can be changed by the *FX9 and *FX10 
calls to the computer. This counter is at location &251; it is loaded first with the 
value stored at &252 which is then decremented every 1/100th of a second until 
zero is reached. Then the second colour is displayed while the counter goes from 
the value at &253 to zero, and the process is repeated. Listing 1.10 shows this 
process in action in mode 2. Change the values at &252 and &253 and rerun the 
program to see their effect. 

 
Exercise 1.6 
Experiment with different colours by using the programs from this chapter. 
Certain colour combinations can be too complicated for an ordinary television 
screen to handle. Unless you are using an expensive monitor rather than a 
television screen, the combination of flashing colours for the program in listing 
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Listing 1.10 
 

10 MODE 2 
20 VDU 23,1,0;0;0;0; 
30 COLOUR 9 
40 *FX10,99 
50 *FX9,99 
60 PRINT "THIS SHOWS THE FLASH COUNTER" 
70 COLOUR 13 
80 REPEAT PRINT TAB(0,1) : PRINT ?(&251) DIV 10 : UNTIL FALSE 

 
1.5 should produce a rather interesting effect of waves washing across the screen. 

 
Example 1.7: Colour Animation 
We can produce more animated effects by using flashing and non-flashing 
colours. Listing 1.11 shows some interesting techniques of colour animation. The 
first part of the program (which produces the boundary) is particularly useful 
because the display, once set up, needs no maintenance. The boundary is a 
sequence of blocks that is made up of alternate blocks of flashing blue/yellow 
and flashing yellow/blue foreground colours. On seeing this our brains are 
tricked into believing that the yellow and blue colours are moving around the 
boundary sequence. The second part of the program simply scrolls the words 
‘THIS IS YOUR BBC COMPUTER SPEAKING’ in different colours up the 
screen. 

 
Listing 1.11 

 
10 MODE 2 
19 REM print boundary 
20 FOR I%=0 TO 1 
30 COLOUR 128+11+I% 
40 FOR X%=0 TO 9 
50 PRINT TAB(X%*2+I%,0);" " : PRINT TAB(X%*2+1-I%,29);" " 
60 NEXT X% 
70 FOR Y%=0 TO 14 
80 PRINT TAB(0,2*Y%+I%);" " : PRINT TAB(19,2*Y%+1-I%);" " 
90 NEXT Y% 

100 NEXT I% 
109 REM read message 
110 DIM A$(7) 
120 FOR I%=1 TO 7 : READ A$(I%) : NEXT I% 
130 DATA " HELLO  ","  THIS  "," IS "," YOUR ", 

" B.B.C. ","COMPUTER","SPEAKING" 
140 C%=1 
150 REPEAT 
159 REM scroll message 
160 FOR I%=1 TO 28 
170 COLOUR 128+C% : COLOUR (C% EOR 7) 
180 PRINT TAB(1,I%);SPC(5);A$(C%);SPC(5) 
190 C%=(C% MOD 7)+1 
200 NEXT I% 
210 C%=(C% MOD 7)+1 
220 UNTIL FALSE 
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Exercise 1.7 
Write text and colour versions of the bouncing point program and the other 
animation programs. In your programs move characters instead of pixels around 
the screen. 

 
Filling in Areas 

 
The BBC micro has still more PLOT options, some of which deal with drawing 
dotted lines where only every other pixel in their path is illuminated. Try filling 
the MODE 0 screen with dotted white horizontal lines on a black background by 
using the dotted equivalent of DRAW, that is PLOT 21. It is possible that some 
areas appear pale purple while others are pale green. This is because the size of 
the points plotted is almost as small as the three-coloured dots that make up the 
colours and in some areas the points lie more towards the green side of the 
triangle while in others they are more to the red or the blue sides. Try redefining 
the background and foreground colours of the display to see what other effects 
can be produced. 

Now look at the group of PLOT commands that fill in triangles. The most 
important of these is PLOT 85, the absolute foreground colour version (see the 
user guide). This command constructs a triangle between the point currently 
being plotted and the last two points visited, and the area enclosed is filled with 
the current graphics colour. As a simple example, try typing the following 
commands, which will produce a large red triangle. 

 
MODE 2 : GCOL 0, 1 : MOVE 100, 100 : DRAW 500, 900 : PLGT 85, 
1000, 100 

 
Example 1.8 
The program in listing 1.12 produces a pattern by PLOTting a series of 
equilateral triangles in varying orientations and in different colours. It then uses 
the VDU 19 command to redefine each colour in turn, so producing the illusion 
of rotational movement. It requires the INPUT of two integers N and ST ; N 
controls the rotation of consecutive triangles and ST gives the difference in 
radius between the triangles. 

 
Example 1.9: A Simple Game 
We now include a small game program (listing 1.13) to demonstrate the use of 
the techniques discussed in this chapter. A worm can move in character-size steps 
about the screen, horizontally or vertically, under control of the keyboard. The aim 
of the game is for the worm to eat the money (or target). The worm gets longer 
whenever it eats the target. If at any time the head of the worm runs headlong into 
the boundary or into its own body, then the worm dies. After ten successful meals 
the worm returns to its original size, with a fanfare; the game then continues. 
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Listing 1.12 
 

10 MODE 2 
20 VDU23,1,0;0;0;0; 
30 DIM X(96),Y(96) 
39 REM"setup 96 points on a circle 
40 THETA=0 : TD=PI/48 
50 FOR I%=1 TO 96 
60 X(I%)=COS(THETA) : Y(I%)=SIN(THETA) 
70 THETA=THETA+TD 
80 NEXT I% 
90 COLOUR128 

100 REPEAT 
109 REM every new triangle is rotated through N points, 

its radius changes by ST 
110 INPUT "N ",N 
120 IF N=0 THEN STOP ELSE INPUT "ST ",ST : CLS 
130 N3=N/3-1 
140 I1=1 : COL=1 
150 FOR R=500 TO 5 STEP -ST 
159 REM"draw triangle in colour COL 
160 GCOL 0,COL 
170 I2=I1+32 : I3=I2+32 
180 MOVE 640+R*X(I1),500+R*Y(I1) 
190 MOVE 640+R*X(I2),500+R*Y(I2) 
200 PLOT 85,640+R*X(I3),500+R*Y(I3) 
210 COL=(COL MOD 7 )+1 
220 I1=((I1+N3) MOD 32 ) +1 
230 NEXT 
239 REM"wait 5 seconds 
240 T=TIME+500 : REPEAT UNTIL TIME>T 
249 REM"rotate picture by colour swap for 8 seconds 
250 T=TIME+800 : REPEAT 
260 FOR J%=1 TO 7 
270 FOR I%=1 TO 7 
280 VDU 19,I%,((I%+J%) MOD 7)+1,0,0,0 
290 NEXT I% 
300 ST=TIME+10 : REPEAT UNTIL TIME>ST 
310 NEXT J% 
320 UNTIL TIME>T 
330 VDU 20 
340 UNTIL FALSE 

 
This game was developed using the modular, structured methods that are 

preferred by programmers. These methods help quickly to produce a working and 
understandable  program. Put simply, we must approach the program as a series 
of small tasks that build up block by block into the completed program. For the 
game below, these tasks were tentatively defined as 

 
(1)  Initialise variables 
(2)  Set up board 
(3)  Control game 
(4)  Update and print score 

 
From this overview of the program we can set about solving each problem or if 
necessary splitting it into yet smaller, more manageable, problems. For example, 
task (3) above could be split into 
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(A)  Generate target 
(B)  Use keyboard to change direction of worm 
(C)  Move worm 

 
Task (C) could be further split into 

 
(a)  Draw worm 
(b)  Make worm die if it hits boundary or itself 
(c)  Make worm grow if it eats money 
(d)  Generate fanfare 

 
No specific order is implied in this breakdown; for example, you may find that 
you want to regenerate the target from inside the fanfare section of the program. 
These headings are simply lists of tasks that reflect the problems that come to 
mind when attempting the solution of a larger problem. 

Examine the game below and try to identify which tasks are carried out, where, 
in what order, and which have been further subdivided. (Throughout book the 
names of procedures are in lower case characters and are preceded by a red 
REMark when listed in MODE 7. This helps to make the program more readable 
and gives a clear picture of the algorithm; hence it is good general practice.) 

Note the use of logical expressions (for example, UNTIL DEAD OR WON) 
see the user guide. Also note the use of the OSBYTE call with A% = &87 to 
detect collisions by examining the contents of character blocks. Figure 1.6 shows 
a typical state of the game. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.6 
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Listing 1.13 
1000 REM"WORM GAME 
1010 DIM R(55),C(55) : HSC=0 
1019 REM prepare screen 
1020 REPEAT : MODE 2 : SCORE=0 : WORMS=3 : LEVEL=1 
1030 VDU 23,1,0;0;0;0; : GCOL 0,128+4 : CLG 
1040 GCOL 0,7 : MOVE 64,32 : MOVE 64,992 
1050 PLOT 85,1215,32 : PLOT 85,1215,992 
1059 REM initialise worm 
1060 S=5 : P=1 : R=1 : C=RND(18) 
1070 RMOVE=1 : CMOVE=0 : H$="V" 
1080 FOR I%=0 TO 55 : R(I%)=-1 : NEXT I% 
1090 WON=FALSE : DEAD=FALSE : *FX15,1 
1100 COLOUR 128+3 : PRINT TAB(1,1);SPC(18) : 

PRINT TAB(1,30);SPC(18) 
1109 REM display score and set target 
1110 PROCstatus : PROCtarget 
1119 REM"main loop 
1120 REPEAT 
1130 PROCkey : PROCworm : PROCdelay(5-LEVEL) 
1140 UNTIL DEAD OR WON 
1150 IF WON THEN PROCfanfare : GOTO 1030 
1159 REM wipe out dead worm and make crashing noise 
1160 FOR I%=-15 TO 1 : SOUND 0,I%,4,1 : NEXT I% 
1170 COLOUR 128+7 
1180 PRINT TAB(X,Y);" " 
1190 FOR I%=1 TO S 
1200 IF R(P)<>-1 THEN PRINT TAB(C(P),R(P));" " 
1210 P=(P MOD S)+1 : SOUND1,-15,10,1 
1220 NEXT I% 
1230 WORMS=WORMS-1 : IF WORMS<>0 THEN 1060 
1239 REM if no worms left then wait for return to start again 
1240 COLOUR 128+12 : COLOUR 11 : PRINT TAB(0,31); : *FX15,1 
1250 INPUT "HIT RETURN FOR GAME" A$ 
1260 UNTIL FALSE 
2000 REM"fanfare 
2010 DEF PROCfanfare 
2019 REM"congratulatory jingle 
2020 DATA 2,69,117,165, 2,73,121,169, 2,81,129,177, 

5,102,150,198, 2,81,129,177, 7,102,150,198 
2030 RESTORE : FOR N%=1 TO 6 : READ D 
2040 FOR C%=&201 TO &203 
2050 READ P : SOUND C%,-15,P,D 
2060 NEXT C% 
2070 NEXT N% 
2080 ENDPROC 

 
3000 REM worm 
3010 DEF PROCworm 
3019 REM move worm by adding new head segment and deleting tail 
3020 COLOUR 128+7 : IF R(P)<>-1 THEN PRINT TAB(C(P),R(P));" " 
3030 R=R+RMOVE : C=C+CMOVE 
3040 IF R<2 OR R>29 OR C<1 OR C>18 THEN DEAD=TRUE : ENDPROC 
3050 PRINT TAB(C,R); : A%=135 : I%=USR(&FFF4) 
3060 A$=CHR$((I% AND &FF00)/&100) : IF A$=" " THEN 3100 
3070 COLOUR 128+2 : COLOUR 0 : A%=135 : I%=USR(&FFF4) 
3080 A$=CHR$((I% AND &FF00)/&100) 
3089 REM if not space it was either a wall or edible money. 
3090 IF A$="£" THEN PROCgobble ELSE DEAD=TRUE : ENDPROC 
3100 R(P)=R : C(P)=C : COLOUR 128+1 : PRINT TAB(C,R);H$ 
3110 P=(P MOD S)+1 
3120 ENDPROC 
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4000 REM key input 
4010 DEF PROCkey 
4020 A$=CHR$(ASC(INKEY$(0)) AND &4F) 
4030 IF A$="I" AND CMOVE THEN RMOVE=-1 : CMOVE=0 : H$="^" 
4040 IF A$="M" AND CMOVE THEN RMOVE=1 : CMOVE=0 : H$="V" 
4050 IF A$="J" AND RMOVE THEN RMOVE=0 : CMOVE=-1 : H$="<" 
4060 IF A$="K" AND RMOVE THEN RMOVE=0 : CMOVE=1 : H$=">" 
4070 ENDPROC 

 
5000 REM gobble 
5010 DEF PROCgobble 
5019 REM"make noise while chewing and add to score. 
5020 FOR I%=1 TO 6 : SOUND1,I%-15,20+I%*6,1: NEXT I% 
5030 SCORE=SCORE+1 : PROCstatus 
5039 REM"if worm is 55 segments long you have eaten £10, you win 
5040 S=S+5 : IF S=55 THEN WON=TRUE : ENDPROC 
5050 PROCtarget 
5060 ENDPROC 

 
6000 REM status 
6009 REM show score and no. of worms 
6010 DEF PROCstatus 
6020 COLOUR 128+3 : COLOUR 0 
6030 IF SCORE>HSC THEN HSC=SCORE 
6040 PRINT TAB(1,1);" SCORE ";SCORE," HI ";HSC 
6050 PRINTTAB(1,30);" LEVEL ";LEVEL,"WORMS ";WORMS 
6060 ENDPROC 

 
7000 REM target 
7010 DEF PROCtarget 
7019 REM produce randomly positioned target, not inside worm. 
7020 X=RND(18) : Y=RND(28)+1 : COLOUR128+7 
7030 PRINT TAB(X,Y); : A%=135 : I%=USR(&FFF4) 
7040 A$=CHR$((I% AND &FF00)/&100) : IF A$<>" " THEN 7020 
7050 IF X=C AND Y=R THEN 7020 
7060 COLOUR 128+2 : COLOUR 0 
7070 PRINT "£" 
7080 ENDPROC 

 
8000 REM delay 
8010 DEF PROCdelay(T) 
8020 IF T>0 THEN TT=TIME+T : REPEAT UNTIL TIME>TT 
8030 ENDPROC 

 
Exercise 1.8 
As a final mini project for this chapter, write a squash game or ping-pong video 
game (or both) using low-resolution colour graphics. The ball can be a pixel or 
character block, and the bat(s) should be controlled from the keyboard like the 
worm in listing 1.13 . You may find it useful to turn some of the program 
sections from this chapter into procedures, which is readily done if you approach 
program writing in a prepared modular manner. 

 
In this chapter we have restricted ourselves to using the screen as a fixed area 

for patterns and games. To step up from pixel graphics to drawing pictures of real 
objects we need commands that will relate the real world to our screen. We shall 
now explore and develop the techniques that are needed to draw real graphics 
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pictures. Before we go on to this you should experiment with the three programs 
given in listings 1.14, 1.15 and 1.16 and ensure that you understand the graphics 
commands, since these are fundamental to understanding the rest of this book. 

 
Listing 1.14 

 
10 MODE 1 : VDU23,1,0;0;0;0; 
20 VDU 19,0,4,0,0,0 
30 PROCcircle(640,750,1000,0,1) 
40 PROCcircle(640,750,150,2,2) 
50 PROCcircle(740,650,70,3,3) 
60 PROCcircle(865,680,100,3,3) 
70 PROCcircle(950,660,80,3,3) 
80 MOVE 740,580 : MOVE 740,720 
90 PLOT 85,950,580 

 
100 END 
110 REM circle 
120 DEF PROCcircle(X,Y,R,C1,C2) 
130 MOVE X,Y 
140 F=TRUE : GCOL 0,C1 
150 FOR I=0 TO 2*PI STEP PI/50 
160 MOVE X,Y 
165 PLOT81,R*COS(I),R*SIN(I) 
170 F=NOT F 
180 IF F THEN GCOL0,C1 ELSE GCOL0,C2 
190 NEXT I 
200 ENDPROC 

 
Listing 1.15 

 
10 MODE 1 : VDU 23,1,0;0;0;0; 
20 VDU 19,2,4,0,0,0 : VDU 19,3,2,0,0,0 
30 FOR S=48 TO 200 STEP 24 
40 FOR J=1 TO (250-S)/25 
50 PROCcube(RND(1280-3*S/2),RND(1024-3*S/2),S,RND(4)-1) 
60 NEXT J 
70 NEXT S 
80 END 

100 REM fake cube 
110 DEF PROCcube(X,Y,S,C1) 
120 IF C1<2 THEN C2=3 ELSE C2=0 
130 T=S*.5 
140 PROCquad(X,Y,X,Y+S,X+S,Y+S,X+S,Y) 
150 PROCquad(X+S+T,Y+S+T,X+S+T,Y+T,X+S,Y,X+S,Y+S) 
160 PROCquad(X+S+T,Y+S+T,X+T,Y+S+T,X,Y+S,X+S,Y+S) 
170 ENDPROC 
200 REM quad_rilaterial 
210 DEF PROCquad(XA,YA,XB,YB,XC,YC,XD,YD) 
220 GCOL 0,C1 : MOVE XA,YA : MOVE XB,YB : 

PLOT 85,XD,YD : PLOT 85,XC,YC 
230 GCOL 0,C2 : DRAW XD,YD : DRAW XA,YA : 

DRAW XB,YB : DRAW XC,YC 
240 ENDPROC 
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Listing 1.16 
 

10 DIM X%(81),X(100),Y(100) 
20 A=400 : B=100 : I%=0 
29 REM calculate data for ellipse 
30 FOR I=0 TO 2*PI STEP PI/50 
40 X(I%)=A*COS(I) : Y(I%)=B*SIN(I) : I%=I%+1 
50 NEXT I 
60 MODE 1 : GCOL 0,1 : VDU 19,1,6,0,0,0 : VDU5 
69 REM"put on sky 
70 MOVE 0,504 : MOVE 1280,504 
80 PLOT 85,0,1024 : PLOT 85,1280,1024 
90 GCOL 0,2 : VDU 19,2,4,0,0,0 : DRAW 1280,500 
99 REM calculate data for planks 

100 FOR I%=0 TO 81 
110 X%(I%)=64*(40-I%-(I% MOD 2)*0.66) 
120 NEXT I% 
129 REM"draw planks 
130 FOR I%=0 TO 80 STEP 2 
140 MOVE I%*16,500 : MOVE I%*16+16,500 
150 PLOT 85,640-X%(I%),0 : PLOT 85,640-X%(I%+1),0 
160 NEXT I% 
169 REM draw pyramid with outline 
170 GCOL 0,3 : VDU 19,3,5,0,0,0 
180 MOVE 1136,400 : MOVE 960,350 
190 PLOT 85,975,600 : PLOT 85,864,424 
200 GCOL 0,0 : DRAW 960,350 : DRAW 1136,400 
210 DRAW 975,600 : DRAW 960,350 : MOVE 975,600 : DRAW 864,424 
219 REM draw cuboid with outline 
220 GCOL 0,3 : MOVE 125,290 : MOVE 480,340 
230 PLOT 85,125,490 : PLOT 85,480,510 
240 PLOT 85,8,510 : PLOT 85,380,522 
250 MOVE 125,290 : MOVE125,490 
260 PLOT 85,8,314 : PLOT 85,8,510 
270 GCOL 0,0 : MOVE 125,290 : DRAW 480,340 : DRAW 480,510 
280 DRAW 125,490 : DRAW 8,510 : DRAW 8,314 
290 DRAW 125,290 : DRAW 125,490 
300 MOVE 8,510 : DRAW 380,522 : DRAW 480,510 
309 REM draw ellipse 
310 X=600:Y=200 
320 GCOL 0,3 : MOVE X,Y 
330 FOR I%=0 TO 100 
340 MOVE X,Y : PLOT 81,X(I%),Y(I%) 
350 NEXT I% 
359 REM join lower side of ellipse to bottom of screen 
360 FOR I%=50 TO 100 : J%=(I%+1) MOD 101 
370 MOVE X+X(I%),Y+Y(I%) : MOVEX+X(J%),Y+Y(J%) 
380 PLOT 85,X+X(I%),0 : PLOT85,X+X(J%),0 
390 NEXT I% 
399 REM draw outline around top of cylinder 
400 GCOL 0,0 : MOVE X+X(100),Y+Y(100) 
410 FOR I%=0 TO 100 
420 DRAW X+X(I%),Y+Y(I%) 
430 NEXT I% 
439 REM draw lines down to bottom of screen from 

lower edge of ellipse 
440 FOR I%=50 TO 100 
450 MOVE X+X(I%),Y+Y(I%) : DRAW X+X(I%),0 
460 NEXT I% 
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Complete Programs 
 

I    Listing 1.1. Data required: a mode value between 0 and 6. 
II    Listing 1.2. Data required: a mode value of 0, 1, 2, 4 or 5. 
III    Listing 1.3. No data required. 
IV    Listing 1.4. No data required. 
V    Listing 1.5. No data required. 

VI    Listing 1.6. No data required. 
VII    Listing 1.7. Use the cursor keys to move the red point about the screen. 

Type ‘p’ to leave a trail, and ‘q’ if no trail is wanted. 
VIII    Listing 1.8. No data required. 

IX    Listing 1 9. Data required: 
 

Mode? Type the required value between 0 and 6. 
Do you want to alter colour settings? Type Y(es) or N(o) as 
appropriate. 
Alter LOGICAL colour? Type a mode-dependent  integer that is 
defined to be an ACTUAL colour; that is, type an integer between 
0 and 15. 

 
X    Listing 1.10. No data required. 

XI    Listing 1.11. No data required. 
XII    Listing 1.12. Data required: two integers N and ST; try N = 14 and ST = 5. 

XIII    Listing 1.13. Keys ‘I’, ‘J’, ‘K’ and ‘M’ move the worm. 
XIV    Listing 1.14. No data required. 
XV    Listing 1.15. No data required. 

XVI    Listing 1.16. No data required. 
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2 From Real Coordinates to Pixels 
 
 
 
 
 

Throughout the two-dimensional  and three-dimensional  sections of this book we 
shall divide the television screen into a text window (of two lines at the top of the 
screen) and a graphics window (the rest of the screen). As already discussed, on 
the Model B the graphics window (or graphics frame) consists of a rectangular 
matrix of coloured pixels; the size and number of the pixels and the number of 
possible colours depend on the MODE setting of the computer (0 to 7). Unless 
otherwise stated, two-dimensional  and three-dimensional  geometrical programs 
will be run in MODE 1. This means that access to these pixels is MODE- 
dependent and hence we shall consider the graphics frame to be made up of the 
rectangular matrix of addressable points (points for short) that are stacked in 
NXPIX (= 1280) vertical columns and NYPIX (= 960) horizontal rows. Each pixel 
on the screen corresponds to a number of different points; although the 
exact correspondence  is naturally MODE-dependent, this need not concern us 
since the operating system deals with this problem of relationship. Unfortunately 
the word ‘pixel’ has several different meanings (as do ‘point’ and ‘dot’), so it must 
be remembered that in this book ‘pixel’ refers to a MODE-dependent  group of 
addressable points on the television screen (see the last column of table 1.1). 

Individual points from the set of NXPIX by NYPIX points can be uniquely 
identified by a bracketed pair of integers, sometimes called a point vector, (1, J), 
where 0    I    NXPIX    1 and 0    J    NYPIX    1; the vector specifies the 
position of the addressable point in the Ith column and Jth row, so that the vector 
(0, 0) identifies the bottom left-hand corner point of the frame. The Model B has 
its own set of BASIC instructions which enables users to operate on the matrix of 
addressable points (and hence pixels), so converting them to dots of light on the 
screen which can be switched off or on in various colours. This enables the 
operator to produce approximate points, lines, polygons or other special types of 
area, with a series of colour dots. 

The reader will now be taken some way towards generating a two-dimensional 
and three-dimensional  graphics package for the Model B: the programs are given 
in BASIC and rely (with a few exceptions) on the small number of 
primitive procedures that are given in this chapter. 
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Primitives that Map Continuous Space on to the Graphics Frame 
 

In general, computer graphics deals with points, lines, areas and volumes in 
continuous two-dimensional  and three-dimensional  Euclidean space. The use of 
addressable point coordinates by themselves for graphics is rather limiting. The 
definition of objects by means of only discrete pairs of integers is very rare in 
practical applications. We therefore need to consider ways of plotting views of 
objects on a graphics screen where positions are measured in real units such as 
inches, miles or even light-years(!). Therefore we must consider the relationship 
between two-dimensional  real space and the screen pixels (via addressable 
points). Before we can even attempt this step, however, we must first discuss 
ways of representing two-dimensional  space by means of Cartesian coordinate 
geometry. 

We may imagine two-dimensional  space as the plane of this page, but 
extending, to infinity in all directions. Our description of the coordinate 
geometry starts by arbitrarily choosing a fixed point in this space, which is called 
the coordinate origin. Through the origin a line is drawn that extends to infinity in 
both directions - the x-axis. The normal convention is to place the x-axis from left 
to right on the page (the horizontal). Another two-way infinite line, the y- axis, is 
drawn through the origin perpendicular to the x-axis, hence convention- ally this 
is plotted from the top to the bottom of the page (the vertical). We now draw a 
scale along each axis; unit distances need not be the same on both axes, but this is 
normally the case (see figure 2.1). We assume that values on the x-axis are 
positive to the right of the origin and negative to the left: values on the y-axis are 
positive above the origin and negative below. 

We call now uniquely fix the position of point p in space by specifying its 
coordinates (figure 2.1). The x-coordinate, X say, is that distance along the x-axis 
(positive to the right of the axis and negative to the left) at which a line 
perpendicular to the x-axis that passes through p cuts the x-axis. The y- coordinate, 
Y say, is correspondingly  defined by using the y-axis. These two values, called a 
coordinate pair or two-dimensional  vector, are normally written 
in brackets thus: (X, Y), the x-coordinate coming before the y-coordinate. We 
shall usually refer to the pair as a vector - the dimension (in this case dimension 
two) will be understood from the context in which we use the term. A vector, as 
well as defining a point (X, Y) in two-dimensional  space, may also be used to 
specify a direction, namely the direction that is parallel to the line that joins the 
origin to the point (X, Y) - but more of this (and other objects such as lines, 
curves and polygonal areas) in chapter 3. 

We are now in a position to devise means (the above-mentioned  primitive 
procedures for mapping such geometrical concepts on to the two-dimensional 
discrete rectangular matrix of pixels that forms the graphics frame. 

For the present we shall concentrate on two-dimensional  space: an extension 
into three-dimensional  space is dealt with starting at chapter 7. In both cases we 
require a method of mapping a rectangular area of two-dimensional  Cartesian 



26 Advanced Graphics with the BBC Model B Microcomputer  
 
 
 
 
 
 
 

+ p    (X,  Y)  

2  +Y  
(3,  2) 

 
 

     -X 

 
1 

(1,1)  +X 
 

-3  -2  -1  0  1  2  3 
 

-1 
 

(-3,-1) 
-2 

-Y 
 
 

Figure 2.1 
 
 

space on to the graphics frame. For simplicity we start by insisting that this area 
has its edges parallel to the x-axis and y-axis of Cartesian space. Initially we shall 
assume that this rectangular area of space has its bottom left-hand corner 
identified with the coordinate origin (0.0, 0.0), and that the lengths of the 
horizontal and vertical edges are HORIZ and VERT respectively. We first 
identify the origin with the pixel that contains the addressable point (0, 0), and 
then scale the rectangular area so that it fits into the frame; naturally the area 
exactly fits the frame only if the ratios HORIZ : VERT and NXPIX : NYPIX are 
equal (that is for 1280 : 960 = 4 : 3). This is rarely the case, so a scaling factor, 
XYSCALE, is chosen that maps the point (HORIZ, VERT) in two-dimensional 
space on to a pixel that is located either on the upper or the right-hand edge of the 
frame. We can consider this rectangle as a window on to Cartesian space; no 
longer anchored to the coordinate origin, it may wander about space and view 
rectangular areas that are the same size as the original, although the edges of such 
areas must be parallel to the original coordinate axes. As a general rule we make 
VERT roughly three-quarters of HORIZ. If you wish to select a differently 
shaped window, it is necessary simply to change the values of HORIZ and VERT. 

At any time during the execution of the program we may move the coordinate 
origin from its original position at the bottom left-hand corner of the screen. Its 
position relative to the first origin will be stored as XORIG and YORIG; and x- 
component and y-component respectively. Initially (XORIG, YORIG) is 
identified with (0.0, 0.0). Hence any point in Cartesian space with coordinates 
(XPT, YPT), a pair of reals, maps into a pixel that contains an addressable point 
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with a horizontal component INT((XORIG + XPT) * XYSCALE + 0.5) and a 
vertical component INT((YORIG + YPT) * XYSCALE + 0.5). Here INT is the 
BASIC function that truncates the fractional part of a decimal number and returns 
an integer. These two components are stored as functions FNX and FNY (see 
listing 2.2). During the construction of a picture we must consider a plot pen, a 
pair of integers that moves about the graphics screen; initially it is placed at the 
pixel that is equivalent to the coordinate origin. The constants NXPIX and 
NYPIX, and the variables XYSCALE, XGRIG and YORIG, must be available at 
all times to the plotting procedures that follow, so these names must not be used 
for any other purpose. The procedures were written specifically for the Model B 
but the general principles of constructing similar procedures fur other graphical 
devices will also be discussed. To start with, it would be necessary to change the 
values of NXPIX and NYPIX if a different machine was to be used. 

Gur first procedure ‘start’ defines the graphics and text windows, initialises 
the required variables and prepares the screen for plotting. Listing 2.1 is an 
example ‘start’ procedure for the Model B. 

 
Listing 2.1 

 
 

9700 REM start 
9710 DEF PROCstart(B,F) 
9720 XORIG=0 : YORIG=0 
9730 NXPIX=1280 : NYPIX=960 
9740 XYSCALE=NXPIX/HORIZ : YSCALE=NYPIX/VERT 
9750 IF XYSCALE>YSCALE THEN XYSCALE=YSCALE 
9760 VDU28,0,1,39,0 : VDU24,0;0;1279;959; 
9770 GCOL 0,B+128 : CLG : GCOL 0,F 
9780 ENDPROC 

 
 
 

This procedure has two parameters B and F (integers) that represent the 
background and foreground logical colours respectively. The correct values of 
these variables for any choice of colours will depend on the MODE in use, so 
readers must refer to the user manual. For most purposes we shall use MODE 1 
and default logical colours, with foreground black (F = 0) and background white 
(B = 3). 

If we need to write this procedure for a different micro then all that is necessary 
is to replace the statements that contain the BASIC graphics instructions of the 
BBC micro by the equivalent commands for the new micro. Most of the other 
procedures in this book are independent of the structure of the Model B. If at any 
time during the execution of the program you wish to change the logical colour in 
which you are drawing, you must use the GCOL option and you can use the VDU 
19 option to choose new colours from the list of actual colours. 

In ‘start’ and in many other procedures that follow, it is necessary to transform 
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the x/y-coordinates  of a point into their pixel equivalents, so we introduce the two 
functions FNX and FNY in listing 2.2. 

 
Listing 2.2 

 
 

9800 REM real-to-pixel functions 
9810 DEF FNX(Z)=INT((XORIG+Z)*XYSCALE+0.5) 
9820 DEF FNY(Z)=INT((YORIG+Z)*XYSCALE+0.5) 

 
The next primitive procedure (listing 2.3) is ‘setorigin'   ; this enables us to 

move the coordinate origin by an amount XMOVE horizontally and YMOVE 
vertically (distances in the scale of the coordinate system), so adjusting the 
(XORIG, YORIG) values. After such a move the plot pen moves to the pixel that 
contains the addressable point that is equivalent to the new origin. 

 
Listing 2.3 

 
 

9600 REM setorigin 
9610 DEF PROCsetorigin(XMOVE,YMOVE) 
9620 XORIG=XORIG+XMOVE : YORIG=YORIG+YMOVE 
9630 PROCmoveto(0,0) 
9640 ENDPROC 

 
 

We shall be in a position to draw straight lines after we have produced two 
further procedures: ‘moveto’ which moves the plot pen to a pixel equivalent of 
the point in coordinate space at one end of the line, and ‘lineto’ which draws the 
line by moving the plot pen from its present position (set by a previous call to 
‘setorigin'   , ‘moveto’ or ‘lineto’) to the pixel equivalent of the point on the other 
end of the line. Listings 2.4 and 2.5 show ‘moveto’ and ‘lineto’ procedures that 
are designed specifically for the Model B. The latter two procedures include 
statements that initiate the machine-dependent BASIC instructions that MOVE 
and DRAW between addressable points. Hence if you wish to implement these 
procedures on a different micro you must introduce the equivalent instructions. 

 
Listing 2.4 

 
 

9500REM moveto 
9510DEF PROCmoveto(XPT,YPT) 
9520MOVE FNX(XPT),FNY(YPT) 
9530ENDPROC 
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Listing 2.5 
 

9400 REM lineto 
9410 DEF PROClineto(XPT,YPT) 
9420 DRAW FNX(XPT),FNY(YPT) 
9430 ENDPROC 

 
In all but the most elementary machines, it is possible to set up these plotting 

procedures or their equivalents (and many others as our knowledge increases) in 
a library file or backing store. Then there is no need to explicitly retype them into 
each new program. On the Model B we can *SPOOL them as files on audio 
cassettes or disks, and merge them into other programs by using the *EXEC 
option. On the companion cassette to this section of the book you will find these 
procedures as part of the ‘lib1’ library. 

 
Example 2.1 
Identify a rectangle in Cartesian space, 40 units by 30 units, with the graphics 
frame of the Model B. Then draw a square (see listing 2.6) of side 20 units, 
centred in the rectangle (figure 2.2a). We centre the square on the screen by 
moving the origin to (20.0, 15.0) and thus define the corners of the square to be 
(   10.0,    10.0). 

 
Listing 2.6 

 
100 REM drawing a square 
110 MODE 1 
120 HORIZ=40 : VERT=30 
130 PROCstart(3,0) 
140 PROCsetorigin(HORIZ/2,VERT/2) 
150 PROCmoveto(10,10) 
160 PROClineto(-10,10) : PROClineto(-10,-10) 
170 PROClineto(10,-10) : PROClineto(10,10) 
180 STOP 

 
It is as well to note at this juncture that the order in which the points are 

joined is critical. For example, if the coordinates of the second and third corners 
of the square are interchanged then figure 2.2b will be drawn. 

Next we write a primitive procedure ‘triangle’ (listing 2.7) which uses the 
MOVE and PLOT 85 instructions of the Model B for filling in a triangular area 
bounded by vertices (X1, Y1), (X2, Y2) and (X3, Y3) in logical colour 
FACECOL (>=0), and draws lines around the perimeter in logical colour 
EDGECOL (> 0). If one of these values is negative then its corresponding section 
of the procedure is not entered. Extra lines have been added to cope with 
degenerate triangles: this is to stop a ‘bug’ in the early versions of the Model B 
operating system which produced spurious horizontal lines. If you have operating 
system OS 1.0 or later then you should simplify ‘triangle'  . 
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(a)  (b) 
 

Figure 2.2 
 

Listing 2.7 
 

10000 REM triangle 
10010 DEF PROCtriangle(X1,Y1,X2,Y2,X3,Y3,FACECOL,EDGECOL) 
10020 X1=FNX(X1) : X2=FNX(X2) : X3=FNX(X3) 
10030 Y1=FNY(Y1) : Y2=FNY(Y2) : Y3=FNY(Y3) 
10040 IF FACECOL<0 THEN 10090 ELSE GCOL 0,FACECOL 
10050 IF Y1 DIV 4=Y2 DIV 4 AND Y2 DIV 4=Y3 DIV 4 THEN 10080 
10060 MOVE X1,Y1 : MOVE X2,Y2 : PLOT 85,X3,Y3 
10070 GOTO 10090 
10080 MOVE X1,Y1 : DRAW X2,Y2 : DRAW X3,Y3 
10090 IF EDGECOL>0 THEN GCOL 0,EDGECOL : MOVE X1,Y1 

: DRAW X2,Y2 : DRAW X3,Y3 : DRAW X1,Y1 
10100 ENDPROC 

 
Exercise 2.1 
If we are using the Model B then it is possible to draw pictures in a variety of 
colours. We saw in ‘triangle’ that it is necessary to choose the logical colour by 
means of the GCOL command and we may even wish to define the actual colour 
by means of the VDU 19 command. Both tasks can be done explicitly in the 
program or you can write a procedure ‘setcolour'   , which uses two integer 
parameters LOGCOL and ACTCOL to achieve this. Include this in a program that 
draws solid (as opposed to line) polygons from information read from the 
keyboard. 

 
Exercise 2.2 
In all the plotting procedures above, the scale of the mapping (XYSCALE) is 
fixed once and for all, and the horizontal and vertical scaling factors are 
identical. 
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There is no need to heed this convention: write a procedure ‘factor’ that alters the 
horizontal scale by FX and the vertical scale by FY. Naturally this implies that it 
is now necessary to define two separate scales (XSCALE and YSCALE say); and 
then of course the functions FNX and FNY must be altered (also see chapter 6). 

 
Exercise 2.3 
Furthermore, there is no reason for the x-axis and y-axis to be identified with the 
horizontal and vertical respectively. In fact they need not even be mutually 
perpendicular. Experiment with these ideas, which necessarily involves changing 
all the plotting procedures ‘start'  , ‘moveto’ etc. 

 
To demonstrate the use of these plotting procedures we shall draw some 

simple patterns. There are those who think that the construction of patterns is a 
frivolous waste of time. Nevertheless, we consider it to be a very useful first 
stage in understanding the techniques of computer graphics. Often patterns of an 
apparently sophisticated design are the result of very simple programs. Quickly 
to produce such graphical output is an immediate boost to morale, and gives a lot 
of confidence to the beginner. Furthermore new designs are always in demand: 
geometrical art is used for the covers of books and pamphlets and in advertising 
literature. It can do no harm at all to initiate artistic ideas that will be of great use 
later when we study the pictorial display of data. Patterns are also an ideal way of 
introducing some of the basic concepts of computer graphics in a very palatable 
way. Take the next two examples, which use our simple library of procedures, 
and look at the important role of trigonometric functions (sine and cosine) and of 
angular measurement in radians. Remember that pi radians is the same angular 
measure as 180 degrees. 

 
Example 2.2 
Figure 2.3, a very popular design, is constructed by joining each vertex of a 
regular N-sided polygon (an N-gon) to every other. N cannot be greater than 30. 

We set the origin at the centre of the design, and all the vertices at a unit 
distance from the centre: the sizes of HORIZ and VERT (2.8, 2.1) are chosen so 
that the design fits neatly on to the screen. If one of these vertices lies on the 
positive x-axis (the horizontal), then the N vertices are all of the form 
(COS(ALPHA),  SIN(ALPHA)),  where ALPHA is an angle 2    I/N and I is chosen 
from 1 , 2, . . . , or N. Here for the first time we see point coordinates being 
calculated by the program, not explicitly typed in, as in listing 2.6. Furthermore, 
‘since the program uses these values over and over again, it is sensible to store 
them in arrays and access them when required by specifying the correct array 
index. Note that in listing 2.8, if 1    I  J    N then the Jth point is 
not joined to the Ith point as the line will have already been drawn in the opposite 
direction. 
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Figure 2.3 
 
 

Listing 2.8 

 
100 REM join points on regular N-gon 
110 MODE 1 
120 HORIZ=2.8 : VERT=2.1 
130 PROCstart(3,0) 
140 PROCsetorigin(HORIZ/2,VERT/2) 
150 DIM X(30),Y(30) 
160 INPUT"Type in N",N 
169 REM calculate points in N-gon 
170 ALPHA=0 : ADIF=2*PI/N 
180 FOR I% = 1 TO N 
190 X(I%)=COS(ALPHA) : Y(I%)=SIN(ALPHA) 
200 ALPHA=ALPHA+ADIF 
210 NEXT I% 
219 REM join point I to POINT J , I<J 
220 FOR I% = 1 TO N-1 
230 FOR J% = I%+1 TO N 
240 PROCmoveto(X(I%),Y(I%)) : PROClineto(X(J%),Y(J%)) 
250 NEXT J% : NEXTI% 
260 STOP 
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Example 2.3 
Figure 2.4 

Figure 2.4.is constructed by listing 2.9 in a similar manner. M sets of N points on 
regular N-gons and one set of N coincident points are given by the following 
formula. The Ith point in the Jth set, I    1   N and 0    J    M, is (Rcos    , Rsin   ) 
where R and    are given by 

 
R = (M    J)/M 

 
= 2    I/N + 

 
where     = 0 if MOD(I,2) is zero, and   /N otherwise. 

Triangles are then formed by joining every pair of neighbouring points on all 
but the inner N-gon to the nearest point inside them. 

 
There are two immediate observations to be made from these very simple 

examples. The first concerns resolution. Because the graphics frame is a discrete 
matrix then straight lines must be approximated by a sequence of   p ixels. 
Unfortunately the resolution of the Model B, like most microcomputer  graphics 
systems, is low (that is, NXPIX and NYPIX are the order of hundreds and the 
lines appear jagged. 

The second observation is that, as N increases in listings 2.8 and 2.9, the 
outline of the figure (the N-gon) closely approximates to a circle. Therefore we 
can use this this idea to write a procedure ‘circle’ (listing 2.10) which draws a 
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Listing 2.9 
 

100 REM rose pattern 
110 MODE 1 
120 DIM X(30),Y(30),XD(30),YD(30) 
130 HORIZ=2.8 : VERT=2.1 
140 PROCstart(0,3) 
150 PROCsetorigin(HORIZ/2,VERT/2) 
160 INPUT"N,M",N%,M% 
170 AD=PI/N% : AD2=2*AD : RD=1/M% 
180 R=1 : AS=0 : A=AS 
189 REM setup an outer regular N-gon of unit radius 
190 FOR I%=1 TO N% 
200 X(I%)=COS(A) : Y(I%)=SIN(A) 
210 A=A+AD2 : NEXT I% 
219 REM loop through M inner N-gons 
220 FOR J%=1 TO M% 
230 R=R-RD : AS=AS+AD : A=AS 
239 REM setup inner N-gon of radius 1/M smaller than outer N-gon 
240 FOR I%=1 TO N% 
250 XD(I%)=R*COS(A) : YD(I%)=R*SIN(A) 
260 A=A+AD2 : NEXT I% 
269 REM form triangles with points from inner and outer N-gons 
270 FOR I%=1 TO N% 
280 NI%=(I% MOD N%)+1 
290 PROCtriangle(X(I%),Y(I%),XD(I%),YD(I%),X(NI%),Y(NI%),1,2) 
300 NEXT I% 
309 REM reset outer to inner N-gon 
310 FOR I%=1 TO N% 
320 X(I%)=XD(I%) : Y(I%)=YD(I%) 
330 NEXT I% 
340 NEXT J% 
350 END 

 
 
 

solid circle with radius R about the centre (XCENT, YCENT) in logical colour 
FACECOL and circumference in EDGECOL to give a picture similar to figure 
2.5. If either of these colour parameters is negative then the corresponding 
section of the procedure is not entered. Note that we are using angles that are 
measured in radians (that is we are incrementing by 10/(R*XYSCALE) each 
time through the 1oop), a value that depends on the size of the radius and 
produces a reasonable circle without waste of effort. Note that since the vertices 
of the N-gon are needed only once, we do not store their values but calculate 
them as required. Again the limitation in resolution of the screen is apparent on 
the perimeter of the circle. Also be wary of rounding errors as these could result 
in a slice being left out of the circle. 

There is another way, other than PLOT 85, for filling in an area. PLOT 77, X, 
Y moves sideways left and right from the point (X, Y) changing the colour of the 
pixels until it meets pixels that are not in the background colour. As an example, 
see routine ‘circle2’ (listing 2.10). This method does however have obvious 
limitations when filling in non-convex areas. 
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Figure 2.5 
 
 
 

Whenever we use such procedures we must be aware of any side effects; for 
example, the origin or plot head might be modified by the procedure. Thus listing 
2.10 changes the position of both the origin and the plot pen. It would therefore 
be sensible to add the following line to the ‘circle’ procedure: 

 
480 PRGCsetorigin(-XCENT, -YCENT) : ENDPROC 

 
Exercise 2.4 
Write a procedure to draw an ellipse of major axis A units (horizontal) and minor 
axis B units (vertical). Note that a typical point on this ellipse has coordinates 
(Acos    , Bsin   ) where 0  2  . However it must be remembered that, unlike 
the circle,     is not the angle made by the radius through a point with the positive 
x.-axis: it is simply a descriptive parameter. 

Incorporate this procedure into a program that draws a diagram that is similar 
to figure 2.6. There are two things to note: (1) there is no need for A to be greater 
than B; (2) observe the optical illusion of the two apparent white diagonal lines. 
Another illusion can be seen in figure 2.3 - dark circles that radiate out from the 
centre of the pattern. The study of optical illusions is fascinating (see Tolansky, 
1964) and it is a never-ending fount of ideas for patterns. This exercise was 
introduced because it leads the way into the general technique for drawing curves 
- see chapters 3 and 6. 

 
Example 2.4 
An extension of this idea, the natural next step, is the construction of a spiral. 
Again the general form of the curve about the origin is (Rcos    , Rsin alpha) but 
now     varies between angles    and    + 2Npi where beta (the parameter    ) is the 
initial angle that the normal to the spiral makes with the positive x-axis, and N is 
the number of turns in the spiral. The radius R is no longer a constant value but 
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Listing 2.10 
 

100 REM circle main program 
110 MODE1 
120 HORIZ=2.8 : VERT=2.1 
130 PROCstart(3,0) 
140 PROCsetorigin(HORIZ/2,VERT/2) 
150 PROCcircle(0.1,-0.1,0.5,1,2) 
160 STOP 

 
300 REM circle 
310 DEF PROCcircle(XCENT,YCENT,R,FACECOL,EDGECOL) 
320 ADIF=10/(R*XYSCALE) 
330 PROCsetorigin(XCENT,YCENT) 
340 IF FACECOL<0 THEN 420 ELSE GCOL0,FACECOL 
349 REM if required draw solid disc 
350 MOVE FNX(R),FNY(0) 
360 FOR A = ADIF TO 2*PI STEP ADIF 
370 MOVE FNX(0),FNY(0) 
380 PLOT85,FNX(R*COS(A)),FNY(R*SIN(A)) 
390 NEXT A 
400 MOVE FNX(0),FNY(0) 
410 PLOT85,FNX(R),FNY(0) 
420 IF EDGECOL<0 THEN ENDPROC ELSE GCOL0,EDGECOL 
429 REM if required draw outer circle 
430 MOVE FNX(R),FNY(0) 
440 FOR A = ADIF TO 2*PI STEP ADIF 
450 DRAW FNX(R*COS(A)),FNY(R*SIN(A)) 
460 NEXT A 
470 DRAW FNX(R),FNY(0) 
480 ENDPROC 

 
500 REM circle2 
510 DEF PROCcircle2(XCENT,YCENT,R,FACECOL,EDGECOL) 
520 ADIF=10/(R*XYSCALE) 
530 PROCsetorigin(XCENT,YCENT) 
540 GCOL0,EDGECOL 
549 REM draw outer circle 
550 MOVE FNX(R),FNY(0) 
560 FOR A = ADIF TO 2*PI STEP ADIF 
570 DRAW FNX(R*COS(A)),FNY(R*SIN(A)) 
580 NEXT A 
590 DRAW FNX(R),FNY(0) 
599 REM fill in circle 
600 GCOL0,FACECOL 
610 FOR Y%=FNY(-R) TO FNY(R) 
620 PLOT 77,FNX(0),Y% 
630 NEXT Y% 
640 ENDPROC 

 
varies with the value    : if RMAX is the outer radius of the spiral then R is given 
by the formula 

 
R = RMAX(  )/2N 

 
Note that procedure ‘spiral’ (listing 2.11), which centres the spiral at (XCENT, 
YCENT), causes no side effects because we reset the origin back to its original 
position before leaving the procedure. 
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Figure 2.6 
 
 

The complete program of listing 2.11 (run in MODE 2) shows another optical 
illusion. Fifteen spirals in logical colours 1 to 15 are drawn on the screen. Then 
all the logical colours are turned black and, one at a time, in order, they are 
turned to white and back to black. This has the effect of producing a rotating 
spiral: we have added a pause to reduce the speed of rotation. After 30 seconds 
the screen is cleared and a square is drawn. If you stare at the spirals for this 
short period and then look at the square, it will appear to expand! 

 
Exercise 2.5 
Procedure ‘spiral’ (with parameters XCENT = 0, YCENT = 0, N = 4,  = 1 and 
RMAX = 1) produces a diagram similar to figure 2.7a. What happens if you set 
RMAX to    1? Use the procedure in a program that generates figure 2.7b. Again 
note the optical illusion when the observer'   s head is moved in a circle in front of 
the diagram, keeping the horizontal (and hence also the vertical) direction 
parallel with the original. The spirals appear to rotate about the centre! 

 
Example 2.5 
Write a procedure (listing 2.12) that draws diagrams similar to figure 2.8. Here 
we introduce the concept of an envelope. Instead of drawing a curve by a 
sequence of small line segments (as in the circle of listing 2.9), we devise 
sequence of lines that are tangential to the curve. For example, the figure shows 
four rectangular hyperbolae that are placed in the quarters of the plane. 
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Listing 2.11 
 

100 REM spiral example 
110 MODE 2 : HORIZ=2.8 : VERT=2.1 
120 PROCstart(0,3) 
130 PROCsetorigin(HORIZ/2,VERT/2) 
139 REM setup series of 15 spirals each of a different colour 
140 FOR I%=1 TO 15 
150 GCOL0,I% 
160 PROCspiral(0,0,1.7,4,PI*I%/7.5) 
170 NEXTI% 
179 REM set each logical colour black 
180 FOR I%=1 TO 15 
190 VDU19,I%,0,0,0,0 
200 NEXT I% 
210 N%=1 : O%=15 : T=TIME+3000 
220 REPEAT 
221 REM set each logical colour to white in turn 

and black out previous 'logical white' 
230 VDU19,N%,7,0,0,0,19,O%,0,0,0,0 
240 O%=N% : N%= N% MOD 15 +1 
249 REM pause 
250 FOR I%=1 TO 30 : NEXT I% 
260 UNTIL TIME > T 
269 REM after 30 seconds draw square and watch the illusion of 

it apparently expanding 
270 CLG : VDU20 : GCOL0,1 
280 PROCmoveto(.7,.7) 
290 PROClineto(.7,-.7) : PROClineto(-.7,-.7) 
300 PROClineto(-.7,.7) : PROClineto(.7,.7) 
310 END 

 
500 REM spiral 
510 DEF PROCspiral(XCENT,YCENT,RMAX,N%,BETA) 
520 PROCsetorigin(XCENT,YCENT) 
530 ADIF=PI/50 : A=BETA 
540 RDIF=RMAX/(N%*100) 
550 FOR R=RDIF TO RMAX STEP RDIF 
560 PROClineto(R*COS(A),R*SIN(A)) 
570 A=A+ADIF 
580 NEXT R 
590 PROClineto(RMAX*COS(BETA),RMAX*SIN(BETA)) 
600 PROCsetorigin(-XCENT,-YCENT) 
610 ENDPROC 

 
N points are placed on each of the four arms (of unit length) which divide the 

plane into the four quarters. The 4N points are therefore (  I/N, 0.0) and (0.0,   I/ 
N) where I = 1, 2, . . . , N. 

 
Exercise 2.6 
Generalise this procedure so that there are a variable number of arms, M, that 
stretch out from the origin and divide the plane into equal segments. 

 
Exercise 2.7 
Draw a diagram similar to figure 2.9. The procedure will have an integer 
parameter N and should calculate 4N points {I = 1, 2, . . . , 4N)} around the 
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Figure 2.8 
 

Listing 2.12 
 

100 REM envelope example 
110 MODE 1 
120 HORIZ=2.8 : VERT=2.1 
130 PROCstart(3,0) 
140 PROCsetorigin(HORIZ/2,VERT/2) 
150 INPUT"Type N",N% 
160 PROCmoveto(1,0) : PROClineto(-1,0) 
170 PROCmoveto(0,1) : PROClineto(0,-1) 
180 FORI%=1 TO N% 
190 X=I%/N% : Y=(N%+1-I%)/N% 
200 PROCmoveto(X,0) 
210 PROClineto(0,Y) : PROClineto(-X,0) 
220 PROClineto(0,-Y) : PROClineto(X,0) 
230 NEXT I% 
240 STOP 

 
edges of a square of unit side, starting at a corner. There is one point at each 
corner and the points are placed so that the distance between consecutive points 
is 1/N. Then pairs of points are joined according to the following rule: P(I) is 
joined to P(J) for all positive values of I and J less than or equal to 4N, such that 
J    1 (subtraction modulo 4N) belongs to the sequence 1, 1 + 2, 1 + 2 + 3, . . . . 
For example if N is 10 then P(20) is joined to P(21), P(23), P(26), P(30), P(35), 
P(1), P(8) and P(16). 
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Figure 2.9 
 

Example 2.6 
Emulate a Spirograph, in order to produce diagrams similar to figure 2.10. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.10 
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A Spirograph consists of a cogged disk inside a cogged circle, which is placed 
on a piece of paper. Let the outer circle have integer radius A and the disk integer 
radius B. The disk is always in contact with the circle. There is a small hole in the 
disk at a distance D (also an integer) from the centre of the disk, through which is 
placed a sharp pencil point. The disk is moved around the circle in an 
anticlockwise manner, but it must always touch the outer circle, the cogs ensure 
that there is no slipping. The pencil point traces out a pattern, which is complete 
when the pencil returns to its original position. 

Initially we assume that the centres of the disk and the circle and also the hole 
all lie on the positive x-axis, the centre of the circle being the coordinate origin. 
In order to emulate the Spirograph we need to specify a general point of the track 
of the pencil point. We let    be the angle made with the positive x-axis by the 
line that joins the origin to the point where the circle and disk touch. The point of 
contact is therefore (Acos    , Asin    ) and the centre of the disk is ((A    B)cos    , 
(A    B)sin    ). If    is the angle made by the line that joins the hole to the centre 
of the disk with the x-direction, then the coordinates of the hole are 

 
( (A    B)cos     + Dcos   , (A    B)sin     + Dsin   ) 

 
The point of contact between the disk and circle will have moved through a 

distance Alpha around the circle, and a distance -Balpha around the disk (the 
minus sign is because     and    have opposite orientation). Since there is no 
slipping these distances must be equal and hence we have the equation    = -(A/ B)   
. The pencil returns to its original position when both     and    are integer multiples 
of 2pi. When     = 2Npi then    = -N(A/B)2  , and hence the pencil point returns to 
its original position for the first time when N(A/B) becomes an integer for the first 
time, that is when N is equal to B divided by the highest common factor of B and 
A. The function ‘hcf’ (listing 2.13) uses Euclid'  s algorithm (see Davenport, 1952) 
to calculate the highest common factor of two positive integers A and B. 

This function is used in the procedure ‘spiro’ (listing 2.13) which calculates 
the value of N and then varies     (ALPHA) between 0 and 2Npi in steps of   /100; 
for each   , the value of    (BETA) is calculated and then the general track is 
drawn. Figure 2.10 was drawn by a call to ‘spiro’ with A = 12, B = 7 and D = 5. 
The size of HORIZ and VERT must be chosen so that the figure fits on to the 
screen; in this case HORIZ = 28 and VERT = 21. 

 
It is evident from this example that drawing patterns is not as straightforward  as it 
appears. Even such a simple picture as figure 2.10 requires the mathematical 
backup of Euclid. As we progress through computer graphics, we shall discover 
more and more that it is essential to have at least an elementary knowledge of not 
only coordinate geometry but also calculus, algebra, Euclidean geometry and 
number theory. Be prepared to scour your local library (or pester your friendly 
neighbourhood  mathematician)  for the necessary information. 
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Listing 2.13 
 

200 REM hcf - Euclid's algorithm 
210 DEF FNhcf(A%,B%) 
220 LOCAL I%,J%,R% 
230 IF A%>B% THEN I%=A% : J%=B% ELSE I%=B% : J%=A% 
240 R%=I% MOD J% : IF R%=0 THEN =J% ELSE I%=J%: J%=R% : GOTO 240 
300 REM spiro 
310 DEF PROCspiro(A%,B%,D%) 
320 LOCAL I%,RAB%,ALPHA,BETA,ADIF,AOB,N%,NO% 
330 RAB%=A%-B% : ALPHA=0 : ADIF=PI/50 : AOB=A%/B% 
340 N%=B%/FNhcf(A%,B%) : NO%=100*N% 
350 PROCmoveto(RAB%+D%,0) 
360 FOR I%=1 TO NO% 
370 ALPHA=ALPHA+ADIF : BETA=ALPHA*AOB 
380 PROClineto(RAB%*COS(ALPHA)+D%*COS(BETA),RAB%*SIN(ALPHA)-D%* SIN(BETA)) 
390 NEXT I% 
400 ENDPROC 

 
 

Complete Programs 
 

At this stage we shall group the listings 2.1 (‘start’), 2.2 (two functions FNX and 
FNY), 2.3 (‘setorigin’), 2.4 (‘moveto’), 2.5 (‘lineto’) and 2.7 (‘triangle’) under 
the heading ‘lib1'  . 

 
I  '  lib1’ and listing 2.6 (‘drawing a square’). No INPUT data required. 

II  '  lib2’ and listing 2.8 (‘joining points of regular N-gon’). Data required: 
an integer N <= 30. 

III  '  lib1’ and listing 2.9 (‘rose’). Data required: the values of M and N. 
Use N    30 and for the best results set M < N    15 

IV  '  lib1’ and listing 2.10 (‘main program’ and ‘circle’). No data required. 
V '  lib1’ and listing 2.11 (‘main program’ and ‘spiral’). No data required. 

When the spirals start to rotate you should stare at the screen for 30 
seconds. The square appears to expand. 

VI  '  lib1’ and listing 2.12 (‘envelope’). Data required: an integer N. For 
best results take 2    N    30. 

VII  '  lib1'  , listing 2.13 (‘Euclid’ and ‘spiro’) and your own main program 
(use listing 2.10 as a model). Data required: three integers A, B and D, 
where A > B > D. Choose HORIZ, VERT etc. so that the diagram fits 
on to the screen; that is, both HORIZ and VERT must be greater than 
2 * (A    B + D). Try HORIZ = 28, VERT = 21, A = 12, B = 7, D = 5. 
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3 Two-Dimensional Coordinate 
Geometry 

 
 
 
 

In chapter 2 we introduced the concept of the two-dimensional  rectangular coordinate 
system, and defined points in space as vectors, whence we were able to draw line 
segments between pairs of points. To be strictly accurate, a straight line (or line for short) 
in two-dimensional  space is not a finite segment, but stretches off to infinity in both 
directions, and so we need to introduce ways of representing a general point on such a 
line. 

It is well known that the equation of a straight line is y = mx + c. This gives the 
relationship between the x-coordinate and the y-coordinate of a general point on a line, 
where m is the tangent of the angle that the line makes with the positive x-axis, and c is the 
point of intersection of the line with the y-axis, so that when x 
= 0 then y = c. This formula may be well known, but it is not very useful: if the 
line is vertical, then m is infinite! A far better formula is 

 
ay = bx + c 

 
This allows for all possible lines: if the line is vertical a is 0. (b/a) is now the tangent of 
the angle that the line makes with the positive x-axis, and the line cuts the y-axis at (c/a) 
provided that a is not equal to zero, and the x-axis at (  c/b) provided that b is not equal to 
zero. The line is parallel to the y-axis if a is zero, and to the x  axis if b is zero. 

We shall frequently use this formulation of a line in the following pages; however we 
now introduce another, possibly more useful, method for defining a line. Before we can 
describe this new method we must first define two operations on vectors (namely scalar 
multiple and vector addition) as well as describe how 
to calculate the absolute value of a vector. Suppose that we have two vectors, p1 

(x1 , y1) and p2      (x2 , y2) then 
 

scalar multiple: we multiply the individual coordinates by a scalar (real) value: 
 

kp1 = (k × i1 , k × y1) 
 

vector addition: we add the x-coordinates together, and the y-coordinates together. 
 

p1 + p2 = (x1 + x2 , y1 + y2) 
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absolute value: the distance of the point p2 from the origin (this is also called the 
length, and the modulus of the vector). 

 

| p1 | =    (x 2 
 

+ y 2) 

To define a line we first arbitrarily choose any two points on the line - again 
we call them p1      (x1, y1) and p2      (x2, y2). A general point p(  )    (x, y) is given 
by the combination of scalar multiples and vector addition 

 
(1  )p1 +   p2 

for some real value of   ; that is the vector ((1  ) × x1 +    x2 , (1  ) × y1 + 
× y2). We place them    in brackets after p to show the dependence of the vector on 
the value of   . Later when we understand the relationship more fully we shall 
leave out the (  ). If 0    u    1 then p(   ) lies on the line somewhere between p1 

and p2. For any specified point p(  ), the value of    is given by the ratio 
 

distance of p(  ) from p 
—————————— 

distance of p2 from p1 

where the measure of distance is positive if p(u) is on the same side of p1 as p2, 
and negative otherwise. The positive distance between any two vector points p1 
and p2 is given by (Pythagoras) 

 
| p2      p1 | =  (x1      x2)2 + (y1      y2)2 

Figure 2.1 shows a line segment between the points (  3,   1)    p(0) and (3, 2) 
p(1): the point (1 , 1) lies on the line as p(2/3). Note that (3, 2) is at a distance of 
3  5 from (  3,   1)  whereas (1 , 1) is at a distance of 2  5. From now on we shall 
omit the (  ) from the point vector. 

 
Example 3.1 
We can further illustrate this idea by drawing the pattern shown in figure 3.1 . At 
first sight it looks complicated, but on closer inspection it is seen to be simply a 
square, outside a square, outside a square etc. The squares are getting 
successively smaller and they are rotating through a constant angle. In order to 
draw the diagram we need a technique that, when given a general square, draws a 
smaller internal square rotated through this fixed angle. Suppose the general 
square has four corners {(xi , yi) | i = 1, 2, 3, 4} and the ith side of the square is 
the line joining (x1, y1) to (xi+1, yi+1)    assuming that additions of subscripts are 
modulo 4 (that is 4 + 1    1). A general point on this side of the square, (x’i, y’i), is 
given by 

 
((1  ) × xi +    × xi+1, (1  ) ×  y1, +    × yi+1) where 0  1 

In fact   :1  is the ratio in which the side is bisected. If    is fixed and the four 
points   (x'i , y'i) | i = 1, 2, 3, 4    are calculated in the above manner, then the sides 
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of the new square make an angle     = tan 1 [   /(1  ) ] with the corresponding 
side of the outer square. So by keeping     fixed for each new square, the angle 
between consecutive squares remains a constant    . In listing 3.1 , which 
generated figure 3.1, there are 21 squares and    = 0.1. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.1 
 

It is useful to note that the vector combination form of a line can be reorganised 
as 

 
p1 +   (p2      p1) 

When given in this new representation the vector p1 may be called the base vector, 
and (p2      p1) the directional vector. In fact any point on the line can stand as a 
base vector; it simply acts as a point to anchor a line that is parallel to the 
directional vector. This concept of a vector acting as a direction needs some 
further explanation. We have already seen that a vector pair, (x, y) say, may 
represent a point; a line that joins the coordinate origin to this point may be 
thought of as specifying a direction - any line in space that is parallel to this line is 
defined to have the same directional vector. We insist that the line goes from the 
origin towards (x, y), the so-called positive sense; a line from (x, y) towards the 
origin has negative sense. 

This base and direction representation is also very useful for calculating the 
point of intersection of two lines, a problem that frequently crops up in two 
dimensional graphics. For suppose we have two lines p +   q, and r +   s, where 
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Listing 3.1 
 

100 REM square in square etc. 
110 MODE 1 
120 HORIZ=2.8 : VERT=2.1 
130 PROCstart(3,0) 
140 PROCsetorigin(HORIZ/2,VERT/2) 
150 DIM X(4),Y(4),XD(4),YD(4) 
160 DATA 1,1, 1,-1, -1,-1, -1,1 
169 REM setup coordinates of square 
170 FOR I%=1 TO 4 : READ X(I%),Y(I%) : NEXT I% 
180 MU=0.1 : UM=1-MU 
189 REM loop through 21 squares 
190 FOR I%=1 TO 21 
200 PROCmoveto(X(4),Y(4)) 
209 REM draw square defined by arrays X and Y 

: find next square given by arrays XD and YD 
210 FOR J%=1 TO 4 
220 PROClineto(X(J%),Y(J%)) 
230 NJ%=(J% MOD 4)+1 
240 XD(J%)=UM*X(J%)+MU*X(NJ%) 
250 YD(J%)=UM*Y(J%)+MU*Y(NJ%) 
260 NEXT J% 
269 REM reset (X,Y) values to (XD,YD) 
270 FOR J%=1 TO 4 
280 X(J%)=XD(J%) : Y(J%)=YD(J%) 
290 NEXT J% 
300 NEXT I% 
310 STOP 

 
p    (x1, y1), q    (x2, y2), r    (x3, y3) and s    (x4, y4) for  <   ,    <   . We need 
to find the unique values of    and    such that 

 
p +   q = r +   s 

 
that is, a point that is common to both lines. This vector equation can be written 
as two separate equations 

 
x1 +    × x2 = x3 +    × x4  (3.1) 

y1 +    × y2 = y3 +    × y4  (3.2) 

Rewriting these equations we get 
 

× x2 × x4 = x3      x1 (3.3) 

× y2 × y4 = y3      y1 (3.4) 

Multiplying equation (3.3) by y4, equation (3.4) by x4 and subtracting we get 

× (x2 × y4      y2 × x4) = (x3      x1) × y4      (y3      y1) × x4 

If (x2 × y4      y2 × x4) = 0 then the lines are parallel and there is no point of 
intersection (u does not exist), otherwise 

 
(x  x ) × y  (y  y ) × x 

=   ——  —————  —— 
(x2 × y4      y2 × x4) 

 
(3.5) 
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and similarly 
 

(x  x ) × y  (y  y ) × x 
=    ———————  ——  — 

(x2 × y4      y2 × x4) 
 

The solution becomes even simpler if one of the lines is parallel to a 
coordinate axis. Suppose this line is x = d, then we can set r    (d, 0) and s    (0, 
1), which when substituted in equation (3.5) gives 

 
= (d    x1)/x2 

and similarly if the line y = d 
 

= (d    y1)/y2 

Naturally if the two lines are parallel then the denominator in these equations 
becomes zero and we get an infinite result, because two parallel lines cannot 
intersect. 

 
 

Example 3.2 
Find the point of intersection of the two lines that (a) join (1 ,   1) to (  1,   3) and 
(b) join (1, 2) to (3,   2). 

The lines may be written as 
 

(1   )(1,   1) +   (  1,  3)  <    <  (3.7) 

(1  )(1, 2) +   (3,   2)  <    <  (3,8) 

or when placed in the base/directional  form as 
 

(1,   1) +   (  2,   2)    (3.9) 

(1, 2) +   (2,   4)  (3.10) 

Substituting these values into equation (3.5) gives 
 

(1    1) ×   4    (2 + 1) × 2 
=   ——————————  =   1/2 

(  2 × 4    (  2) × 2) 

whence the point of interaction is (1,   1)    1/2(  2,   2)    (2,0). 
The general case is solved by the program given in listing 3.2. 

 
Exercise 3.1 
Experiment with this concept of vector representation of two-dimensional  space'  . 
You can make up your own questions: it is easy to check that your answers are 
correct. Consider example 3.2. We know that (2, 0) lies on the first line because 
we used the value    =   1/2: our answer is correct if it also lies on the second line 
which it does with    = 1/2. 
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Listing 3.2 
 

100 REM intersection of two lines 
110 MODE 7 
120 DIM X(4),Y(4) 
130 PRINT TAB(8,3),"INTERSECTION OF LINES" 
140 PRINT TAB(0,5),"LINE A FROM (X(1),Y(1)) TO (X(2),Y(2))" 
150 PRINT TAB(0,6),"LINE B FROM (X(3),Y(3)) TO (X(4),Y(4)) " 
159 REM INPUT vertices of lines A & B 
160 FOR I%=1 TO 4 
170 PRINT "X(";I%;"),Y(";I%;") "; : INPUT X(I%),Y(I%) 
180 NEXT I% 
190 CLS 
199 REM PRINT information about lines 
200 PRINT TAB(0,5);"Line A goes from" 
210 PRINT"(";X(1);",";Y(1);") to (";X(2);",";Y(2);")" 
220 PRINT TAB(0,8);"Line B goes from" 
230 PRINT"(";X(3);",";Y(3);") to (";X(4);",";Y(4);")" 
239 REM calculate (XINT,YINT) the point of intersection 
240 X(2)=X(2)-X(1) : Y(2)=Y(2)-Y(1) 
250 X(4)=X(4)-X(3) : Y(4)=Y(4)-Y(3) 
260 DET=X(2)*Y(4)-Y(2)*X(4) 
270 PRINT TAB(0,12);"Point of intersection "; 
280 IF ABS(DET) < 0.00001 THEN PRINT "does not exist." : GOTO 320 
290 MU=((X(3)-X(1))*Y(4)-(Y(3)-Y(1))*X(4))/DET 
300 XINT=X(1)+MU*X(2) : YINT=Y(1)+MU*Y(2) 
310 PRINT : PRINT"(";XINT;",";YINT;")." 
320 PRINT TAB(0,22); : STOP 

 
 

Exercise 3.2 
Write a program that reads in data about two straight lines in the form of an 
equation and then calculates their point of intersection (if any). 

 
Returning to the use of a vector (q    (x, y)    (0, 0), say) that represents a 

direction, we note that any positive scalar multiple kq, for k > 0, represents the 
same direction and sense as q (if k is negative then the direction has its sense 
inverted). In particular, setting k =1/ | q |} produces a vector (x/  (x2 + y2), 
y/  (x2 + y2)) with unit absolute value. 

Thus a general point on a line p +   q, is a distance     | q | from the base point p 
and if | q | = 1 (a unit vector) then the point is a distance     from p. 

We now consider the angles made by directional vectors with various fixed 
directions. Suppose that    is the angle between the line joining O (the origin) to 
q    (x, y), and the positive x-axis. Then x = | q | × cos    and y = | q | × sin a - see 
figure 3.2: there are similar figures for the other three quadrants. If q is a unit 
vector (that is, | q | = 1) then q    (cos   , sin   ). However, since sin    = cos( 

/2) for all values of   , this expression can be written as q    (cos   , cos(  / 
2)), where  /2 is the angle that the vector makes with the positive y axis. 
Hence the coordinates of a unit directional vector are called its direction cosines, 
since they are the cosines of the angle that the vector makes with the 
corresponding positive axes 
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q   (x , y) 
 

y 
 

| q | sin 
 
 
 
 

| q | cos  x 
 
 
 
 

Figure 3.2 
 

Before continuing we should take a look at the trigonometric functions 
available in BASIC: SIN and COS, and the inverse function ATN. SIN and COS 
are functions with one parameter (an angle given in radians) and one result (a 
value between   1 and +1). The ATN function takes any value and calculates the 
angle in radians (in the so-called principal range between  /2 and +  /2) whose 
tangent is that value. 

This leads us to the problem of finding the angle that a general direction q 
(x, y) makes with the positive x-axis, which is solved by the procedure '  angle' 
given in listing 3.3 . ‘angle’ will be of great use in later chapters when we 
consider three-dimensional  space. 

 
Listing 3.3 

 
8810 DEF FNangle(AX,AY) 
8820 IF ABS(AX)>0.00001 THEN 8860 
8830 IF ABS(AY)<0.00001 THEN =0 
8840 IF AY<0 THEN =1.5*PI 
8850 =PI/2 
8860 IF AX<0 THEN =(ATN(AY/AX)+PI) ELSE =ATN(AY/AX) 

 
 

Now suppose we have two directional vectors (a, b) and (c, d); for simplicity 
we can assume that they are both unit vectors and that they both pass through the 
origin (see figure 3.3). We wish to calculate the acute angle,    , between these 
lines. From the figure we note that OA =   (a2 + b2) = 1 and OB =   (c2 + d2) = 1. 
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A   (a , b) 
y 

 
 
 
 

B   (c , d) 

 
O  x 

 
 

Figure 3.3 
 
 

So by the Cosine Rule 
 

AB2 = OA2 + OB2      2 × OA × OB × cos    = 2 × (1   cos   ) 

But also by Pythagoras 

AB2  = (a    c)2 + (b    d)2 = (a2 + b2) + (c2 + d2)    2 × (a × c + b × d) 
 

= 2    2 × (a × c + b × d) 
 

Thus a × c + b × d = cos   . It is possible that a  × c + b × d is negative in which 
case cos 1(a × c + b × d) is obtuse and the required acute angle is  . Since 
cos(  ) =   cos   , then the acute angle is given immediately by cos 1(| a × c + 
b × d |). For example, given the two lines with direction cosines (  3/2, 1/2) and 
(  1/2,  3/2), we see that a × c + b × c =  3/2 and thus a = cos 1 (  3/2) =   /6. 
This simple example was given in order to introduce the concept of a scalar 
product    of two vectors, (a, b)    (c, d) = a × c + b × d. Scalar product is 
extendable into higher-dimensional space (see chapter 7 for a three-dimensional 
example) and it always has the property that it gives the cosine of the angle 
between any pair of lines whose directions are defined by the two vectors. 

 
Curves: Functional Representations  versus Parametric Forms 

 
A curve in two-dimensional  space can be considered as a relationship between x 
and y coordinate values, the so-called functional relationship. Alternatively the 
coordinates can be individually specified in terms of other variables or 
parameters, the parametric form. 
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We have already seen that a line (a circular arc of infinite radius) may be 
expressed as ay = bx + c. If we rearrange the equation so that one side is zero, 
that is ay    bx = 0, then the algebraic expression on the left-hand side of the 
equation is called a functional representation of the line and written as 

 
f(x, y)    ay    bx    c 

 
All, but only, those points with the property f(x, y) = 0 lie on the curve. This 
representation divides all the points in two-dimensional  space into three sets: f(x, 
y) = 0 (the zero set) f(x,y) > 0 (the positive set) and f(x, y) < 0 (the negative set). If 
the function divides space into the curve and two other connected area only (that 
is, any two points in a connected area may be joined by a curvilinear line which 
does not cross the curve), then these areas may be identified with the positive and 
negative sets defined by f. However, be wary, there are many elementary functions 
(for example, g(x, y)    cos(y)    sin(x)) that define not one but a series of curves 
and hence divide space into possibly an infinite number of connected areas (note 
that g(x, y)    g(x + 2m  , y + 2n   for all integers m and n). So it is possible that 
two unconnected areas can both belong to the positive set. 

Note that the functional representation need not be unique. We could have put 
the line into an equivalent form 

 
f'(x, y)    bx + c    ay 

 
in which case the positive set of this function is the negative set of our original, 
and vice versa. 

The case where the curve does divide space into two connected areas is very 
useful in computer graphics, as we shall see in the study of two-dimensional  and 
(especially) three-dimensional  graphics algorithms. Take for example the straight 
line 

 
f(x, y)    ay    bx    c 

 
where a point (x1, y1) is on the same side of the line as (x2, y2) if and only if f(x1, 
y1) has the same non-zero sign as f(x2, y2). The functional representation tells us 
more about a point (xl, y1) than just on which side of a line it lies - it also enables 
us to calculate the distance of the point from the line. 

Suppose we have the above line, then its direction vector is (a, b). A line 
perpendicular to this will have the direction vector (  b, a). (Why? Because the 
product of the tangents of two mutually perpendicular lines is   1 ; see McCrae, 
1953.) So the point q on the line closest to the point p    (x1, y1) is of the form 

q    (x1, y1) +   (  b, a) 

Therefore, a new line that joins p to q is perpendicular to the original line. Since 
q lies on this original line, then 

 
f(q) = f(x1, y1) +   (  b, a)) = 0 
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that is 
 

a × (y1 +    × a)    b × (x1  × b)    c = f(x1, y1) +   (a2 + b2) = 0 

Hence 
 

= f(x1, y1)/(a2 + b2) 

The point q is a distance     × | (  b, a) from (x1, y1) which naturally means that the 
distance of (xl, y1) from the line is m ×   (a2 + b2) =   f(x1, y1)/  (a2 + b2): the sign 
denotes on which side of the line the point is lying. If a2 + b2 = 1 then | f(x1, y1) | 
gives the distance of the point (x1, y1) from the line. 

This idea leads us directly to a way of implementing convex areas; these areas 
are such that a straight line segment that joins any two points within the area lies 
totally inside the area. We shall limit our study to convex polygons, however, 
since it is obvious that any convex area may be approximated by a polygon, 
providing that it has enough sides. 

Suppose we have a convex polygon with n vertices   p   (x1, y1) | i = 1, 2, . . . , n   
taken in order around the polygon (either clockwise or anticlockwise) - we shall 
call such a description of a convex polygon an oriented convex set of vertices. The 
problem of finding whether such a set is clockwise or anticlockwise 
is considered in chapter 7. The n boundary edges of the polygon are segments of 
the lines 

 
fi(x, y)    (xi+1      x1)    (y    y1)    (yi+1      yi)    (x    xi) 

where i = 1 , . . . , n, and the addition in the subscripts is modulo n (that is, n + j  
for 1    j    n). Try to explain why these formulae do actually describe the line 
segments! 

This systematic definition of the lines enables us to define the inside of the 
convex area. Any given line segment, say the one joining pi to pi+1 for some i, is 
such that the points inside the body must lie on the same side of this line as the 
remaining vertices of the polygon, in particular pi+2. So the inside is given by 

(x, y) | sign of fi(x, y) = sign of fi(xi+2, yi+2)    0: i = 1, . . . , n 

A point on the boundary is given by 
 

(x, y) | there exists one j, or two if (x, y) is a corner 
where 1    j    n such that fi(x, y) = 0 and 
sign of fi(x, y) = sign of fi(xi+2, yi+2)    0: i    j and 1    i    n 

A point outside the area is defined 
 

x, y) | there exists one j, 1    j    n such that 
0    sign of f(x, y)    sign of fi(xj+2, yi+2)    0 

Naturally the additions of subscripts are all modulo n. This technique of ‘inside 
and outside’ is fundamental to the hidden surface algorithm of chapter 12. 
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Example 3.3 
Suppose we are given the convex polygon with vertices (1 , 0), (5, 2), (4, 4) and (  
2, 1): see figure 3.4. In this order the vertices obviously has an anticlockwise 
orientation. Are the points (3, 2), (1, 4), (3, 1) inside, outside or on the boundary 
of the polygon? What is the distance of (4, 4) from the first line? 

 
 
 

4     y  (4 , 4) 
 

3 
 
 

 
(-2  , 1) 

2 
 
1 

(1,  0) 

(5 , 2) 
 
 
 

x 

-2  -1  1  2  3  4  5 
 
 
 

Figure 3.4 
 

f1(x, y)    (5    1) × (y    0)    (2    0) × (x    1)    4y    2x + 2 f2(x, 

y)    (4    5) × (y    2)    (4    2) × (x    5)  y    2x + 12 

f3(x, y)    (  2    4) × (y    4)    (1    4) × (x    4)   6y + 3x + 12 

f4(x, y)    (1 + 2) × (y    1)    (0    1) × (x + 2)    3y + x    1 

Hence point (3, 2) is inside the body because f1(3, 2) = 4 and f1(4, 4) = 10; f2(3, 
2) = 4 and f2(  2, 1) = 15; f3(3, 2) = 9 and f3(1, 0) = 15; f4(3, 2) = 8 and f4(5, 2) = 
10 - all with the same positive signs. 
Point (1, 4) is outside the body because f3(1, 4) =   9 and f3(1 , 0) = 15    opposite 
signs. 
Point (3, 1) is on the boundary because f1(3, 1) = 0, f2(3, 1) = 5, f2(3, 1) = 15 and 
f4(3, 1) = 5. 

In fact there is no need to work out fi(xi+2, yi+2) for every i - since they all 
have the same sign, once we have calculated fi(x3, y3) then we can work with this 
value throughout. 

 
(4, 4) is a distance (f1(4, 4)/  (42 + 22) = 10/  20) =,/5 from line 1 
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Exercise 3.3 
Imagine two convex polygons that intersect one another. The area of intersection 
is also a convex polygon. Use the methods that are mentioned in this chapter to 
calculate the vertices of the new polygon. 

Having dealt with the functional representation of a line, what about the 
parametric form? We noted that this form is one where the x-coordinate and y- 
coordinate of a general point on the curve are given in terms of parameter(s) 
(which could be the x or y values themselves), together with a range for the range 
for the parameter. So we have already seen a parametric form of a line, it is 
simply the base and directional representation 

 
b +   d  (x1, y1) +   (x2, y2) 

(x1 +    × x2, y1 +    × y2)  where  <    < 

Here    is the parameter, and x1 +    × x2 and y1 +    × y2 are the respective x and y 
values, which depend only on variable   . 

We can also produce functional representations  and parametric forms for most 
well-behaved curves. For example a sine curve is given by f(x, y)    y    sin(x) in 
functional representation, and by (x, sin(x)) with  < x <  in its parametric 
form. The general conic section (ellipse, parabola and hyperbola) is represented by 
the general function 

 
f(x, y)    a × x2 + b × y2 + h × x × y + f × x + g × y + c 

where the coefficients a, b, c, f, g, h uniquely identify a curve. A circle centred at 
the, origin of radius has a = b = 1, f = g = h = 0 and c =   r2, whence f(x, y)    x2 + 
y2      r2. All the points (x, y) on the circle are such that f(x, y) < 0, and the outside 
of the circle f(x, y) < 0, and the outside of the circle f(x, y) > 0. The parametric 
form of this circle is (r × cos   , r × sin   ) where 0  2  . (We have already 
met the parametric form of a circle, ellipse and spiral in chapter 2.) 

It is very useful to experiment with these (and other) concepts in two 
dimensional geometry. There will be many occasions when it is necessary to 
include these ideas in programs, as well as the ever-present need when we are 
generating coordinate data for diagrams. 

 
 

Example 3.4 
Suppose we wish to draw a circular ball (radius r) that is disappearing down an 
elliptical hole (major axis a, minor axis b) - see figure 3.5. Parts of both the 
ellipse and circle are obscured. 

Let the ellipse be centred on the origin with the major axis horizontal and the 
centre of the circle a distance d vertically above the origin. The ellipse has the 
functional representation 

 

fe(x, y)    x2/a2 + y2/b2      1 
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and in parametric form 
 

(a × cos   , b × sin   ) with 0  2 
 

For the circle 
 

fc(x, y)    x2 + (y    d)2      r2 

and in parametric form 
 

(r × cos   , d + r × sin   ) where 0  2 
 

To generate the picture we must find the points (x, y) common to the circle and 
ellipse (if any). As a useful demonstration we shall mix the representations  in 
searching for a solution, by using the functional representation for the circle and 
the parametric form of the ellipse. 

So we searching for the points (x, y)    (a × cos   , b × sin   ) on the ellipse that 
also satisfy fc(x, y) = 0. That is 

a2 × cos2     + (b × sin  d)2      r2 =0 
 

or 
 

a2 × cos2     + b2 × sin2  2 × b × d × sin    + d2      r2 = 0 
 

And since cos2a =1    sin2a, then 
 

(b2      a2) × sin2  2 × b × d × sin    + a2 + d2      r2 = 0 
 

This is a simple quadratic equation in the unknown sin a, which is easily solved 
(the quadratic equation Ax2 + Bx + C = 0 has two roots given by (  B  (B2      4 × 
A × C))/(2 × A)). For each value of sin a we can find values for a with 0   2 
(if they exist) and we can then calculate the points of intersection (a × cos   , b × 
sin   ). 

There is no hard and fast rule about which representation to use in any given 
situation - a feel for the method is required and that only comes with experience. 

 
Exercise 1.4 
Write a program that will draw figure 3.5. 
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Figure 3.5 
 
 
 
 

Complete Programs 
 

I  ‘lib1’ and listing 3.1 : no data required. 
II  Listing 3.2. Data required: four coordinate pairs (X1, Y1), (X2, Y2), 

(X3, Y3) and (X4, Y4). 
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Matrix Representation of 
Transformations on Two-Dimensional 
Space 

 
 
 
 

In chapter 2 we saw the need to translate pictures of objects about the screen. 
Rather than perpetually to change the screen coordinate system, it is conceptually 
much easier to define an object in the simplest terms possible (as vertices in the 
form of pixel or coordinate values, together with line and area information that is 
related to the vertices), and then transform the object to various parts of the 
screen but keeping the screen coordinate system fixed. We shall restrict ourselves 
to linear transformations  (see below). It will often be necessary to transform a 
large number of vertices, and to do this efficiently we use matrices. Before looking 
at such matrix representations  we should explain exactly what we mean by a 
matrix, and also by a column vector. In fact we restrict ourselves to square 
matrices: to 3 × 3 (said 3 by 3) for the study of two-dimensional  space, and later 
we use 4 × 4 matrices when considering three-dimensional  space. Such a 3 × 3 
matrix (A say) is simply a group of real numbers placed in a block of 3 rows by 3 
columns: a column vector (D say) is a group of numbers placed in a column of 3 
rows: 

(A21     A22     A23  )
  

 
 
and ( D2 )

 
A11     A12     A13  D1 

 
A31     A32     A33  D3 

 
A general entry in the matrix is usually written Aij the first subscript denotes the 
ith row, and the second subscript the jth column (for example, A23 represents the 
value in the second row of the third column). The entry in the column vector, Di, 
denotes the value in the ith row. All these named entries will be explicitly replaced 
by numerical values and it is important to realise that the information stored in a 
matrix or column vector is not just the individual values but it is also the position 
of these values within the matrix or vector. Naturally BASIC programs are written 
along a line (no subscripts or superscripts) and hence matrices and vectors are 
implemented as arrays and the subscript values appear inside round brackets 
following the array identifier. 
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Matrices can be added. Matrix C = A + B, the sum of two matrices A and B, 
and is defined by the general entry Cij; thus: 

 
Cij = Aij + Bij    1    i,  j    3 

Matrix A can be multiplied by a scalar k to form a matrix B: 
 

Bij = k × Aij    1    i, j    3 

We can multiply a matrix A by a column vector D to produce another column 
vector E thus 

 
Ei = Ai1 × D1 + Ai2 × D2 + Ai3 × D3 =    k Aik × Dk    where 1    i, k    3 

The ith row element of the new column vector is the sum of the products of the 
corresponding elements of the ith row of the matrix with those in the column 
vector. 

Furthermore, we can calculate the product (matrix) C = A × B of two matrices 
A and B: 

 
Cij = Ai1 × B1j + Ai2 × B2j + Ai3 × B3j =    k Aik × Bkj    where 1    i, j, k    3 

We take the sum (in order) of the elements in the ith row of the first matrix 
multiplied by the elements in the jth column of the second. It should be noted that 
the product of matrices is not necessarily commutative, that is A × B need not be 
the same as B × A. For example 

 
0 1 0  0 0 1  0 1 0  0 0 1  0 1 0  1 0 0 

 
0 0 1  ×  0 1 0  =  1 0 0  but  0 1 0  ×  0 0 1  =  0 0 1 

 
1 0 0  1 0 0  0 0 1  1 0 0  1 0 0  0 1 0 

 
Experiment with these ideas until you have enough confidence to use them in the 
theory that follows. For those who want more details about the theory of matrices 
we recommend books by Finkbeiner (1978) and by Stroud (1982). 

There is a special matrix called the identity matrix I (sometimes called the 
unit matrix) : 

 
1 0 0 

 
I =  0 1 0 

 
0 0 1 

 
Also for every matrix A we can calculate its determinant det(A): 

 
det(A) = A11 × (A22 × A33     A23 × A32) + A12 × (A23 × A31     A21 × A33) 

+ A13 × (A21 × A22     A22 × A31) 

Any matrix whose determinant is non-zero is called non-singular, and those 
whose determinant is zero are called singular. All non-singular matrices A have 
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an inverse A 1, which has the property that A × A 1 = I and A 1 × A = I. For 
methods of calculating an inverse of a matrix see Finkbeiner (1978); also see 
listing 7.4 in chapter 7 which uses the Adjoint method. 

We shall now consider the transformation of points in space. Suppose a point 
(x, y) - ‘before’ - is transformed to (x', y') - ‘after’. We shall completely 
understand the transformation if we can find equations that relate the ‘before’ and 
‘after’ points. A linear transformation is one that defines the ‘after’ point in terms 
of linear combinations of the coordinates of the ‘before’ point (that is, the 
equations contain only multiples of x, y and additional real values); the 
transformation includes neither non-unit powers, nor multiples of x and y, nor 
other variables. Such equations may be written as 

 
x' = A11 × x + A12 × y + A13 

y' = A21 × x + A22 × y + A23 

The A values are called the coefficients of the equation. As we can see, the result 
of the transformation is a combination of multiples of x-values, y-values and 
unity. We may add another equation: 

 
1 = A31 × x + A32 × y + A33 

For this to be true for all values of x and y, we see that A31 = A32 = 0 and A33 = 1. 
Although this may seem a pointless exercise, we shall see that it is in fact very 
useful. For if we set each point vector (x, y) (also called a row vector for obvious 
reasons) in the form of a three-dimensional  column vector 

x 

y 

1 
 

then the above three equations can be written in the form of a matrix multiplied 
by a column vector: 

 
x'   A11 A12 A13   x 

y'  =  A21 A22 A23  ×  y 

1  A31 A32 A33  1 

So if we store the transformation as a matrix, we can transform every required 
point by considering it to be a column vector and premultiplying  this by the 
matrix. 

Many writers of books on computer graphics do not like the use of column 
vectors. They prefer to extend the row vector, that is (x, y), to (x, y, 1) and post- 
multiply the row vector by the matrix so that the above equations in matrix form 
become 
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A11 A21 A31 

(x', y', 1) = (x, y, 1)   ×  A12 A22 A32 

A13 A23 A33 
 

Note that this matrix is the transpose of the matrix of coefficients in the 
equations. This causes a great deal of confusion among those who are not 
confident in the use of matrices. It is for this reason that we keep to the column 
vector notation in this book. As you get more practice in the use of matrices it is 
a good idea to rewrite some (or all) of the following transformation procedures in 
the other notation. It is not really important which method you finally use as long 
as you are consistent. (Note that the transpose B of a matrix A is given by Bij = 
Aij where 1    i, j    3.) 

 
 

Combinations  of Transformations 
 

A very useful property of this matrix representation of transformations  is that if 
we wish to combine two transformations,  say transformation (= matrix) A 
followed by transformation B, then the combined transformation is represented by 
their product C = B × A. Note the order of multiplication - the matrix that 
represents the first transformation is premultiplied by the second. This is because 
the final matrix will be used to premultiply a column vector that represents a 
point, and so the first transformation matrix must appear on the right of the 
product and the last on the left. (If we had used the row vector method then the 
product would appear in the natural order from left to right - this is the price we 
pay for identifying the transformation matrix with the coefficients of the 
equation.) 

So we need to introduce a procedure ‘mult2’ (see listing 4.1) which forms the 
product of two matrices. The BASIC computer language does not allow the 
transmission of array parameters into procedures, so we must invent an efficient 
means of coping with this limitation. We assume that all matrix multiplication 
operates on matrices A and R to give the product matrix B, and when the product 
is obtained B is copied back into R. The reason for the choice of identifiers and 
the final copy will become evident as we progress. We also need a procedure 
‘idR2’ (see listing 4.1) which sets R to the identity matrix. Should we need to 
form the product of a sequence of matrices we first set R = I and then for each of 
the matrices, from right to left, we name each A and call the procedure ‘mult2’ in 
turn. At the end of the process R contains the matrix product of the sequence. 

All natural transformations  may be reduced to a combination of three basic 
forms of linear transformation:  translation, scaling and rotation about the 
coordinate origin. It should also be noted that all valid applications of these 
transformations  return non-singular matrices. The procedures that follow 
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Listing 4.1 
 

9100 REM mult2 
9110 DEF PROCmult2 
9120 LOCAL I%,J%,K% 
9130 FOR I%=1 TO 2 
9140 FOR J%=1 TO 3 
9150 B(I%,J%)=A(I%,1)*R(1,J%)+A(I%,2)*R(2,J%) 
9160 NEXT J% 
9170 B(I%,3)=B(I%,3)+A(I%,3) 
9210 NEXT I% 
9220 FOR I%=1 TO 2 
9230 FOR J%=1 TO 3 
9240 R(I%,J%)=B(I%,J%) 
9250 NEXT J% 
9260 NEXT I% 
9270 ENDPROC 

 
9300 REM idR2 
9310 DEF PROCidR2 
9320 R(1,1)=1 : R(1,2)=0 : R(1,3)=0 
9330 R(2,1)=0 : R(2,2)=1 : R(2,3)=0 
9340 ENDPROC 

 
generate a matrix called A for each of the three types of transformation,  so that 
each transformation procedure can be used in conjunction with ‘mult2’ to 
produce combinations of transformations. 

 
 
 

Translation 
 

A ‘before’ point (x, y) is moved by a vector (TX, TY) to (x'  , y'  ) say. This 
produces the equations 

 
x' = 1 × x + 0 × y + TX 

 
y' = 0 × x + 1 × y + TY 

 
so the matrix that describes this transformation is 

 
1    0     TX 

 
0    1     TY 

 
0    0     1 

 
A procedure, ‘tran2’, for generating such a matrix A given the values TX and TY 
is given in listing 4.2. 
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Listing 4.2 
 

9000 REM tran2 
9010 DEF PROCtran2(TX,TY) 
9020 A(1,3)=TX : A(2,3)=TY 
9030 A(1,1)= 1 : A(1,2)= 0 
9040 A(2,1)= 0 : A(2,2)= 1 
9050 ENDPROC 

 
 
 

Scaling 
 

The x-coordinate of a point in space is scaled by a factor SX, and the y- 
coordinate by SY, thus 

 
x' = SX × x + 0 × y + 0 

 
y' = 0 × x + SY × y + 0 

giving the matrix 

SX     0     0 
 

0 SY     0 
 

0    0     1 
 

Usually SX and SY are both positive, but if one or both are negative this creates 
a reflection as well as a scaling. In particular, if SX =   1 and SY = 1 then the 
point is reflected about the y-axis. A program segment, ‘scale2’, to produce such 
a scaling matrix A given SX and SY is given in listing 4.3. 

 
 

Listing 4.3 
 
 

8900 REM scale2 
8910 DEF PROCscale2(SX,SY) 
8920 LOCAL I%,J% 
8930 FOR I%=1 TO 3 
8940 FOR J%=1 TO 3 
8950 A(I%,J%)=0 
8960 NEXT J% 
8970 NEXT I% 
8980 A(1,1)=SX : A(2,2)=SY : A(3,3)=1 
8990 ENDPROC 
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Rotation about the Origin 
 

If we rotate a point in an anticlockwise direction (the normal mathematical 
orientation) about the origin by an angle    then the equations are 

 
x' = sin    × x    sin    × y + 0 

 
y' = sin    × x    cos    × y + 0 

and the matrix is 

cos    sin   0 

sin  cos  0 

0  0  1 
 

The procedure, ‘rot2’, to produce a rotation matrix, A, for an angle     is given in 
listing 4.4. 

 
Listing 4.4 

 
8600 REM rot2 
8610 DEF PROCrot2(THETA) 
8620 LOCAL I%,J% 
8630 FOR I%=1 TO 3 
8640 FOR J%=1 TO 3 
8650 A(I%,J%)=0 
8660 NEXT 
8670 NEXT 
8680 A(3,3)=1 
8690 CT=COS(THETA) : ST=SIN(THETA) 
8700 A(1,1)=CT : A(2,2)=CT 
8710 A(1,2)=-ST : A(2,1)=ST 
8720 ENDPROC 

 
Inverse Transformations 

 
For every transformation there is an inverse transformation that will restore the 
points in space to their original position. If a transformation is represented by a 
matrix A, then the inverse transformation is represented by the inverse matrix 
A 1. There is no need to calculate this inverse by using listing 7.4, we can find it 
directly by using listings 4.2, 4.3 and 4.4, with parameters derived from the 
parameters of the original transformation: 

 
(1) A translation by (TX, TY) is inverted by a translation by ( TX,   TY). 
(2) A scaling by SX and SY is inverted by a scaling by 1/SX and 1/SY (naturally 
both SX and SY are non-zero, for otherwise the two-dimensional  space would 
contract into a line or a point). 
(3) A rotation by an angle    is inverted by a rotation by an angle  . 
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(4) If the transformation matrix is a product of a number of translation, scaling 
and rotation matrices A × B × C × . . . × L × M × N (say), then the inverse 
transformation matrix is 

 

N 1 × M 1 × L 1 × . . . C 1 × B 1 × A 1 
 

Note the order of multiplication! 
 

The Placing of an Object 
 

We are often required to draw a given object at various points on the screen, and 
arbitrary orientations. It would be very inefficient to calculate by hand the 
coordinates of vertices for each position of the object and input them to the 
program. Instead we first define an arbitrary but fixed coordinate system for two- 
dimensional space, which we shall call the ABSOLUTE system. Then we give 
the coordinates of the vertices of the object in some simple way, usually about 
the origin, which we call the SETUP position. Lines and areas within the object 
are defined in terms of the vertices. We can then use matrices to move the 
vertices of the object from the SETUP to the ACTUAL position in the 
ABSOLUTE system. The lines and areas maintain their relationship with the 
now transformed vertices. The matrix that relates the SETUP to the ACTUAL 
position will be called P throughout this book (we sometimes give it a letter 
subscript to identify it uniquely from other such matrices). Because of the 
restriction of not passing arrays as parameters into subprograms, we shall not 
normally explicitly generate array P, instead it will be implicitly used to update 
the array R. 

 
 

Looking at the Object 
 

Thus objects in a scene can be moved relative to the ABSOLUTE coordinate 
axes. When observing such a scene, the eye is assumed to be looking directly at 
(DX, DY) of the ABSOLUTE system and the head tilted through an angle a 
(ALPHA). It would be convenient to assume that it is looking at the origin and 
there is no tilt of the head (we call this the OBSERVED position). Therefore we 
generate another matrix that will transform space so that the eye is moved from its 
ACTUAL position to this OBSERVED position. The ACTUAL to OBSERVED 
matrix is named Q throughout this book, and is achieved by first translating all 
points in space by a vector (  DX,   DY), matrix A, and then rotating them by an 
angle  , matrix B (note the minus signs!). Thus Q = B × A, 
which is generated in procedure ‘look2’, given as listing 4.5. Normally we do not 
calculate Q explicitly since, as usual, it is used to update R; however, if it is 
necessary to use the values of the matrix repeatedly then obviously it is sensible 
to store Q. 
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Listing 4.5 
 

8200 REM look2 
8210 DEF PROClook2 
8220 CLS : INPUT"(DX,DY) ",DX,DY 
8230 INPUT"ALPHA ",ALPHA 
8240 PROCtran2(-DX,-DY) : PROCmult2 
8250 PROCrot2(-ALPHA) : PROCmult2 
8260 ENDPROC 

 
Drawing an Object 

 
Combining the SETUP to ACTUAL matrix P, with the ACTUAL to OBSERVED 
matrix Q, we get the SETUP to OBSERVED matrix R = Q × P (we shall always 
use R to denote this matrix _ and remember R is always the result of our ‘mult2’ 
procedure). transforming all the SETUP vertices by R, with the corresponding 
movement of line and area information, means that the coordinates of the object 
are given relative to the observer who is looking at the origin of the ABSOLUTE 
coordinate system with head upright, and who is in fact really looking at a 
graphics screen. So we identify the ABSOLUTE coordinate system with the 
system of the screen to find the position of the vertices on the screen, and then 
draw the vertices, lines and areas that compose the object. In practice this is 
achieved by a construction procedure which uses matrix R. It will set up the 
vertex, line and area information, transform the vertices by using R, and perhaps 
finally draw the object; see example 4.1 below. Later we shall see that there are 
certain situations where it is more efficient to store the vertex, line and area 
information. For example, the vertex coordinates can be stored in arrays X and Y, 
line information in a two-dimensional  array LIN or area information in a two- 
dimensional array FACET. Vertices may be stored in their SETUP, ACTUAL or 
OBSERVED position - it really depends on the context of the program. This 
SETUP to ACTUAL to OBSERVED method will enable us to draw a dynamic 
series of scenes - objects can move relative to the ABSOLUTE axes, and to 
themselves, while simultaneously  the observer can move independently around 
the scene. To start with, however, we shall consider the simplest case of a fixed 
scene. 

 
Complicated Pictures - the ‘Building Block’ Method 

 
We can draw pictures that contain a number of similar objects. There is no need 
to produce a new procedure for each occurrence of the object, all we do each 
time is to calculate a new SETUP to OBSERVED matrix and enter this into the 
same procedure. Naturally we shall require one procedure for each new type of 
object in the picture. The final picture is achieved by the execution of a 
procedure that is named ‘scene2’ which will be called from the standard main 
program (listing 4.6). This main program defines the MODE of the picture, 
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centres the graphics area after having input HORIZ and VERT, and then calls 
‘scene2’. 

 
Listing 4.6 

 
100 REM MAIN PROGRAM 
110 MODE 1 
120 INPUT"HORIZ,VERT",HORIZ,VERT 
130 PROCstart(3,0) 
140 PROCsetorigin(HORIZ/2,VERT/2) 
150 PROCscene2 
160 STOP 

 
‘scene2’ declares all the necessary arrays and then, if required, calls ‘look2’ to 

generate Q; if more than one object is to be drawn then we store Q. For each 
individual object (or block) we calculate a matrix P and call the required 
construction procedure using R = Q × P. All the blocks finally build into the 
finished picture. To distinguish between different occurrences of these matrices 
in what follows, we sometimes add a subscript to the names P and R. 

This modular approach for solving the problem of defining and drawing a 
picture may not be the most efficient, but from our experience it does greatly 
clarify the situation for beginners, enabling them to ask the right questions about 
constructing a required scene. Also when dealing with animation we shall see that 
this approach minimises problems in scenes where not only are the objects 
moving relative to one another, but also the observer himself is moving. Naturally 
if the head is upright then matrix Q can be replaced by a call to ‘setorigin’ which 
changes the screen coordinate system. Or if the eye is looking at the origin, head 
upright, then Q is the identity matrix I, so it plays no part in transforming the 
picture and the ‘look2’ procedure may be ignored. We shall make no such 
assumptions and work with the most general situation: it is a useful exercise 
throughout this book for the reader to cannibalise our programs in order to make 
them more efficient for specific cases. It is our aim to explain the concepts in the 
most general and straightforward  terms, even if it is at the expense of efficiency 
and speed. The reader can return to these programs when he is ready and fully 
understands the ideas of transforming space. Later we shall give some hints on 
how to make these changes, but at the moment this would only confuse the issue. 

However, the most important reason for this modular approach will be seen 
when we come to drawing pictures of three-dimensional  objects. We shall define 
these three-dimensional  constructions as an extension of the ideas above and full 
understanding of two-dimensional  transformations  is essential before we can go 
on to higher dimensions. 

 
Example 4.1 
Consider a simple flag SETUP that consists of three coloured areas and two lines 
that are defined by vertices (labelled 1 to 12) taken from the set (5, 5), (  5, 5), 



68 Advanced Graphics with the BBC Model B Microcomputer  
 
 
 

(  5,   5), (5,   5), (4, 5), (  4, 5), (  5, 4), (  5,   4), (  4,   5), (4,   5), (5,   4) and (5, 
4). The three areas (or facets) are given by vertices 1, 2, 3, 4 (facet 1), 1, 5, 8, 3, 
9, 12 (facet 2) and 2, 7, 10, 4, 11, 6 (facet 3). The two lines are given by vertices 
1, 3 (line 1) and 2, 4 (line 2). This information is stored in a DATA statement and 
recalled when required. See figure 4.1 , which shows a flag that was drawn on a 
screen 16 units by 12 units; the SETUP to ACTUAL matrix is the identity and the 
ACTUAL to OBSERVED matrix is such that the observer is looking at the origin 
with head upright. Listing 4.7 gives the necessary procedure ‘scene2’ which moves 
the object into position and takes a general view, and listing 4.8 is the required 
construction procedure ‘flag’. Note that ‘flag’, which uses matrix R to transform 
the vertices (and hence the object) into their OBSERVED position, 
does not store the vertex values for this position in a permanent data-base. 
Instead the values are kept in arrays X and Y for the duration of the procedure 
and if the procedure is re-entered to draw another flag then these array locations 
are used again. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.1 
 
 

Listing 4.7 
 

6000REM"scene 2 / flag not stored, single view 
6010DEF PROCscene2 
6020DIM X(12),Y(12),A(3,3),B(3,3),R(3,3) 
6030PROCidR2 : PROClook2 
6040PROCflag 
6050ENDPROC 
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Figure 4.2 
 
 
 

Listing 4.8 
 

6500 REM flag / data not stored 
6510 DEF PROCflag 
6520 LOCAL I%,XX,YY 
6530 RESTORE 6540 
6540 DATA 5,5, -5,5, -5,-5, 5,-5, 4,5, -4,5, -5,4, -5,-4, -4,-5, 

4,-5, 5,-4, 5,4 
6550 FOR I%=1 TO 12 : READ XX,YY 
6560 X(I%)=R(1,1)*XX+R(1,2)*YY+R(1,3) 
6569 REM"READ facet information 
6570 Y(I%)=R(2,1)*XX+R(2,2)*YY+R(2,3) 
6580 NEXT I% 
6589 REM draw red base of flag 
6590 GCOL0,1 
6599 REM READ line information 
6600 MOVE FNX(X(2)),FNY(Y(2)) : MOVE FNX(X(1)),FNY(Y(1)) 
6610 PLOT85,FNX(X(3)),FNY(Y(3)) : PLOT85,FNX(X(4)),FNY(Y(4)) 
6619 REM draw two yellow diagonal stripes 
6620 GCOL0,2 
6629 REM READ vertex information and move it into position 
6630 MOVE FNX(X(1)),FNY(Y(1)) : MOVE FNX(X(5)),FNY(Y(5)) 
6640 PLOT85,FNX(X(12)),FNY(Y(12)) : PLOT 85,FNX(X(8)),FNY(Y(8)) 
6650 PLOT85,FNX(X(9)),FNY(Y(9)) : PLOT85,FNX(X(3)),FNY(Y(3)) 
6660 MOVE FNX(X(2)),FNY(Y(2)) : MOVE FNX(X(6)),FNY(Y(6)) 
6670 PLOT85,FNX(X(7)),FNY(Y(7)) : PLOT85,FNX(X(11)),FNY(Y(11)) 
6680 PLOT85,FNX(X(10)),FNY(Y(10)) : PLOT85,FNX(X(4)),FNY(Y(4)) 
6689 REM draw two red diagonal lines 
6690 GCOL0,1 
6700 MOVE FNX(X(1)),FNY(Y(1)) : DRAW FNX(X(3)),FNY(Y(3)) 
6710 MOVE FNX(X(2)),FNY(Y(2)) : DRAW FNX(X(4)),FNY(Y(4)) 
6720 ENDPROC 
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Example 4.2 
Suppose we wish to draw figure 4.2, which includes four flags labelled (a), (b), 
(c) and (d) on a screen that is 240 units by 180 units. For simplicity in this picture 
we shall assume that Q is the identity matrix, so the head is upright and the eye 
looks at the SETUP origin. Flag (a) is placed identically at its SETUP position 
(that is, Ra = 1) whereas flag (b) is moved from its SETUP to ACTUAL position 
by the following transformations: 

 
(1) Scale the figure with SX = 4 and SY = 2, so producing matrix A. 
(2) Rotate the figure through   /6 radians, so giving matrix B. 
(3) Translate the figure by TX = 30 and TY = 15, so producing matrix C. 

(4 0  0 ) ( 3/2  1/2     0 ) (1     0    30 ) A =  0  2  0  B =  1/2  3/2     0  C =  0    1    15 

0  0  1  0  0     1  0    0    1 
 

The complete transformation is given by Rb = Q × Pb = I × Pb = Pb = C × B × A 
(note the order of matrix multiplication, and that the subscript distinguishes the 
placing of flag (b) from the others). 

If instead we used the order A × B × C (giving matrix Pd), then 

Pb =(
 

2  3  15 )
  

 
Pd = ( 1  3  15  3 + 30 )

 
2  3  1  30  2  3  2  60  3    30 

0  0  1  0  0  1 
 

which are obviously two different transformations.  Matrix Rd = Q × Pd = I × Pd 
produces flag (d). Note how this flag is not symmetrical about two mutually 
perpendicular axes as are the other three flags; be very careful with the use of the 
scaling transformation - remember scaling is defined about the origin and this 
will cause distortions in the shape of an object that is moved away from the 
origin! 

To illustrate this example further we shall show how to calculate the ACTUAL 
position of the four corners of flag (b) on the screen by setting the coordinates in 
the form of a column vector and premultiplying  it by matrix Rb = I 
× Pb. For example 

( 
0  0  1 

)
 

(
1 
)  ( 

1  
)
 

2  3  1  30  5  10  3 + 25 
 

2  3  15  ×  5  =  5  3 + 25  etc 
 
 

When returned to normal vector form we see that the four vertices (5, 5), (  5, 5), 
(  5,   5) and (5,   5) have been transformed to (10  3 + 25, 5  3 + 25), (   10  3 + 
35,   5  3 + 5), and (10  3 + 35,   5  3 + 25) respectively. 
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Flag (c) is flag (b) reflected in the line 3y =   4x    9. This line cuts the y-axis 
at (0,   3) and makes an angle     = cos 1(  3/5) = sin 1(4/5) = tan 1(  3/4) with the 
positive x-axis. If we move space by a vector (0, 3), matrix D say, this line will 
go through the origin. Furthermore, if we rotate space by  , matrix E say, the 
line is now identical with the x-axis. Matrix F can reflect the flag in the x-axis, E 1 

puts the line back at an angle     with the x-axis, and finally D 1 returns the line to 
its original position. Matrix G = D 1 × E 1 × F × E × D will therefore reflect all 
the ACTUAL vertices of flag (b) about the line 3y =   4x    9 and Rc = 1 × Pc = G 
× Pb can therefore be used to draw flag (c). That is we use matrix Pb to move the 
flag to position (b) and then G to place it in position (c): 

 
1   0   0  3/5  4/5  0  1    0    0 

 
D =  0   1   3  E =  4/5  3/5  0  F =  0    1    0 

0   0   1  0  0  1  0    0    1 
and 

( 48    14  3  7    24  3  642  ) Pc =  —  14    48  3  24 + 7  3  669 
25 

0  0  25 
 

Figure 4.2 is drawn by using the new ‘scene2’ procedure of listing 4.9 : note 
that this ‘scene2’ does not call ‘look2’, since it is assumed that the eye is looking 
the origin with the head erect. The main program and the ‘flag’ procedure, as well 
as all the other graphics package procedures, stay unchanged. 

 
Listing 4.9 

 
6000 REM scene 2 / 4 flags not stored fixed view 
6010 DEF PROCscene2 
6020 DIM X(12),Y(12),A(3,3),B(3,3),R(3,3) 
6029 REM flag a) 
6030 PROCidR2 : PROCflag 
6039 REM flag b) 
6040 PROCscale2(4,2) : PROCmult2 
6050 PROCrot2(PI/6) : PROCmult2 
6060 PROCtran2(30,15) : PROCmult2 
6070 PROCflag 
6080 PROCtran2(0,3) : PROCmult2 
6089 REM flag c) 
6090 THETA=FNangle(-3,4) 
6100 PROCrot2(-THETA) : PROCmult2 
6110 PROCscale2(1,-1) : PROCmult2 
6120 PROCrot2(THETA) : PROCmult2 
6130 PROCtran2(0,-3) : PROCmult2 
6140 PROCflag 
6149 REM flag d) 
6150 PROCidR2 
6160 PROCtran2(30,15) : PROCmult2 
6170 PROCrot2(PI/6) :PROCmult2 
6180 PROCscale2(4,2) : PROCmult2 
6190 PROCflag 
6200 ENDPROC 
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Exercise 4.1 
In order to convince yourself that this program may be used to deal with the 
general situation, you should run this program using non-zero values of DX, DY 
or a so that the ACTUAL to OBSERVED matrix Q is not the identity matrix. Your 
‘scene2’ procedure should call ‘look2’ to calculate Q, which must be stored. Then 
for each object in the scene, in turn, calculate the SETUP to ACTUAL matrix P 
(which ‘mult2’ places in R), premutliply it by Q (which has to be copied into 
matrix A for use with ‘mult2’) and finally enter the construction procedure with 
the product matrix R = Q × P. 

 
Exercise 4.2 
Use the above procedures to draw diagrams that are similar to figure 4.2, but 
where the number, position and direction of the flags are read in from the 
keyboard. You can produce procedures to draw more complicated objects, we 
have chosen a very simple example so that the algorithms would not be obscured 
by the complexity of objects. The above method can deal with as many vertices, 
lines and coloured areas as the Model B can handle within time and storage 
limitations. 

 
Exercise 4.3 
By using loops in the program we can draw ordered sequences of the objects; for 
example, they may all have the same orientation but their points of reference (the 
origin in the SETUP position) may be equally spaced along any line p +   q. We 
can set up a loop with index parameter     and draw one flag for each pass through 
the loop. For each value of    we can alter the parameters of translation in a regular 
way within the loop (using   , p and q). The new values of these parameters are 
used to calculate a different SETUP to ACTUAL matrix for each occurrence, and 
this moves the object into a new ACTUAL position. R = Q × P = I × P is used to 
observe and draw each object on the screen. With these ideas, construct a line of 
flags on the screen. 

 
Efficient Use of Matrices 

 
It is obvious that whatever combination of transformations  we use, the third row 
of every matrix will always be (0 0 1), If we work with only the top two rows of 
the matrix this will make our procedures much more efficient. We still keep 3 × 3 
rather than 2 × 3 matrices (which is really all we need), because we may have 
previously written other procedures that assume 3 × 3 matrices. ReDIMensioning 
the arrays could lead to array bound errors in the earlier procedures - the cost of a 
few extra real numbers per matrix is a small price to pay to avoid errors. It is also 
more efficient to use explicit statements rather than loops. Listings 4.1, 4.2, 4.3 
and 4.4 are rewritten as listings 4.1a, 4.2a, 4.3a and 4.4a, respectively, to make 
use of these facts. 
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Listing 4.1a 
 

9100 REM mult2 
9110 DEF PROCmult2 
9120 LOCAL I%,J%,K% 
9130 FOR I%=1 TO 2 
9140 FOR J%=1 TO 3 
9150 B(I%,J%)=A(I%,1)*R(1,J%)+A(I%,2)*R(2,J%) 
9160 NEXT J% 
9170 B(I%,3)=B(I%,3)+A(I%,3) 
9210 NEXT I% 
9220 FOR I%=1 TO 2 
9230 FOR J%=1 TO 3 
9240 R(I%,J%)=B(I%,J%) 
9250 NEXT J% 
9260 NEXT I% 
9270 ENDPROC 

 
9300 REM idR2 
9310 DEF PROCidR2 
9320 R(1,1)=1 : R(1,2)=0 : R(1,3)=0 
9330 R(2,1)=0 : R(2,2)=1 : R(2,3)=0 
9340 ENDPROC 

 
 

Listing 4.2a 
 

9000 REM tran2 
9010 DEF PROCtran2(TX,TY) 
9020 A(1,3)=TX : A(2,3)=TY 
9030 A(1,1)= 1 : A(1,2)= 0 
9040 A(2,1)= 0 : A(2,2)= 1 
9050 ENDPROC 

 
 

Listing 4.3a 
 

8900 REM scale2 
8910 DEF PROCscale2(SX,SY) 
8920 A(1,1)=SX : A(2,2)=SY 
8930 A(1,2)= 0 : A(1,3)= 0 
8940 A(2,1)= 0 : A(2,3)= 0 
8950 ENDPROC 

 
 

Listing 4.4a 
 

8600 REM rot2 
8610 DEF PROCrot2(THETA) 
8620 CT=COS(THETA) : ST=SIN(THETA) 
8630 A(1,1)= CT : A(2,2)=CT 
8640 A(1,2)=-ST : A(2,1)=ST 
8650 A(1,3)=  0 : A(2,3)= 0 
8660 ENDPROC 
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The construction of figure 4.2 may seem rather contrived since the position of 
the objects was chosen in an arbitrary way. However, in most diagrams the 
positioning of objects will be well defined, the values being implicit in the 
diagram required. Example 4.3 illustrates this. 

 
Example 4.3 
Write a program to draw an ellipse that has major axis A and minor axis B, and 
that is centred at the point (CX, CY). The major axis makes an angle    (THETA) 
with the positive x-direction. Note that the order of transformations  is important: 
first rotate and then translate. If we wish to draw ellipses with major axis 
horizontal then we need not use matrices, we can stay with the procedure set in 
exercise 2.5 and use ideas that are similar to those in listing 2.9. Listing 4.10 
gives a ‘scene2’ procedure that reads in data about the ellipse calculates the 
SETUP to OBSERVED matrix and then calls the construction procedure ‘ellipse’ 
to draw the ellipse. 

 
Listing 4.10 

 
6000 REM scene2 / ellipse not stored : fixed view 
6010 DEF PROCscene2 
6020 DIM A(3,3),B(3,3),R(3,3) 
6029 REM major axis A, minor axis B centre (CX,CY), 

angle THETA 
6030 INPUT"A,B,CX,CY,THETA",A,B,CX,CY,THETA 
6040 PROCidR2 : PROCrot2(THETA) : PROCmult2 
6050 PROCtran2(CX,CY) : PROCmult2 
6060 PROCellipse(A,B) 
6070 ENDPROC 
6500 REM"ellipse / points not stored 
6510 DEF PROCellipse(A,B) 
6520 LOCAL I%,ALPHA,ADIF,XX,YY,XPT,YPT 
6529 REM find points (XX,YY) on the ellipse with 

major axis A, minor axis B and placed in 
position using matrix R 

6530 XPT=R(1,1)*A+R(1,3) : YPT=R(2,1)*A+R(2,3) 
6540 PROCmoveto(XPT,YPT) 
6550 ALPHA=0 : ADIF=PI/50 
6560 FOR I%=1 TO 100 
6570 ALPHA=ALPHA+ADIF 
6580 XX=A*COS(ALPHA) : YY=B*SIN(ALPHA) 
6590 XPT=R(1,1)*XX+R(1,2)*YY+R(1,3) 
6600 YPT=R(2,1)*XX+R(2,2)*YY+R(2,3) 
6610 PROClineto(XPT,YPT) 
6620 NEXT I% 
6630 ENDPROC 

 
 

Exercise 4.4 
Write a procedure fur drawing an individual matrix-transformable object (in this 
case the asteroid shown in figure 4.3a) and then use the matrix techniques to draw 
combinations of these objects (as in figure 4.3b). An asteroid is a closed curve 



Matrix Representation  of Transformations  on Two-dimensional  Space 75  
 
 
 

with the parametric form (R × cos3   , R × sin3   ) where 0  2   and R is the 
radius (the maximum distance from the centre of the object). The parameters 
needed by this procedure are the radius of the asteroid and the transforming 
matrix. Figure 4.3b is the combination of a large number of two different forms of 
the asteroid. One has radius 1 and is not rotated, the other has radius   2 and is 
rotated through   /4 radians 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(a)  (b) 
Figure 4.3 

 
 

Exercise 4.5 
Experiment with these matrix techniques. Write a procedure to generate the matrix 
that is needed to rotate points in space by an angle    about an arbitrary point (X, 
Y) in space (not necessarily the origin). Also produce another procedure to 
generate the matrix that will reflect points about the general line ay = bx + c (use 
the ideas given in example 4.2 for the production of flag (c)). 

 
Storing information about Scenes 

 
It mentioned earlier that certain situations arise when we need to store all the 
information about a scene in a large data-base rather than lose the information on 
leaving the construction procedure. Our data-base will consist of vertices, lines 
and facets, together with information on colour which can be explicitly or 
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implicitly stored. Vertices are stored as arrays X and Y, of size greater than or 
equal to NOV, the final number of vertices to be stored (these vertices can be 
stored in the SETUP, ACTUAL or OBSERVED position: it depends on the 
context of the problem). 

Line information is stored in a two-dimensional  array LIN whose first index is 
1 or 2, and whose second index is a number between 1 and a value greater than or 
equal to NOL, the final number of lines in the scene. The Ith line joins the two 
vertices with indices LIN(1, I) to LIN(2, I); hence this information is independent 
of position, it simply says which two vertices are joined by the Ith line. We shall 
assume that the colours of lines will be implicitly defined in the program listings. 

Information about polygonal areas or facets (   NOF in number) may be stored 
in a two-dimensional  array FACET and two one-dimensional  arrays SIZE and 
COL. SIZE(J) holds the number of edges in facet J, COL(J) explicitly defines its 
colour, and FACET(J, K), where I    J    NOF and I  SIZE(J), holds the 
indices of the vertices that make up the facet. NOV, NOL and NOF values are 
initialised in the ‘scene2’ procedure and incremented in the construction 
procedures. Note that if we wish to explicitly colour the lines then another array 
must be added. 

We now no longer require construction procedures to draw lines and facets, 
we use them only to create the data-base of lines, vertices, facets etc. 
(transformed by the matrix R). After ‘scene2’ has constructed the final scene in 
memory it calls another procedure ‘drawit’ to draw the final picture. The ‘scene2’ 
procedure will be very similar to those mentioned earlier; for example the 
procedure for drawing figure 4.2 in this new way will be that given in listing 4.9 
with three minor changes listed below: 

 
6020 DIM X(48), Y(48), LIN(2, 8) FACET(6, 12), S1ZE(12), COL(12), 

A(3, 3), B(3, 3), R(3, 3) 
 

6030 NOV = 0 : NOL = 0 : NOF = 0 : PROCidR2 : PROCflag 
 

6200 PROCdrawit : ENDPROC 
 

This is used in conjunction with listing 4.11 which gives the ‘flag’ 
construction procedure (which now merely sets up the data) and the ‘drawit’ 
procedure. 

Suppose we wish to produce different views of the same scene (again we shall 
use figure 4.2 as an example), that is, with the same SETUP to ACTUAL 
matrices P, but different ACTUAL to OBSERVED matrices Q. The obvious 
solution is to create a data-base for the scene with the vertices in the ACTUAL 
position (we can use the ‘flag’ procedure of listing 4.11). Now for each new 
OBSERVED position we calculate Q and enter it into another ‘drawit’ procedure 
(see listing 4.12 - which is different from listing 4.11) which transfers each vertex 
from its ACTUAL to its OBSERVED position using Q, stores them in 
arrays XD and YD so as not to corrupt the X, Y data-base, and recalls them when 
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Listing 4.11 
 

6500 REM flag / placed in position by matrix R and stored 
6510 DEF PROCflag 
6520 LOCAL I%,J%,XX,YY,L1,L2,FVAL 
6530 RESTORE 6540 
6540 DATA 4,1,1,2,3,4,  6,2,1,5,8,3,9,12, 6,2,2,7,10,4,11,6 
6550 DATA 1,3, 2,4 
6560 DATA 5,5, -5,5, -5,-5, 5,-5, 4,5, -4,5, -5,4, -5,-4, -4,-5, 

4,-5, 5,-4, 5,4 
6569 REM READ facet information 
6570 FOR I%=1 TO 3 : NOF=NOF+1 : READ SIZE(NOF),COL(NOF) 
6580 FOR J%=1 TO SIZE(NOF) : READ FVAL : FACET(J%,NOF)=FVAL+NOV 
6590 NEXT J% : NEXT I% 
6599 REM READ line information 
6600 FOR I%=1 TO 2 : NOL=NOL+1 : READ L1,L2 
6610 LIN(1,NOL)=L1+NOV : LIN(2,NOL)=L2+NOV 
6620 NEXT I% 
6629 REM READ vertex information and move it into position 
6630 FOR I%=1 TO 12 : READ XX,YY : NOV=NOV+1 
6640 X(NOV)=R(1,1)*XX+R(1,2)*YY+R(1,3) 
6650 Y(NOV)=R(2,1)*XX+R(2,2)*YY+R(2,3) 
6660 NEXT I% 
6670 ENDPROC 

 
7000 REM drawit 
7010 DEF PROCdrawit 
7020 LOCAL I%,J%,K% : CLG 
7029 REM"draw the NOF facets : explicit colours in array COL 
7030 FOR I%=1 TO NOF 
7040 GCOL 0,COL(I%) 
7050 K%=FACET(2,I%) : MOVE FNX(X(K%)),FNY(Y(K%)) 
7060 FOR J%=3 TO SIZE(I%) 
7069 REM"draw facets 
7070 K%=FACET(1,I%) : MOVE FNX(X(K%)),FNY(Y(K%)) 
7080 K%=FACET(J%,I%) : PLOT 85,FNX(X(K%)),FNY(Y(K%)) 
7090 NEXT J% : NEXT I% 
7099 REM"draw the NOL lines implicit colour 1 (red) 
7100 GCOL0,1 
7110 FOR I%=1 TO NOL 
7120 K%=LIN(1,I%) : PROCmoveto(X(K%),Y(K%)) 
7130 K%=LIN(2,I%) : PROClineto(X(K%),Y(K%)) 
7140 NEXT I% 
7150 ENDPROC 

 
 

they are required for drawing. When using this method to construct different 
views of figure 4.2 only the ‘scene2’ and ‘drawit’ procedures differ from their 
earlier manifestations,  and then only slightly. We give them in listing 4.12. 

 
Exercise 4.6 
Construct a ‘drawit’ procedure for a flag which uses the ‘triangle’ procedure. 

 
Exercise 4.7 
Construct a dynamic scene. With each new view the flags will move relative to 
one another in some well-defined manner. The observer should also move in 
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Listing 4.12 
 

6000 REM scene2 / 4 flags stored variable view 
6010 DEF PROCscene2 
6020 DIM X(48),Y(48),XD(48),YD(48),LIN(2,8),FACET(6,12), 

SIZE(12),COL(12),A(3,3),B(3,3),R(3,3) 
6028 REM create a data base of flags in ACTUAL position 
6029 REM flag a) 
6030 NOV=0 : NOL=0 : NOF=0 : PROCidR2 : PROCflag 
6039 REM"flag b) 
6040 PROCscale2(4,2) : PROCmult2 
6050 PROCrot2(PI/6) : PROCmult2 
6060 PROCtran2(30,15) : PROCmult2 
6070 PROCflag 
6079 REM flag c) 
6080 PROCtran2(0,3) : PROCmult2 
6090 THETA=FNangle(-3,4) 
6100 PROCrot2(-THETA) : PROCmult2 
6110 PROCscale2(1,-1) : PROCmult2 
6120 PROCrot2(THETA) : PROCmult2 
6130 PROCtran2(0,-3) : PROCmult2 
6140 PROCflag 
6149 REM flag d) 
6150 PROCidR2 
6160 PROCtran2(30,15) : PROCmult2 
6170 PROCrot2(PI/6) : PROCmult2 
6180 PROCscale2(4,2) : PROCmult2 
6190 PROCflag 
6199 REM loop through different views 
6200 PROCidR2 : PROClook2 
6210 PROCdrawit 
6220 GOTO 6200 
6230 ENDPROC 

 
7000 REM drawit 
7010 DEF PROCdrawit 
7020 LOCAL I%,J%,K% : CLG 
7029 REM move vertices to OBSERVED position using matrix R 
7030 FORI%=1 TO NOV 
7040 XD(I%)=R(1,1)*X(I%)+R(1,2)*Y(I%)+R(1,3) 
7050 YD(I%)=R(2,1)*X(I%)+R(2,2)*Y(I%)+R(2,3) 
7060 NEXT I% 
7069 REM draw facets 
7070 FOR I%=1 TO NOF 
7080 GCOL 0,COL(I%) 
7090 K%=FACET(2,I%) : MOVE FNX(XD(K%)),FNY(YD(K%)) 
7100 FOR J%=3 TO SIZE(I%) 
7110 K%=FACET(1,I%) : MOVE FNX(XD(K%)),FNY(YD(K%)) 
7120 K%=FACET(J%,I%) : PLOT 85,FNX(XD(K%)),FNY(YD(K%)) 
7130 NEXT J% : NEXT I% 
7140 GCOL0,1 
7149 REM draw lines 
7150 FOR I%=1 TO NOL 
7160 K%=LIN(1,I%) : PROCmoveto(XD(K%),YD(K%)) 
7170 K%=LIN(2,I%) : PROClineto(XD(K%),YD(K%)) 
7180 NEXT I% 
7190 ENDPROC 
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some simple way, for example the eye could start looking at the origin, twenty 
views later it could be looking at the point (100, 100), and with each view the 
head could tilt a further 0.1 radian. You no longer need to INPUT the values cf 
(DX, DY) and ALPHA into ‘look2’, instead they should be calculated by the 
program. 

 
Exercise 4.8 
Construct a scene that is a diagrammatic view of a room in your house - with 
schematic two-dimensional  drawings of tables, chairs etc. placed in the room. 
Each different type of object has its own construction procedure, and the ‘scene2’ 
procedure should read in data to place these objects around the room. Once the 
scene is set produce a variety of views, looking from various points and 
orientations. Use the menu technique of chapters 5 and 6 to input information . 

Or you can set up a line-drawing picture of a map, and again view it from 
various orientations. The number of possible choices of scene is enormous! 

We can choose small values for HORIZ and VERT, which has the effect of the 
observer zooming up close to parts of a scene, and all external lines will be 
conveniently clipped off. 

 
Complete Programs 

 
We group the listings 3.3 (‘angle’), 4.1a (‘mult2’ arid ‘idR2’), 4.2a (‘tran2’), 4.3a 
(‘scale2’), 4.4a (‘rot2’), 4.5 (‘look2’) and 4.6 (‘main program’) under the heading 
‘lib2’. 

 
I   ‘lib1’, ‘lib2’, listings 4.7 (‘scene2’) and 4.8 (‘flag’). Data required: mode, 

HORIZ, VERT, DX, DY and ALPHA. Try 1, 24, 18, 1, 1, 0.5. Keep any 
five of these values fixed and systematically make small changes in the 
other data value. 

II   ‘lib1’, ‘lib2’, listings 4.9 (‘scene2’) and 4.8 (‘flag’). Data required: mode, 
HORIZ, VERT. Try 1 , 240, 180; 1, 160, 120; 1, 80, 60. 

III   ‘lib1’, ‘lib2’ and listings 4.10 (‘scene2’ and ‘ellipse’). Data required: 
mode, HORIZ, VERT, A, B, CX, CY, THETA. Try 1, 30, 20, 12, 9, 1, 1, 
0.5. Again fix all but one of the values and change the remaining value 
systematically. 

IV   ‘lib1’, ‘lib2’, listings 4.9 (‘scene2’ adjusted as described in the text) and 
4.11 (‘flag’ and ‘drawit’). Data required: as II above. LOAD with PAGE = 
&1100. 

V   ‘lib1’, ‘lib2’, listings 4.11 (‘flag’ but not ‘drawit’) and 4.12 (‘scene2’ and 
‘drawit’). Data required: mode, HORIZ, VERT, DX, DY, ALPHA. Try 1, 
240, 180, 5, 5, 1. Systematically change each of the data values in turn. 
LOAD with PAGE = &1100. 

 



80 Advanced Graphics with the BBC Model B Microcomputer  
 
 
 
 
 

5 Character Graphics on the BBC 
Microcomputer 

 
 
 
 

In all the MODEs except mode 7 each character to be drawn in two colours is 
made up of a set of eight by eight pixels and may be printed as any foreground 
colour. Such a block of pixels is known as a character block. The BBC micro has 
a 95 character standard set, and also has the capability of displaying user-defined 
characters. Both types of characters may be placed on the screen by the PRINT 
command, so we must look closely at this operation. 

PRINT allows us to place characters at any text position on the screen. Such a 
position is specified by column and row numbers. The column number lies 
between 0 on the left of the screen, and on the right either 19 (in modes 2 and 5: 
sixteen-colour modes), 39 (modes 1, 4 and 6: four-colour modes) or 79 (modes 0 
and 3: two-colour modes). The row or line position on this screen is one of the 32 
lines (or 25 lines in modes 3 and 6), from top (0) to bottom (31 or 24). For each 
character position on the screen there are corresponding (mode-dependent) 
locations in the screen memory: 8 for two-colour modes, 16 for four-colour 
modes and 32 for sixteen-colour modes. In the two-colour mode each 8-pixel line 
of an 8 by 8 character block on the screen corresponds to an 8-bit binary memory 
location, one bit per pixel. if the binary digit is a 1 then the corresponding pixel 
will be drawn in the foreground colour, and if the digit is a 0 it will be drawn in 
the background colour. There is a table of data stored in the memory which defines 
the shape of each character. For any given character the PRINT command finds the 
corresponding eight 8-bit values from the table and copies them into the 
appropriate screen memory locations. This has the effect of displaying the 
character on the screen. Obviously if we are using four-colour or sixteen-colour 
modes and two-colour characters (background and foreground) then this method 
will not work; however PRINT automatically takes the 8 binary numbers from 
the table and converts them to the 16 or 32 numbers required for the multi-colour 
modes. 

 
 

The Standard Character Set 
 

The table of data for the standard character set is stored in ROM, the permanent 
Read Only Memory of the computer. There are eight pieces of data for each of 
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the 95 characters, thus the table consists of 760 (95 * 8) consecutive locations and 
starts at &C000. Each character has a unique ASCII code number, see the user 
manual. The table contains the data for each of the characters in turn starting with 
the space character (ASCII code 32) and ending with the pound symbol £ (ASCII 
code 126). In order to PRINT a character the command requires the eight pieces of 
data for that character. To find the location in the table it subtracts 32 decimal (20 
hexadecimal) from the ASCII code of the character, multiplies the result by eight 
and finally adds &C000. If a two-colour mode is in use with default colours then 
PRINT simply copies the data (foreground logical colour 1 and background 0) into 
the screen memory and the character appears on the screen. (We can invert the 
colours by setting the background to 1 and the foreground to 0.) However if a 
four-colour mode is heing used then PRINT must calculate the two eight-bit 
values from each of the eight pieces of table data in order to produce eight pixels 
in the appropriate colours. In the sixteen-colour mode the PRINT command must 
translate each piece of data into four eight-bit values, but more of this in a 
moment. 

 
Example 5.1 
First run listing 5.1 which demonstrates how this process works in a two-colour 
mode with foreground 1 and background 0 by showing the calculations as they 
are performed. A detailed explanation of how the screen memory locations are 
arranged is given later in this chapter, but for the moment we will limit ourselves 
to block (0, 0). Figure 5.1 is an example run of this program using ‘*’ as INPUT 
data (see the user guide for information about indirection operators). Note that 
this program makes no permanent change to the characters in the table, and also 
that all numbers are given in hexadecimal notation. 
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Listing 5.1 
 

10 MODE 4 
20 BORED=FALSE 
30 REPEAT : CLS 
40 REPEAT 
50 PRINT TAB(0,2);SPC(30);TAB(0,2); 
60 INPUT "Which character ? "A$ 
70 UNTIL LEN(A$)=1 
80 CLS 
90 A=ASC(A$) : A$=""""+A$+"""" 

100 PRINT TAB(1,4);A$;" SELECTED. ASC(";A$;") = ";~A' 
110 PRINT"CALCULATION OF DATA LOCATION"' 
120 PRINT"START OF TABLE = ",~&C000 
130 B=A-ASC(" ") : C=B*8 
140 PRINT" ASC(";A$;") - 20 = ";~B 
150 PRINT" ";~B;" * 8 = ",~C 
160 D=&C000+C 
170 PRINTSPC(25);"------" 
180 PRINT"DATA STARTS AT ",~D 
190 PRINTSPC(25);"------"' 
200 PRINT"SCREEN LOCATION  DATA TABLE LOCATION"' 
210 S=HIMEM 
219 REM transfer eight pieces of data from table to screen 
220 FOR I%=0 TO 7 
230 DAT=D?I% 
239 REM change value of DAT here for solution of exercise 5.1 
240 S?I%=DAT 
250 PRINT~(S+I%),~DAT,~(D+I%) 
260 NEXT I% 
270 PRINT'"N.B. ALL NUMBERS IN HEXADECIMAL" 
280 PRINT'"PRESS SPACE TO CONTINUE" 
290 REPEAT UNTIL INKEY(-99) 
300 UNTIL BORED 

 
 

Exercise 5.1 
Rewrite listing 5.1 so that it will give you the option of accepting or replacing by 
INPUT each of the eight data values before it is stored in the screen memory. 
Experiment by changing one or two values from a standard character. 

 
We now give a method for taking values from the character table and drawing 

these characters on the screen for multi-colour modes. We start by defining a 
value n that equals 1, 2 or 4 for the two-colour, four-colour or sixteen-colour 
modes respectively, and we let m = 8/n. Suppose f and b are the n-bit binary 
numbers that represent the logical foreground and background colours 
respectively. We calculate a new value F, a foreground mask, by replacing each 
digit in f by m occurrences of the same digit (for example if n = 2 and f = 01, 
then m = 4 and F = 00001111). The background mask B can be created in the same 
way from b. For each 8-bit number V from the character table, we need to 
transform it into n 8-bit numbers Si, (1    i    n) so that one line of a character may 
be drawn in two colours (f and b) on the screen. First we break V into n m-bit 
pieces pi, (1    i    n), that is V = p1 . . . pn. Then we create n 8-bit numbers Ai = 
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(pi)n, which means that the m digits of p1 are repeated n times, for example, (01)4 

= 01010101. From there we calculate the Si by: 

Si = (Ai AND F) OR (Ai AND B)  1    i    n 

where Ai, = Ai EOR 11111111. We give three examples. 

(a) Mode 2: n = 4 then m = 2. 
Suppose f = 0001 , b = 0100 and V = 00010111 , then 

 
F = 00000011  and  B = 00110000 

 

pl = 00 A1 = 00000000 A1 = 11111111 

p2 = 01 A2 = 01010101 A2 = 10101010 

p3 = 0l A3 = 01010101 A3 = 10101010 

p4 = 11 A4 = 11111111 A4 = 00000000 

S1 = 00000000 OR 00110000 = 00110000 

S2 = 00000001 OR 00100000 = 00100001 

S3 = 00000001 OR 00100000 = 00100001 

S4 = 00000011 OR 00000000 = 00000011 

Bits 7, 5, 3 and 1 represent the first colour from the word and bits 6, 4, 2, 0 the 
second: see chapter 1 . Thus using / to represent the relative position of colours 
and f for foreground and b for background: 

S1 = 00110000      0100/0100, that is b/b 

S2 = 00100001      0100/0001, that is b/f 

S  = 00100001      0100/0001, that is b/f 

S4 = 00000011      0001/0001, that is f/f 
 

Thus the four values combine to give the eight colours b/b/b/f/b/f/f/f which 
correspond directly to our original line 00010111. 

 
(b) Mode 1 : n = 2 then m = 4. 

Suppose f = 01 , b = 11 and V = 000l0111, then 
 

F = 00001111 and B = 11111111 
 

pl = 0001 A1 = 00010001 A1 = 11101110 

p2 = 0111 A2 = 01110111 A2 = 10001000 

S1 = 00000001 OR 11101110 = 11101111 

S2 = 00000111 OR 10001000 = 10001111 
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Bits 7 and 3, 6 and 2, 5 and 1, and 4 and 0 give the four colours from each 
byte. 

 
S1 = 1110111l  11/11/11/01, that is b/b/b/f 

S2 = 10001111  11/01/01/0l, that is b/f/f/f 

Thus the two values combine to give the eight colours b/b/b/f/b/f/f/f which 
correspond directly to our original line 00010111. 

(c) Mode 0: n = 1 then m = 8. 
 

Suppose f = 0, b = 1 and V = 00010111, then 
 

F = 00000000   and  B = 11111111 

pl = 00010111   A1=00010111  A1= 11101000 

S1 = 00000000 OR 11101000 = 11101000 

Bits correspond directly to the eight pixels from the byte. 
 

S1 = 11101000  1/1/1/0/1/0/0/0,that is b/b/b/f/b/f/f/f. 

Thus the value gives the eight colours b/b/b/f/b/f/f/f which correspond directly 
to our original line 00010111. 

 
This logic is programmed in listing 5.2. At this early stage you need not make 

a great effort to understand the effect of each logical operation, unless you intend 
to study in detail the assembly language programs in this book. 

 
Listing 5.2 
10 BORED=FALSE : REPEAT 20 INPUT "Which mode ",M : MODE M 
30 REPEAT 
40 PRINT TAB(0,2);SPC(30);TAB(0,2); 
50 INPUT"Which character ",A$ 
60 UNTIL LEN(A$)=1 
69 REM same calculation as in 5.1 
70 A=ASC(A$) 
80 B=A-ASC(" ") 
90 C=B*8 

100 D=&C000+C 
110 S=HIMEM 
120 INPUT"Which background ",BC 
130 INPUT"Which foreground ",FC 
140 ON M+1 GOTO 150,230,380,150,150,230,150 
150 REM"section for 2_colour modes 
160 COLF=&FF*FC : COLB=&FF*BC 
170 FOR I%=0 TO 7 
180 FMASK=D?I% 
190 BMASK=FMASK EOR &FF 
200 S?I%=(COLF AND FMASK) OR (COLB AND BMASK) 
210 NEXT I% 
220 GOTO 570 
230 REM section for 4_colour modes 
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240 COLF=(FC AND 2)/2*&F0 + (FC AND 1)*&0F 
250 COLB=(BC AND 2)/2*&F0 + (BC AND 1)*&0F 
260 FOR I%=0 TO 7 : N%=D?I% 
270 FMASK1=0 : FMASK2=0 
279 REM check each bit of N% and put double-bit in the 

foreground  mask for that half if on. 
280 FOR J%=0 TO 3 
290 IF (N% AND 2^(J%+4)) THEN FMASK1=FMASK1 + &11*2^J% 
300 IF (N% AND 2^J%) THEN FMASK2=FMASK2+ &11*2^J% 
310 NEXT J% 
320 BMASK1=FMASK1 EOR &FF : BMASK2=FMASK2 EOR &FF 
329 REM mix the colours with masks to find two values and put 

2nd value eight bytes on i.e. next to first value. 
330 I8%=I%+8 
340 S?I%=(COLF AND FMASK1) OR (COLB AND BMASK1) 
350 S?I8%=(COLF AND FMASK2) OR (COLB AND BMASK2) 
360 NEXT I% 
370 GOTO 570 
380 REM"section for 16_colour mode 
390 COLF=(FC AND 8)/8*&C0 + (FC AND 4)/4*&30+(FC AND 2)/2*&0C + 
(FC AND 1)*&03 
400 COLB=(BC AND 8)/8*&C0 + (BC AND 4)/4*&30+(BC AND 2)/2*&0C + 
(BC AND 1)*&03 
410 FOR I%=0 TO 7 : N%=D?I% 
420 FMASK1=0:FMASK2=0 :FMASK3=0:FMASK4=0 
429 REM check each bit of N% and put quadruple-bit in the mask 

for that quarter if on. 
430 FOR J%=0 TO 1 
440 IF (N% AND 2^(J%+6)) THEN FMASK1=FMASK1 + &55*2^J% 
450 IF (N% AND 2^(J%+4)) THEN FMASK2=FMASK2 + &55*2^J% 
460 IF (N% AND 2^(J%+2)) THEN FMASK3=FMASK3 + &55*2^J% 
470 IF (N% AND 2^J%) THEN FMASK4=FMASK4 + &55*2^J% 
480 NEXT J% 
490 BMASK1=FMASK1 EOR &FF : BMASK2=FMASK2 EOR &FF 
500 BMASK3=FMASK3 EOR &FF : BMASK4=FMASK4 EOR &FF 
509 REM mix the colours with masks to find four values and put 
each 

value eight bytes on i.e. next to the previous value. 
510 I8%=I%+8 : I16%=I%+16 : I24%=I%+24 
520 S?I%=(COLF AND FMASK1) OR (COLB AND BMASK1) 
530 S?I8%=(COLF AND FMASK2) OR (COLB AND BMASK2) 
540 S?I16%=(COLF AND FMASK3) OR (COLB AND BMASK3) 
550 S?I24%=(COLF AND FMASK4) OR (COLB AND BMASK4) 
560 NEXT I% 
570 UNTIL BORED 

 
Exercise 5.2 
Write a program that does the inverse of this process and can recognise a 
character that is printed at block (0, 0) in any foreground and background 
colours, in modes 0, 1 or 2. This will mean calculating the eight pieces of data 
used to construct the character and comparing them with each set of eight in the 
character table until you find a match. Note that you will need to know the 
logical colour of the background, which will be equivalent to zero bits in our 
eight numbers, everything else must be foreground and ‘ones'  . Remember that 
when using the OSBYTE call with A% = &87 (see the user guide) it is essential 
to ensure that the background COLOUR is set to the appropriate value (as is 
done in the worm game in chapter 1). 



86 Advanced Graphics with the BBC Model B Microcomputer  
 
 
 

User-defined characters: VDU 23 
 

This second type of character is treated in exactly the same way as the ordinary 
character set, but the table that holds the data for these characters is in RAM. 
When the machine is turned on, there is an area reserved for a table that defines 
the 32 characters with ASCII codes from 128 to 159. This table consists of the 
256 bytes stored in memory from &C00 to &CFF. From OS 1.0 onwards the red 
user-definable function keys at the top of the keyboard (the soft keys) will 
produce some of these characters when used with the shift and/or control keys 
(see the user guide). The data in the table for these characters can be changed by 
the user, so that any required character can be typed into a BASIC PRINT text 
string directly from the keyboard. The VDU 23 command is used to redefine 
these keys, and is entered in the format 

 
VDU 23, ASCII code, eight (8-bit) numbers 

 
Example 5.2 
The program in listing 5.3 allows you to redefine a character with ASCII code 
between 128 and 159, by typing all eight 8-bit binary numbers for a character. 
After redefining a character, the program also prints out the data in a 
hexadecimal form for inclusion as DATA statements in future programs (for 
example, listing 5.4). This information can be copied into a program by using the 
COPY key. The ‘display’ procedure may also be used to print out the data for a 
character in the ASCII range 128 to 159 in binary notation. 

 
Exercise 5.3 
Use listing 5.3 to generate a character that consists of a chequer-board pattern of 
pixels (for example, 85, 170, 85 etc.). Experiment with this program by using 
various background and foreground colours in order to make new colours (for 
example, red and yellow give orange). 

 
Exercise 5.4 
Use the procedures from listing 5.3 to make an elementary character editor. 
Move the text cursor around the ‘display’ed data and recognise each binary digit, 
altering it where desired. When you wish to replace the character you will need a 
method of reconstructing a decimal or hexadecimal number from the binary 
strings for each line so that they can be stored in the memory. 

 
Example 5.3 
Listing 5.4, which contains DATA generated by listing 5.3, can be used to create 
‘thin’ numbers for modes 1 and 2 and to store them as characters that are 
equivalent to the ASCII codes 128 to 137 and 144 to 146. Hence shift and the 
soft keys f0 to f9 give the ‘thin’ digits, and control with f0, fl and f2 give ‘thin’ 
‘+’, ‘  ’ and ‘.’. It also contains a procedure to print a string of ‘thin’ digits on the 
screen. These characters will be particularly useful for labelling data diagrams 
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Listing 5.3 
 

10 MODE 4 
20 DIM A(7) 
30 REPEAT 
40 PRINTTAB(0,1);SPC(39);TAB(0,1); 
50 INPUT "Which ASCII code ",CHAR 
60 UNTIL CHAR>127 AND CHAR<160 
70 PRINT"TYPE IN EIGHT, 8-BIT BINARY NUMBERS" 
80 PRINT'" --------" 
90 FOR I%=0 TO 7 

100 REPEAT 
110 PRINTTAB(0,I%+5);SPC(39);TAB(0,I%+5); 
120 INPUTA$ : A=FNT(A$) 
130 UNTIL A>=0 AND A<=255 
140 A(I%)=A 
150 NEXT I% 
160 VDU23,CHAR 
170 FORI%=0TO7 
180 VDU A(I%) 
190 NEXT 
200 PRINT''"ASCII CODE ";CHAR;" NOW REDEFINED"; 

'"TO REPRESENT ";CHR$(CHAR) 
210 PRINT'"DATA "; 
220 FOR I%=0 TO 7 
230 PRINT"&";~A(I%);","; 
240 NEXT I% 
249 REM 'delete' to erase last comma 
250 VDU 127 
260 PRINT 
270 END 
300 REM base ten to binary conversion 
310 DEF FNB(N) 
320 LOCAL I%,B$ 
330 B$="":I%=N 
340 REPEAT 
350 IFI% DIV 2=I%/2 THEN B$="0"+B$ ELSE B$="1"+B$ 
360 I%=I% DIV 2 : UNTIL I%=0 
370 =B$ 
400 REM binary to base ten conversion 
410 DEF FNT(B$) 
420 LOCAL T,I% 
430 T=0 : I%=1 : REPEAT 
440 T=T*2+VAL(MID$(B$,I%,1)) 
450 I%=I%+1 : UNTIL I%>LEN(B$) 
460 =T 
500 REM display 
510 DEF PROCdisplay(C) 
519 REM print binary values defining a character 

(see also OSWORD call with A=&0A) 
520 IF C<128 OR C>159 THEN ENDPROC 
530 D=(C-128)*8+&C00 
540 FOR I%=0 TO 7 
550 K=D?I% : B$=FNB(K) : PRINT LEFT$("00000000",8-LEN(B$));B$ 
560 NEXT I% 
570 ENDPROC 
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in mode 1 and for printing the score in games in mode 2. Note how in this case the 
PRINT procedure starts at a text block position but subsequently places the 
characters by using the graphics cursor. 

 
 
 

Listing 5.4 
 

10 MODE 1 
20 FOR I%=128 TO 137 
30 PROCread(I%) 
40 NEXT I% 
50 DATA &40,&A0,&A0,&A0,&A0,&A0,&40,0 
60 DATA &40,&C0,&40,&40,&40,&40,&E0,0 
70 DATA &40,&A0,&20,&40,&80,&80,&E0,0 
80 DATA &40,&A0,&20,&40,&20,&A0,&40,0 
90 DATA &20,&60,&A0,&A0,&E0,&20,&20,0 

100 DATA &E0,&80,&C0,&20,&20,&A0,&40,0 
110 DATA &40,&A0,&80,&C0,&A0,&A0,&40,0 
120 DATA &E0,&20,&20,&40,&40,&80,&80,0 
130 DATA &40,&A0,&A0,&40,&A0,&A0,&40,0 
140 DATA &40,&A0,&A0,&60,&20,&A0,&40,0 
150 FOR I%=144 TO 146 
160 PROCread(I%) 
170 NEXT I% 
180 DATA &0,&40,&40,&E0,&40,&40,&0,&0 
190 DATA &0,&0,&0,&E0,&0,&0,&0,&0 
200 DATA &0,&0,&0,&40,&40,&0,&0,&0 
209 REM test 'thin' with a string 
210 PROCthin(1,10,10,"0.123+456-789") 
220 END 
230 REM read 
240 DEF PROCread(I%) 
249 REM redefine character I% using eight pieces of data 
250 VDU 23,I% 
260 FOR J%=1 TO 8 
270 READ K : VDU K 
280 NEXT J% 
290 ENDPROC 
300 REM thin 
310 DEF PROCthin(M,X,Y,A$) 
319 REM this only gives correct size for modes < 3 
320 A%=2^(4+M) 
329 REM use graphics cursor to place each character of string 
330 VDU 5 
340 MOVE X*A%,1023-Y*32 
350 FOR I%=1 TO LEN(A$) : P$=MID$(A$,I%,1) 
360 IF P$>="0" AND P$<="9" THEN VDU (80+ASC(P$)) : GOTO 380 
369 REM" deal with special symbols 
370 IF P$="+" THEN VDU 144 ELSE IF P$="-" THEN VDU 145 ELSE VDU 146 
380 MOVE (X+I%/2)*A%,1023-Y*32 
390 NEXT I% 
399 REM separate text and graphics 
400 VDU 4 
410 ENDPROC 
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Example 5.4 
Defined characters can be directly incorporated into your programs to enhance 
the speed of display construction. The equivalent character could be constructed 
by a series of DRAW and PLOT commands but this would take longer in most 
cases. For instance we can build up tessellated patterns on the screen with 
characters in a very quick time compared to the length of time it would take to 
PLOT or DRAW the same pattern. Dsting 5 .5 shows how tMs can be done by 
using combinations of the user-defined characters with ASCIIcodes 128 to 131 
that were constructed by using listing 5.3. 

 
 

Listing 5.5 
 

9 REM tessellation pattern 
10 MODE 4 
20 CLS : INPUT "TWO ACTUAL COLOURS ",FC,BC : CLS 
30 GCOL 0,128 : GCOL 0,1 : MOVE 0,1023 
40 VDU 19,0,BC,0,0,0 : VDU 19,1,FC,0,0,0 
49 REM use graphics cursor as text text cusor so that display 

doesn't scroll 
50 VDU 5 
60 A=128 : B=129 : C=130 : D=131 
70 FOR Y%=0 TO 31 
80 FOR X%=0 TO 39 STEP 4 
90 VDU A,B,C,D 

100 NEXT X% 
109 REM shift characters around 
110 T=A : A=B : B=C : C=D : D=T 
120 NEXT Y% 
130 VDU 4 
140 REPEAT UNTIL INKEY(-99) 

 
Exercise 5.5 
Experiment with various possible symmetries of characters and patterns for 
placement of characters on the screen (that is, the order in which groups of 
characters are drawn on the screen). Alter the program so that it tries all the 
possible combinations of foreground and background colours within two nested 
FOR. . .NEXT loops. 

 
We have seen that the amount of work that goes into constructing even one 

character is enough to imply that the construction of a complete new set of 
characters would be a very arduous task. So we need a program that will simplify 
this task, and that will also allow us to alter characters that have already been 
created. Thd following program is such a character generation and editing 
program for ASCII codes from 32 to 255, and was designed for use in the 
development of graphical display programs. 



90 Advanced Graphics with the BBC Model B Microcomputer  
 
 
 

Listing 5.6 
 

10 MODE 4 
19 REM ensure all blocks can be used 
20 *FX20,6 
30 DIM B(8),A(7),S(7,7),R(7,7) 
40 DIM M$(6) 
50 FOR I%=1 TO 6 : READ M$(I%) : NEXT I% 
60 DATA 1  ... DISPLAY CHARACTERS,2 ... DISPLAY ALL CHARACTERS 

,3  ... EDITOR,4  ... SAVE CHARACTERS,5 ... LOAD CHARACTERS 
,6  ... TEST PROGRAM 

70 FOR I%=1 TO 7 : READ A(I%) 
80 IF A(I%)<&C00 THEN A(I%)=A(I%)+PAGE-&600 
90 NEXT I% 

100 DATA &300,&400,&500,&C00,&0,&100,&200 
110 QUIT=FALSE 
120 REPEAT : PROCmenu : UNTIL QUIT 
130 PROCtestprog 
140 END 

 
200 REM menu 
210 DEF PROCmenu : VDU 19,1,2,0,0,0 
220 COLOUR 128 : CLS : COLOUR 1 
229 REM display options and wait for selection 
230 PRINT TAB(6,3);"*** CHARACTER GENERATOR ***"'' 
240 FOR I%=1 TO 6 
250 PRINT SPC(6);M$(I%)'' 
260 NEXT I% 
270 PRINT "Which option ? "; 
280 REPEAT : A$=GET$ : UNTIL A$>"0" AND A$<"7" 
290 VDU19,1,7,0,0,0 
300 IF A$="1" THEN PROCdisplay 
310 IF A$="2" THEN PROCdisall 
320 IF A$="3" THEN PROCedit 
330 IF A$="4" THEN PROCfile("SAVE") 
340 IF A$="5" THEN PROCfile("LOAD") 
350 IF A$="6" THEN QUIT=TRUE : ENDPROC 
360 PRINT TAB(0,31);"PRESS SPACE TO RETURN TO MENU"; 
370 REPEAT UNTIL INKEY(-99) 
380 ENDPROC 

 
400 REM display OPTION 1 
410 DEF PROCdisplay 
419 REM display one block of 32 characters with their codes. 
420 COLOUR 129 : CLS : COLOUR 0 
430 PRINT TAB(0,1);"Which block ?"; 
440 REPEAT 
450 B$=GET$ : B=VAL(B$) 
460 UNTIL B<8 AND B>0 
470 PRINT B : C=32*B 
480 FOR I%=0 TO 31 
490 PRINT TAB((I% MOD 2)*20,I% DIV 2+6); 
499 REM remember 127 is 'delete' 
500 PRINTI%+C;"= ";: IF I%<>127 THEN VDU I%+C 
510 NEXT I% 
520 ENDPROC 

 
600 REM disall OPTION 2 
610 DEF PROCdisall 
620 COLOUR 129 : CLS : COLOUR 0 
630 PRINT'' 
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639 REM show all characters except 'delete' 
640 FOR I%=32 TO 255 
650 IF I%<> 127 THEN VDU 32,I% 
660 NEXT I% 
670 ENDPROC 

 
700 REM edit OPTION 3 
710 DEF PROCedit 
719 REM set cursor keys for use 
720 *FX4,1 
729 REM give submenu options and draw grid for editing 
730 COLOUR 129 : CLS : COLOUR 0 
740 PRINT'" 1) COLOUR 1 0) COLOUR 0" 
750 PRINT" <SPACE> TO COLOUR SQUARE" 
760 PRINT" CURSOR KEYS MOVE THE CROSS" 
770 PRINT" X)-AXIS Y)-AXIS R)OTATE" 
780 PRINT" U)NPACK P)ACK M)ERGE" 
790 FOR I=0 TO 7 : FOR J=0 TO 7 

: PROCsquare(I,J,0) : NEXT J : NEXT I 
800 LX=320 : RX=LX+640 : BY=128 : TY=BY+640 
810 GCOL0,0 : MOVE LX,BY 

: DRAW LX,TY : DRAW RX,TY : DRAW RX,BY : DRAW LX,BY 
820 I=0 : J=0 : C=0 : PROCmark(I,J) 
829 REM remove cursor cross and scan keyboard for commands 
830 REPEAT : PROCmark(I,J) 
840 IF INKEY(-42) AND J>0 THEN J=J-1 
850 IF INKEY(-58) AND J<7 THEN J=J+1 
860 IF INKEY(-26) AND I>0 THEN I=I-1 
870 IF INKEY(-122) AND I<7 THEN I=I+1 
880 IF INKEY(-99) THEN PROCsquare(I,J,C) 
889 REM replace cross and check for rest of commands 
890 PROCmark(I,J) 
900 A$=INKEY$(0) 
910 IF A$="1" OR A$="0" THEN C=VAL(A$) ELSE 930 
920 COLOUR 0 : PRINT TAB(0,0);"COLOUR = ";C; 

: COLOUR C:PRINT" ** " : COLOUR 0 
930 IF A$="R" THEN PROCrotate 
940 IF A$="X" THEN PROCx_axis 
950 IF A$="Y" THEN PROCy_axis 
959 REM all final three options use an ASCII value so input it 
960 IF NOT (A$="U" OR A$="P" OR A$="M") THEN 1040 
970 REPEAT 
980 PRINT TAB(0,30);SPC(39);TAB(0,30); 
990 INPUT "Which character ",CHAR 

1000 UNTIL CHAR<256 AND CHAR>31 
1010 IF A$="U" THEN PROCunpack : PROCr_to_s : PROCmark(I,J) 
1020 IF A$="M" THEN PROCmerge : PROCmark(I,J) 
1030 IF A$="P" THEN PROCpack 
1040 UNTIL A$="P" 
1049 REM return cursor keys to normal 
1050 *FX4,0 
1060 ENDPROC 

 
1100 REM square 
1110 DEF PROCsquare(X,Y,IN) : GCOL0,IN 
1119 REM colour square in on grid 
1120 LX=640+80*(X-4)+4 : RX=LX+72 : BY=Y*80+132 : TY=BY+72 
1130 MOVE LX,BY : MOVE LX,TY : PLOT 85,RX,BY : PLOT 85,RX,TY 
1139 REM plot point on small character 
1140 S(X,Y)=IN : PLOT 69,1027+X*4,320+Y*4 
1150 ENDPROC 
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1200 REM mark 
1210 DEF PROCmark(X,Y) : GCOL 3,7 
1219 REM eor cross onto a square for use as cursor 
1220 LX=650+80*(X-4) : RX=LX+60 : BY=Y*80+138 : TY=BY+60 
1230 MOVE LX,BY : DRAW RX,TY : MOVE RX,BY : DRAW LX,TY 
1240 ENDPROC 

 
1300 REM pack 
1310 DEF PROCpack 
1319 REM redefine character using data direct from screen 
1320 VDU 23,CHAR 
1330 FOR I%=0 TO 7 
1340 VDU (I%?&7340) 
1350 NEXT 
1360 ENDPROC 

 
1400 REM unpack 
1410 DEF PROCunpack 
1419 REM place character on screen and read data directly 

from its position. 
1420 COLOUR 128 : COLOUR 1 : PRINTTAB(32,21); : VDU CHAR 
1430 FOR I%=0 TO 7 : B(I%)=I%?&7340 : NEXT I% 
1439 REM convert bytes in B() to bits in R(,) 
1440 FOR B=0 TO 7 
1450 Y=7-(B MOD 8) 
1460 FOR X=0 TO 7 
1470 IF B(B) AND 2^(7-X) THEN R(X,Y)=1 ELSE R(X,Y)=0 
1480 NEXT X : NEXT B 
1490 COLOUR 129 : COLOUR 0 
1500 ENDPROC 

 
1600 REM rotate 
1610 DEF PROCrotate 
1619 REM shift bits around into R 
1620 FOR I%=0 TO 7 
1630 FOR J%=0 TO 7 
1640 R(I%,J%)=S(J%,7-I%) 
1650 NEXT J% : NEXT I% 
1660 PROCr_to_s 
1670 ENDPROC 

 
1700 REM r_to_s 
1710 DEF PROCr_to_s 
1719 REM put bits from R into S and update screen display 
1720 FOR I%=0 TO 7 
1730 FOR J%=0 TO 7 
1740 S(I%,J%)=R(I%,J%) 
1750 PROCsquare(I%,J%,S(I%,J%)) 
1760 NEXT J% : NEXT I% 
1770 ENDPROC 

 
1800 REM y_axis 
1810 DEF PROCy_axis 
1819 REM flip bits around into R 
1820 FOR I%=0 TO 7 
1830 FOR J%=0 TO 7 
1840 R(I%,J%)=S(7-I%,J%) 
1850 NEXT J% : NEXT I% 
1860 PROCr_to_s 
1870 ENDPROC 
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1900 REM x_axis 
1910 DEF PROCx_axis 
1919 REM flip bits around into R 
1920 FOR I%=0 TO 7 
1930 FOR J%=0 TO 7 
1940 R(I%,J%)=S(I%,7-J%) 
1950 NEXT J% : NEXT I% 
1960 PROCr_to_s 
1970 ENDPROC 

 
2000 REM file OPTIONS 4 AND 5 
2010 DEF PROCfile(B$) 
2020 CLS : INPUT "WHAT FILE NAME",A$ : IF A$="" THEN ENDPROC 
2030 PRINT"WHAT BLOCK ?"; 
2040 REPEAT: C$=GET$ : UNTIL C$>"0" AND C$<"8" 
2050 C=VAL(C$) : VDU22,7 
2059 REM change to mode 7 and print command into memory 
2060 PRINTB$;" ";A$;" ";~A(C); : IF B$="SAVE" THEN PRINT " +100"; 
2069 REM put a carriage return into the memory to finish command 
2070 PRINT:?&7C28=&D 
2079 REM set pointers to screen and use CLI to execute command 
2080 X%=0:Y%=&7C:CALL&FFF7 
2089 REM switch back to mode 4 
2090 VDU22,4 
2100 ENDPROC 

 
2200 REM merge 
2210 DEF PROCmerge 
2220 PROCunpack 
2229 REM mix incoming character in R with existing one in S 
2230 FOR I%=0 TO 7 
2240 FOR J%=0 TO 7 
2250 R(I%,J%)=S(I%,J%) OR R(I%,J%) 
2260 NEXT J% : NEXT I% 
2270 PROCr_to_s 
2280 COLOUR 129 : COLOUR 0 
2290 ENDPROC 

 
2300 REM tessellation testprog 
2310 DEF PROCtestprog 
2320 CLS : INPUT "TWO ACTUAL COLOURS ",FC,BC : CLS 
2330 GCOL 0,128 : GCOL 0,1 : MOVE 0,1023 
2340 VDU 19,0,BC,0,0,0 : VDU 19,1,FC,0,0,0 
2349 REM use graphics cursor as text cursor so that display 

doesn't scroll 
2350 VDU 5 
2360 A=128 : B=129 : C=130 : D=131 
2370 FOR Y%=0 TO 31 
2380 FOR X%=0 TO 39 STEP 4 
2390 VDU A,B,C,D 
2400 NEXT X% 
2409 REM shift characters around 
2410 T=A : A=B : B=C : C=D : D=T 
2420 NEXT Y% 
2430 VDU 4 
2440 REPEAT UNTIL INKEY(-99) 
2450 ENDPROC 
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The CHARACTER  GENERATOR  1 (listing 5.6) procedures are intended to 
take all the hard work out of preparing and using defined characters: they allow 
you to edit and to manipulate characters, to save and to reload defined characters, 
and to use them with your own programs. The characters are split into seven 
groups each of 32 characters, that is codes 32 to 63, 64 to 95 etc. (see the user 
guide for a discussion of OSHWM, and *FX20, 1: although with some systems it 
is necessary to use *FX20,6 (!)). Because so much space is needed for the 
characters it is necessary to move the BASIC prograins along the store. You must 
set the PAGE value to &600 greater than normal; that is, for an OS 0.1 type 
PAGE = &1400, and for OS 1.0 and above (from now on referred to as OS    1.0) 
PAGE = &1F00. 

The program offers a choice of six options. 
 

(1) The first option is DISPLAY CHARACTERS.  On selecting this option you 
will be asked which of the seven blocks of 32 consecutive characters you wish to 
view. The screen will then display the 32 ASCII codes followed by the characters 
currently defined for those codes in black on a white background. 
(2) The second option is DISPLAY ALL CHARACTERS.  On selecting this option 
the screen will display all the characters for ASCIIcodes from 32 to 255 in black 
on a white background. 
(3) The third option is the editor, which is the most complicated option and has a 
large set of commands that are accessed by typing a single key. 

In edit mode a character will be displayed as black blocks in an 8 by 8 grid, 
with a cross (or edit cursor) initially placed in the bottom left-hand corner. The 
cursor is controlled by the standard cursor keys either singly or in pairs. 

Pressing the space bar will change a square in the character grid to the currently 
selected colour (1 or 0). White is equivalent to a binary one and black is zero. The 
current colour is displayed in the top left-hand corner of the screen and may be 
altered at any time by pressing either 1 or 0. 

The next two commands are UNPACK and PACK, which are activated by 
typing their initial letters. UNPACK takes the piece of data for a character from 
the memory and converts it into separate binary digits for display in the grid as 
well as PRINTing it at normal size on the screen alongside the grid. Pack takes 
the piece of data from the grid and uses it to redefine the character. By plotting 
the character at normal size during the editing, we are in fact creating the eight 
bytes of data in the screen memory and so it is simple to read the piece of data 
from the screen and place it directly into the character table. Should we use this 
program with an optional extra processor (see the user guide) we would have to 
replace the PACK procedure with one that calculated the data from the S array by 
the type of logical functions given in listing 5.4. 

The next three commands all specify transformations  similar to those that 
were used to perform on two-dimensional  objects in chapter 4. ROTATE turns the 
character through 90 degrees anticlockwise about its centre. X-AXIS reflects 
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the character about the horizontal axis and Y-AXIS reflects the character about 
the vertical. These commands can be used to create character sets for any 
orientation. 

Finally we have MERGE. This allows any character to be merged into the 
grid on top of what is already being edited. This is very useful for creating 
foreign language sets, for example, to place a slash through an O in the 
Scandinavian languages, or to add accents to letters in French etc. 
(4) and (5) The fourth option allows characters to be SAVEd in blocks of 32 
characters, either on disk or on tape and the fifth option allows them to be 
reLOADed. For both options we must reply to the question ‘WHICH SET’ with a 
number between 1 and 7, in which case that particular block is SAVEd or 
reLOADed. 

To allow other programs to load and to use alternate sets of characters created 
in this way, then the ‘file’ procedure must be included in the new program. 
(6) The sixth option simply calls up procedure ‘testprog’ which can either contain 
a short test program or simply end the procedure. 

 
In order to familiarise yourself with the ‘CHARACTER  GENERATOR  1’ 

carry out the following instructions. Create a character like a spidery ink-blot 
pattern and SAVE it as ASCII code 128. Unpack this character. Rotate and SAVE 
it as ASCIIcode 129. Edit 129, use X-AXIS reflection and SAVE it as code 130. 
Edit 130, use Y-AXIS reflection, and SAVE it as 131 . Now use option (6) to run 
the ‘testprog’ procedure which contains a tessellation program from listing 5.5, 
and see what pattern emerges. 

 
Exercise 5.6 
Write a routine that affects a whole block of characters one after another and uses 
some of the editor routines from the ‘CHARACTER  GENERATOR  1’ to 
perform transformations  on each character. Figure 5.2 shows a listing that was 
produced with characters that have been ROTATED. 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.2 
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Example 5.5 
We now give an example of a complete program (listing 5.7) which uses the 
characters developed with ‘CHARACTER  GENERATOR  1’. The following 
program.(loaded  at &1F00 for OS    1 .0 and &1400 for OS 0.1) simulates a 
chess board. A picture of a typical display is shown in figure 5.3. Each chess 
piece is constructed from 9 characters and placed 3 by 3 on the screen. The 56 
characters required for the display were created as ASCII codes 160 to 215, 
subsequently stored as two blocks in locations starting at &1900 and &1A00 (OS 
> 1 .0) or &E00 and &F00 (OS 0.1), and placed as files CHESSP1 and 
CHESSP2 on backing store. You may have to strip the REMarks from the 
program in order to have enough store to run it. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.3 
 

Exercise 5.7 
The program in listing 5.7 simply acts as a chess board and places the last 20 
moves for each player on the side of the screen: the side columns scroll if more 
than 20 moves are made. Adapt the program so that it checks for illegal moves, 
and add facilities for castling and en passant captures. If you have a lot of time!! 
to spare then add routines to make the computer play against you (see Liffick, 
1979). 
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Listing 5.7 
 

9 REM data for chesspieces 
10 *LOAD CHESSP1 1900 
20 *LOAD CHESSP2 1A00 
30 MODE 1 : VDU23,1,0;0;0;0; 
40 VDU19,2,4,0,0,0 : *FX20,6 
50 DIM B(8,8),C(8,8),N$(1,100) 
60 PRINTTAB(0,2);"WHITE";SPC(30);"BLACK" 
69 REM"underline WHITE and BLACK with red blocks 
70 GCOL 0,1 
80 MOVE 0,911 : MOVE0,919 
90 PLOT 85,160,911 : PLOT 85,160,919 

100 MOVE 1279,911 : MOVE 1279,919 
110 PLOT 85,1119,911 : PLOT 85,1119,919 
119 REM draw tablecloth under board 
120 GCOL0,3 
130 MOVE 176,80 : MOVE 1103,80 
140 PLOT 85,176,1007 : PLOT 85,1103,1007 
150 COLOUR 131 : COLOUR 0 
160 FOR I%=1 TO 8 
169 REM print letters along bottom and numbers up the side 
170 PRINT TAB(I%*3+6,28);CHR$(64+I%) 
180 PRINT TAB(33,(8-I%)*3+4);I% 
189 REM put pawns on row 2 and make them white 
190 B(I%,2)=6 : C(I%,2)=3 
199 REM"put pawns on row 7 
200 B(I%,7)=6 
209 REM read order of pieces for back rows 
210 READ A 
219 REM"white back row 
220 B(I%,1)=A : C(I%,1)=3 
229 REM black back row 
230 B(I%,8)=A 
240 NEXT I% 
249 REM"draw each square including any piece on the square 
250 FOR I%=1 TO 8 
260 FOR J%=1 TO 8 
270 PROCsquare(I%,J%,1) 
280 NEXT J% 
290 NEXT I% 
299 REM input players moves in turn 
300 FOR N%=1 TO 100 
310 PROCinput("WHITE") : N$(0,N%)=N$ : N$(1,N%)="-----" 
320 PROClist 
330 PROCinput("BLACK") : N$(1,N%)=N$ 
340 PROClist 
350 NEXT N% 
360 DATA 1,2,3,4,5,3,2,1 
370 END 

 
400 REM flash 
409 REM IN : coordinates of start and end of move 

OUT: A$="Y" if move accepted 
410 DEF PROCflash(X1,Y1,X2,Y2) 
420 COLOUR 128 : COLOUR 3 
429 REM"give player a chance to check input and/or reconsider move 
430 PRINT TAB(0,30);SPC(39);TAB(10,30);"ACCEPT (Y,N) ? " 
439 REM"flash two squares involved while waiting for reply 
440 REPEAT 
450 PROCsquare(X1,Y1,0) : PROCsquare(X2,Y2,0) 
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460 A$=INKEY$(20) : IF A$<>"" THEN 490 
470 PROCsquare(X1,Y1,1) : PROCsquare(X2,Y2,1) 
480 A$=INKEY$(20) 
490 UNTIL A$<>"" 
500 IF A$<> "Y" THEN 530 
509 REM if move is accepted then put piece in new position and 

erase at old position 
510 B(X2,Y2)=B(X1,Y1) : C(X2,Y2)=C(X1,Y1) 
520 B(X1,Y1)=0 : C(X1,Y1)=0 
530 PROCsquare(X1,Y1,1) : PROCsquare(X2,Y2,1) 
540 ENDPROC 

 
600 REM square 
609 REM X,Y coordinates of square M<>1 for inverse display 
610 DEF PROCsquare(X,Y,M) 
620 LOCAL I%,J% 
630 P=B(X,Y) : C=C(X,Y) 
640 PRINT TAB(X*3+5,(8-Y)*3+3); 
650 IF M=1 THEN COLOUR 129+((X+Y) MOD 2) ELSE COLOUR 128+C 
660 IF M=1 THEN COLOUR C ELSE COLOUR 1+((X+Y) MOD 2) 
669 REM if square has no piece on it then output blanks 
670 IF P=0 THEN VDU 32,32,32,10,8,8,8,32,32,32,10,8,8,8,32,32,32 

: GOTO 710 
680 J%=&A0+9*(P-1) 
689 REM for each row of square output the 3 characters of piece 

then go down and back three spaces 
690 FOR I%=1 TO 3 : VDU J%,J%+1,J%+2,10,8,8,8 
700 J%=J%+3 : NEXT I% 
710 ENDPROC 
800 REM input 
810 DEF PROCinput(B$) 
819 REM prompts one of players to enter move returns N$ with 

accepted move 
820 REPEAT 
830 COLOUR 128 : COLOUR 3 
840 PRINT TAB(0,30);SPC(39);TAB(0,30);B$;"'S MOVE NO. ";N%;" : 

"; 
850 OK=TRUE : INPUT N$ 
859 REM"check input is valid 
860 IF LEN(N$)<>5 THEN OK=FALSE 
870 F$=LEFT$(N$,1) 

: IF F$<"A" OR F$>"H" THEN OK=FALSE ELSE X1=ASC(F$)-64 
880 F$=MID$(N$,2,1) 

: IF F$<"1" OR F$>"8" THEN OK=FALSE ELSE Y1=VAL(F$) 
890 F$=MID$(N$,4,1) 

: IF F$<"A" OR F$>"H" THEN OK=FALSE ELSE X2=ASC(F$)-64 
900 F$=MID$(N$,5,1) 

: IF F$<"1" OR F$>"8" THEN OK=FALSE ELSE Y2=VAL(F$) 
910 UNTIL OK 
920 N$=LEFT$(N$,2)+"-"+RIGHT$(N$,2) 
929 REM offer move for acceptance 
930 PROCflash(X1,Y1,X2,Y2) 
940 IF A$="Y" THEN ENDPROC ELSE 820 

 
1000 REM list 
1010 DEF PROClist 
1020 COLOUR 128 : COLOUR 3 
1029 REM show last 21 moves made 
1030 IF N%<20 THEN J%=0 ELSE J%=N%-20 
1040 FOR I%=1 TO 21 
1050 PRINT TAB(0,I%+5);N$(0,I%+J%);TAB(35,I%+5);N$(1,I%+J%); 
1060 NEXT I% 
1070 ENDPROC 
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We have seen how characters created in this way can be printed in different 
colours, however we can still have only two colours in any one character-sized 
area. There are obvious advantages if we had the ability to print multi-coloured 
characters quickly at any position on the screen. To do this we must have a small 
machine-code routine which takes the data that relate to such a ‘character’ (with 
multi-colour information already encoded, rather than the two-colour format) and 
transfers them to the screen. We therefore need to understand the way in which the 
memory positions of the screen are arranged. As we saw in chapter 1, when a 
mode is first selected the top left-hand corner of the screen is represented by the 
first byte of the screen memory. The next seven bytes represent the lines 
vertically below this initial byte. This makes it very easy to place the data for a 
two-colour character into the correct display locations. The byte at location 
HIMEM + 8 is horizontally adjacent to the first byte (that is, HIMEM) and is 
then underscored by the next seven bytes and so on along the row of characters. 
When we get to the end of the row the next location is the top of the first 
character on the second line. The complete screen memory is organised in rows 
in this way, from top (row 0) to bottom (row 31), and from left to right within 
each row. In a two-colour mode this means that the display holds the information 
for the first character followed by the second set of data etc., through all the 
characters displayed in order. Of course in a four-colour mode two columns of 
bytes will be required to hold the data for one character (left half and right half) 
and in the sixteen-colour mode we need four columns (far left, middle left, 
middle right and far right), but this is still fairly simple to calculate since the next 
column of bytes is always the next eight bytes in the memory. 

Simple! It would be if the screen stayed still; furthermore what we have said 
above is not strictly true. When the screen scrolls up (or down) by one row some 
odd things happen. The BBC micro uses hardware scrolling. This means that the 
computer can decide which of the 32 (or so) rows in the memory corresponds to 
the top of the screen (it need not be row 0), and the rest follow in order down the 
screen with line zero following line thirty-one. When the display scrolls up (or 
down) it is a simple matter of redefining which row in the memory is the top line 
of the screen, and the line that disappears from the top (or bottom) is blanked out 
by the operating system and reallocated to the bottom (or top). This is much faster 
than software scrolling, where rows on the screen have a fixed correspondence  
with areas of memory, and a program is needed to move all the data from row 1 to 
row 0, row 2 to row 1 etc. until all the data from the bottom line has been copied 
to the line above so that the bottom line is ready for use again. 

We shall avoid scrolling the screen since this will only confuse our 
calculations of positions (unless we carefully count the number of scrolling 
movements and allow for them), and instead make a new print routine which we 
shall call ‘prynt’. This routine (listing 5.8) is loading with PAGE = &3000 to keep 
it out of harm’s way, and the machine code it generates is placed at the 
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locations that follow &2300 and stored in backing store as file PRYNT. If we now 
‘prynt’ off the bottom of the screen the information will wrap around and 
reappear at the top. The assembly language program (listing 5.7) uses the memory 
locations from &2400 onwards to store tables of multi-colour character 
definitions. The characters will have code numbers between 32 and 127 and may 
be accessed in a program by referring to the standard character with the same 
ASCII code. The program is designed to print characters in any of modes 0, 1 or 
2, so it must know how many bytes make up the character. This is passed into the 
routine by the variable A% (which is transferred to the A-register) which should 
be set to either 8, 16 or 32 for the respective modes. If you use the wrong value 
of A% for a given mode you can produce half-width or double width characters 
printing. This can be very useful if you want to print half width ‘thin’ numbers in 
mode 2 or double-width jet-plane characters for games in mode 1. The ‘prynt’ 
position for the character is calculated from the values of X% and Y%. These are 
equivalent to the TAB(X, Y) values of the PRINT command. In order to ‘prynt’ a 
string of such characters we generate a string (B$ say) of normal ASCII characters 
with codes corresponding to the characters to be drawn, and then call the routine: 

 
CALLprynt, B$ 

 
Note that the values of X% and Y% will not change unless they are reset in 
subsequent ‘prynt'  s. 

 
Listing 5.8 

 
10 REM assembly code for prynt 

assign names to locations for use by the routine 
19 REM table of screen line starts 
20 HI=&23E0 
29 REM data pointer for characters 
30 DLO=&80 : DHI=&81 
39 REM screen pointer for position 
40 SLO=&82 : SHI=&83 
49 REM pointer to string info 
50 PLO=&84 : PHI=&85 
59 REM address of string 
60 ALO=&86 : AHI=&87 
69 REM no. of chars. : temp y store 
70 NUM=&88 : TY=&89 
79 REM print position for string 
80 TABX=&8A : TABY=&8B 
89 REM size of character in bytes 
90 SIZE=&8C 
99 REM data table address hi byte 

100 TABLE=&8D 
109 REM length of line in chars. 
110 WIDE=&8E 
120 VDU 14 
130 FOR O%=0 TO 3 STEP 3 
140 P%=&2300 
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150 [ 
160 OPT O% ;Set char size 
170 STA SIZE  ;from A% and 
180 STX TABX  ;print position 
190 STY TABY  ;from X% and Y% 
200 LDA &600  ;Check only one 
210 CMP #1 ;parameter in 
220 BNE BAD ;call or error. 
230 LDA &603  ;Check string 
240 CMP #129  ;variable 
250 BNE BAD ;or error. 
260 LDA &601  ;Copy pointer 
270 STA PLO ;to variable 
280 LDA &602  ;into zero page 
290 STA PHI ;pointer. 
300 LDY #0 ;Initialise Y 
310 STY TY ;for indirects. 
320 LDA (PLO),Y 
330 STA ALO ;Copy address 
340 INY ;of string from 
350 LDA (PLO),Y 
360 STA AHI ;variable data. 
370 INY ;Move pointer 
380 INY ;to get length 
390 LDA (PLO),Y 
400 STA NUM ;of string. 
410 JSR START ;Initialise mode 
420 .OUT 
430 LDY TY ;output loop 
440 LDA (ALO),Y 
450 INY ;move pointer 
460 STY TY ;store counter 
470 JSR CHAR  ;prynt character 
480 DEC NUM ;last character? 
490 BNE OUT ;no, do next one 
500 RTS ;end of prynt. 
510 .BAD 
520 BRK ;Error section 
530 ] 
540 ?P%=99:$(P%+1)="Misprynt":P%=P%+10 
550 [OPT O% 
560 BRK ;end of error. 
570 .CHAR 
580 LDX #0 ;prynt one char. 
590 STX SHI ;use SHI and SLO 
600 STA SLO ;multiply ascii 
610 JSR MULT  ;to get offset 
620 LDA SHI ;move result 
630 CLC ;to data pointer 
640 ADC TABLE ;adding in 
650 STA DHI ;start of table 
660 LDA SLO ;to complete 
670 STA DLO ;data address 
680 LDA TABX  ;multiply x 
690 STX SHI ;to get offset 
700 STA SLO ;from start of 
710 JSR MULT  ;line. 
720 LDX TABY  ;add lo-byte 
730 TXA ;for screen line 
740 ROR A ;odd lines have 
750 BCC EVEN  ;&80 extra for 
760 LDA SLO ;their address 
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770 CLC ;mod 256. 
780 ADC #&80  ;even line is 
790 STA SLO ;zero lo-byte 
800 .EVEN 
810 LDA HI,X  ;Get hi-byte 
820 ADC SHI ;of screen line 
830 STA SHI ;= screen point 
840 LDX SIZE  ;Move X bytes 
850 LDY #0 ;of data to 
860 .TRANS 
870 LDA (DLO),Y 
880 STA (SLO),Y 
890 INY ;screen in 
900 DEX ;loop. 
910 BNE TRANS ;When done add 
920 INC TABX  ;one to x pos. 
930 LDA TABX  ;and check for 
940 CMP WIDE  ;end of line 
950 BCC OK ;If gone over 
960 STX TABX  ;zero x pos. 
970 INC TABY  ;and add to 
980 LDA TABY  ;y pos. If y 
990 CMP #32 ;is off bottom 

1000 BCC OK ;then put it 
1010 STX TABY  ;back to top. 
1020 .OK 
1030 RTS ;end of char. 
1040 .MULT 
1050 LDA SIZE  ;Multiply by 
1060 CMP #8 ;appropriate 
1070 BEQ M8 ;amount for 
1080 CMP #16 ;size of data 
1090 BEQ M16 ;block in use 
1100 ASL SLO ;Multiply 
1110 ROL SHI ;shi,slo by 2 
1120 .M16 
1130 ASL SLO ;times 2 again 
1140 ROL SHI 
1150 .M8 
1160 ASL SLO ;times 2 
1170 ROL SHI ;three more 
1180 ASL SLO ;times 
1190 ROL SHI 
1200 ASL SLO 
1210 ROL SHI 
1220 RTS ;end of mult. 
1230 .START 
1240 LDA SIZE  ;get values of 
1250 LDX #&2C  ;table hi-byte 
1260 LDY #80 ;line length 
1270 CMP #8 ;which are 
1280 BEQ NSTAR ;appropriate 
1290 LDX #&28  ;to size of 
1300 LDY #40 ;character 
1310 CMP #16 ;being used 
1320 BEQ NSTAR ;and store 
1330 LDX #&20  ;for future 
1340 LDY #20 ;reference 
1350 .NSTAR 
1360 STX TABLE ;table hi-byte 
1370 STY WIDE  ;width of line 
1380 RTS ;end of start. 
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1390 ] 
1400 NEXT O% 
1409 REM construct table of hi-bytes for screen line adresses 
1410 M%=&3000 
1420 FOR I%=0 TO 31 
1430 M=M%+640*I% 
1440 HI?I%=M DIV 256 
1450 NEXT I% 
1459 REM save code after assembly 
1460 *SAVE PRYNT 2300 +100 

 
We now give ‘CHARACTER  GENERATOR  2’ (listing 5.9), which is an 

elementary character editor that uses routine ‘prynt’ from file PRYNT. 1t has 
been deliberately kept short so that it can operate normally on all operating 
systems, however its size is such that it has to be loaded after the PAGE has been 
reset to &1100. The selection of a mode automatically sets the screen to display a 
grid of the correct relative dimensions for that mode, and gives you options 
equivalent to those of ‘CHARACTER  GENERATOR  1’. The available conimands, 
which are called by typing their initial letter, are detailed below. 

 
Pack and Unpack: as before these will display or store a character. 
Save and Load: these are the same as options (4) and (5) above, but are now 
used to save or load the complete character data area (&2400 to &2FFF). 

 
The choice of colours is made by typing the single hexadecimal digit of the 

required logical colour (for example, press A for colour 10). We are naturally 
limited to the number of logical colours that are available in any one mode, 
However there is nothing to stop us reassigning the logical-actual colour 
relationships within a program that uses these characters. 

As before the cursor keys are used to move around the grid and the space bar 
is used to colour in squares. 

From the assembler listing 5.8 we can see that the table of characters 
apparently starts from either &2000 (for the 32-byte long characters), &2800 for 
the 16-byte characters) or &2C00 (for the 8-byte characters). 1n fact these are the 
positions where the data for the character with code 0 would have been found, 
although the real table does not start until the data for the character that is coded 
32 is reached. 1n this way it is not necessary to subtract 32 from the ASCII- 
equivalent code for each character in order to find its position in the table. 

 
 

Example 5.6 
Listing 5.10 will allow you to type in redeHned characters directly from the 
keyboard (stricly speaking you type the ASCII-equivalent  characters) and ‘prynt’ 
them on the screen. First you need to create some characters in order to use this 
program. The two parts of figue 5.4 (a and b) are ‘painting-by-numbers’ charts 
(in hexadecimal) for two characters in mode 2. Use ‘CHARACTER 
GENERATOR  2’ to create the equivalent multi-coloured  characters. Save 
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Listing 5.9 
 

10 DIM B(32),T(2),S(7,7),R(7,7) : T(0)=&2C00 : T(1)=&2800 : 
T(2)=&2000 

20 DIM H(23):FOR I=0 TO 23:READ H(I) : NEXT I 
30 DATA 0,1,4,5,16,17,20,21,64,65,68,69,80,81,84,85 

,&88,&44,&22,&11,0,1,16,17 
40 INPUT "MODE ",M : MODE M 
50 A%=2^(M+3) : B%=2^(2^M) : D%=2^(M+1) : M%=2^(3-M) 
60 SX=20*D% 
70 COLOUR 135 : CLS 
80 FOR I=0 TO 7 : FOR J=0 TO 7 
90 PROCsquare(I,J,0) 

100 NEXT J : NEXT I 
110 LX=640-4*SX-D%:RX=LX+SX*8:BY=196:TY=838 
120 GCOL 0,0 : MOVE LX,BY : DRAW LX,TY : DRAW RX,TY 

: DRAW RX,BY : DRAW LX,BY 
130 I=0 : J=0 : C=0 : PROCmark(I,J) 
140 *FX4,1 
150 REPEAT : PROCmark(I,J) 
160 IF INKEY(-42) AND J>0 THEN J=J-1 
170 IF INKEY(-58) AND J<7 THEN J=J+1 
180 IF INKEY(-26) AND I>0 THEN I=I-1 
190 IF INKEY(-122) AND I<7 THEN I=I+1 
200 IF INKEY(-99) THEN PROCsquare(I,J,C) 
210 PROCmark(I,J) 
220 COLOUR 0 
230 A$=INKEY$(0) : IF A$="" THEN 350 
240 IF VAL(A$)=0 AND A$<>"0" AND (A$<"A" OR A$>"F") THEN 270 
250 C=EVAL("&"+A$) 
260 PRINT TAB(0,0);"COLOUR ";~C; : COLOUR C : PRINT" **" 
270 IF A$="S" THEN PROCfile("SAVE") 
280 IF A$="L" THEN PROCfile("LOAD") 
290 IF A$<>"P" AND A$<>"U" THEN 350 
300 REPEAT : PRINT TAB(0,29);SPC(39);TAB(0,29); 
310 INPUT"Which character ",CHAR 
320 UNTIL CHAR>31 AND CHAR <127 
330 IF A$="U" THEN PROCunpack : PROCmark(I,J) 
340 IF A$="P" THEN PROCpack 
350 UNTIL A$="Q" 
360 *FX4,0 
370 END 

 
400 REM square 
410 DEF PROCsquare(X,Y,IN) : GCOL 0,IN 
420 LX=640+SX*(X-4):RX=LX+SX-D%*2:BY=Y*80+200:TY=BY+72 
430 MOVE LX,BY : MOVE LX,TY : PLOT 85,RX,BY : PLOT 85,RX,TY 
440 S(X,Y)=IN : PLOT 69,1031+D%*X,960+4*Y 
450 ENDPROC 

 
500 REM mark 
510 DEF PROCmark(X,Y) : GCOL 3,7 
520 LX=650+SX*(X-4) : RX=LX+SX-30 : BY=Y*80+210 : TY=BY+52 
530 MOVE LX,BY : DRAW RX,TY : MOVE RX,BY : DRAW LX,TY 
540 ENDPROC 

 
600 REM pack 
610 DEF PROCpack 
620 FOR X=0TO7 : FORY=0TO7 
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630 B=8*(X DIV M%)+7-Y 
640 ON M+1 GOTO 650,660,690 
650 N%=2^(7-X) : B(B)=B(B) AND (255 EOR N%) OR N%*S(X,Y) : GOTO 

700 
660 HI=X MOD 4 : B(B)=B(B) AND (255 EOR H(HI+16)) 
670 B(B)=B(B) OR H(S(X,Y)+20)*2^(3-HI) 
680 GOTO 700 
690 HI=2-(X MOD 2):B(B)=B(B) AND (&AA/HI) OR (H(S(X,Y))*HI) 
700 NEXT Y : NEXT X 
710 MEM=T(M)+CHAR*A% 
720 FOR I%=0 TO A%-1 : MEM?I%=B(I%) : NEXT I% 
730 ENDPROC 

 
800 REM unpack 
810 DEF PROCunpack 
820 MEM=T(M)+CHAR*A% 
830 FOR I%=0 TO A%-1 : B(I%)=MEM?I% : NEXT I% 
840 FOR B=0 TO A%-1 
850 Y=7-(B MOD 8) 
860 ON M+1 GOTO 870,890,920 
870 FOR X=0 TO 7 : IF B(B) AND 2^(7-X) THEN S(X,Y)=1 ELSE S(X,Y)=0 
880 NEXT X : GOTO 950 
890 FOR I%=0 TO 3 : X=I%+4*(B DIV 8) 

: HI=(B(B) AND H(16+I%))/2^(3-I%) 
900 S(X,Y)=(HI AND &F0)/8+(HI AND &F) 
910 NEXT I% : GOTO 950 
920 FOR I%=1 TO 2 : X=2-I%+2*(B DIV 8) : HI=(B(B) AND (&55*I%))/I% 
930 J%=-1 : REPEAT : J%=J%+1 : UNTIL H(J%)=HI 
940 S(X,Y)=J% : NEXT I% 
950 NEXT B 
960 FOR I%=0 TO 7 
970 FOR J%=0 TO 7 
980 PROCsquare(I%,J%,S(I%,J%)) 
990 NEXT J% : NEXT I% 

1000 ENDPROC 
 

1100 REM file 
1110 DEF PROCfile(B$) 
1120 PRINT TAB(0,29); 
1130 INPUT "WHAT FILE NAME",A$:IFA$=""THEN ENDPROC 
1140 A$=B$+" "+A$+" 2400" : IF B$="SAVE"THEN A$=A$+" 3000" 
1150 $&3000=A$ : X%=0 : Y%=&30 : CALL&FFF7 
1160 ENDPROC 

 
these (and any other characters) on tape or disk, and then use the program from 
listing 5.9 to reload the file and display the characters on the screen. If you are 
feeling fit and healthy you can fill the screen with the callisthenic character from 
figure 5.4a and then join in. 

You will find that this type of character is used in the video game in chapter 15. 
 

F 0 0 7 7 0 0 F 

0 F 0 7 7 0 F 0 

8 8 7 7 7 7 8 8 

0 0 7 7 7 7 0 0 

0 0 7 7 7 7 0 0 

0 0 7 0 0 7 0 0 

0 F 8 0 0 8 F 0 
F 0 8 0 0 8 0 F 
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Listing 5.10 
(a)  (b) 

 
9 REM program to test PRYNT routine 

10 *LOAD PRYNT 2300 
20 INPUT"MODE",M : MODE M : A%=2^(3+M) 
30 WIDE=80/2^M : PRYNT=&2300 : HIMEM=&2300 
39 REM" 
40 PROCfile("LOAD")  : X%=0 : Y%=0 
49 REM PRYNT any characters typed and alter prynt position 
50 REPEAT : A$=GET$ 
60 CALL PRYNT,A$ 
70 X%=X%+1 : IF X%=WIDE THEN Y%=(Y%+1) MOD 32 : X%=0 
80 UNTIL FALSE 

 
1100 REM file 
1110 DEF PROCfile(B$) 
1120 PRINT TAB(0,29); 
1130 INPUT "WHAT FILE NAME",A$ : IF A$="" THEN ENDPROC 
1140 A$=B$+" "+A$+" 2400" : IF B$="SAVE"THEN A$=A$+" 3000" 
1150 $&3000=A$ : X%=0 : Y%=&30 : CALL&FFF7 
1160 ENDPROC 

 
In the next chapter we shall consider how character graphics and our 

knowledge of two-dimensional  geometry can be combined to form data displays 
for use in the office or the laboratory. 

 
Complete Programs 

 
I  Listing 5.1. Data required: any character. Try #. 

II  Listing 5.2. Data required: a data mode (try 1), a character (#) and 
background and foreground colours (try 1 and 2). 

III  Listing 5.3. Data required: an ASCII code (try 128) and eight 8-bit binary 
numbers (try 10101010, 01010101 , 10101010, 01010101, 10101010, 
01010101, 10101010 and 01010101). 

IV  Listing 5.4. No data required. 
V  Listing 5.5. Use listing 5.3 to create characters with ASCIIcodes 128, 129, 

and 131 before running the program. 1t requires actual background and 
foreground colours (try 1 and 2). 

VI  Listing 5.6 and PAGE set to &1400 for OS 0.1 and &1F00 for OS > 1.0. 
Use option (3) of the CHARACTER  GENERATOR  1 to create characters 
128, 129, 130 and 131 and run option (6) (listing 5.5). Type 1 (to specify 
that you wish to draw in white) and move the cross around the screen 
with the cursor keys: the space bar will colour in a pixel (type 0 to plot 
pixels in black). Pack the characters in codes 128 etc. 

VII   Listing 5.7 loaded at PAGE = &1400 (OS 0.1) or &1F00 (OS    1 .0). You 
may have to strip it of REMarks. Characters must be created in blocks 
CHESSP1 and CHESSP2 on backing store. The chess program needs 
each move of the game to be specified (such as E2 to E4) and the question 
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Accept? to be answered as Yes or No. 
VIII  Listing 5.8 and 5.9. Run listing 5.8 with PAGE = &3000, which saves a 

file PRYNT for future use. Listing 5.9, PAGE = &1100, calls for a mode 
(try 2); then move the cross about the screen with the cursor keys, add 
colours with the space bar, and change colour by typing a hexadecimal 
digit (0 to F). Pack the new characters into locations equivalent to the 
ASC1l codes 32 to 126. When you have generated the required symbols 
Save a file called TESTC. Try placing new characters in locations 
equivalent to ASCII 32 (normally a space), 33 (!), 34 (") and 35 (#). 

IX  Listing 5.10 with PAGE = &1100. This needs to load PRYNT. Then type 
on the keyboard 1, # etc. and watch the equivalent character being drawn. 
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6 Diagrams and Data Graphs 
 
 
 
 

More information is available to more people than ever before. Businessmen are 
being overwhelmed by massive documents that contain reams of statistics on 
every subject from capital expenditure to market research. Worst of all, 
computers are pouring out printouts of dreary data that cover every topic from 
Astrology to Zoology. Obviously something must be done! Computers have 
helped to create the problem and they can also help to solve it. The data must be 
presented in a more digestible manner: as pie-charts, histograms, scientific 
graphs or just plain diagrams. With the advent of desktop computers the 
increasing sales of programs that produce these displays has made this one of the 
major growth areas in computer graphics. In this chapter we shall see how such 
diagrams can be constructed with ease, given just a few tools to aid our 
draughtsmanship. 

There are so many different types of diagrams that it is impossible to cover 
every possibility. We shall concentrate on the drawing of histograms, pie-charts 
and data graphs as well as giving a simple method for labelling and adjusting 
general types of diagram. Hence we give four major listings, which contain 
interactive programs for producing these diagrams, as examples of how to 
approach the general problem of data diagram construction. Naturally each 
individual program will require vastly differing data, although they will have 
some common input, display menus and prompts. Furthermore during the 
execution of a program the data being read may depend on previous responses 
(the program must not ask you for a radius before you ask to draw a circle!). 
Therefore we have organised the responses and displays (and the equivalent 
procedures) as part of a question and answer program that is based on the level 
concept. In our case level 0 will be common to all four programs, whereas lower 
levels will be unique to each of the four types of program. 

To cope with the need for displaying both diagrams and prompts, the screen is 
divided into two areas: the graphics area which holds the diagram, and a text area 
for menus and prompts. In the top of the text areas we place five coloured blocks 
(normally logical colour 1 : default red) and marked f0, fl, f2, f3 and f4X, Y. 
Also, by pressing f9 when the machine requires input will cause a termination of 
the program. We call these the pseudo-soft keys because they correspond to the 
soft keys at the top of the keyboard. At any given moment during the execution of 
the program the machine can write character strings beneath each pseudo-soft key 
to demonstrate the option that is currently available with that key. Other 
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prompts that request normal INPUT can also be printed in this text area beneath 
the blocks. When a soft key has been pressed then the colour of the equivalent 
pseudo-key turns yellow. Key f4 controls a crosswire cursor which, when 
activated, can be moved about the screen using cursor keys. However if you type 
f4 (when the corresponding pseudo-key is red) then a new position of the cursor 
can be explicitly INPUT as the coordinates of an addressable point. The present 
cursor position is written under the f4 pseudo-key. 

The level 0 prompts consist of five options: SAVE (f9) to ‘save’ a picture on 
disk or tape, LOAD (f1) to reload it from such a backing store, ERASE (f2) to 
erase the present picture (after double checking), the red f4 key for cursor control, 
and ETC. (f3). The latter option leads on to level 1, which naturally depends on 
which one of the four main programs has been loaded. The procedures for this 
level are given in listing 6.1 . 

There are five procedures which initialise various variables that are used by the 
procedures on all levels. The first, ‘initdims', initialises any DIMensions that are 
required for any of the procedures. The ‘initkeys’ procedure sets up the variables 
that are needed for reading the soft keys and for the display of soft key prompts at 
the bottom of the screen. The procedure also uses the Command Line Interpreter 
(see the user guide) to clear any definitions off the first five soft keys so that no 
garbage is inadvertently entered into the programs. ‘initprompt’ sets up the strings 
that correspond to the red key prompts that are displayed in the text area. The 
fourth ‘init’ procedure, ‘initdiag'  , sets up the graphics window that is used for 
drawing and clears the background to a colour, in this case logical 0. Finally 
‘initcursor’ sets the crosswire cursor at its start position and initialises the variables 
that are used in the main cursor procedure. 

Next we have a set of three procedures that can be used to display the set of 
simulated function keys. The ‘prompt’ procedure displays any one of a set of 
options for the key assignments: it uses the ‘text’ procedure to control the number 
of lines available at the bottom of the screen. A non-zero parameter for ‘text’ 
specifies the number of lines, and then it clears the screen, whereas a zero 
parameter sets the text window to cover the whole screen but does not clear the 
screen. The ‘light’ procedure lights up the pseudo-soft keys in specified 
background and foreground colours (defaulting to red, yellow or white). 

Our construction of a ‘cursor’ requires a little further discussion. The need for 
accurately controlling the position of objects on the screen is self-evident. This is 
achieved on most graphics displays by a crosshair (crosswire) cursor, which may 
be controlled either from the keyboard or in more expensive devices from an 
external joystick, lightpen or similar analogue input device. Not wishing to put the 
reader to any further expense we shall use the keyboard to control movements: it 
achieves the same effect as a joystick anyway. The ‘cursor’ procedure that is 
contained in listing 6.1 overlays the existing picture with the crosswires by using 
the EOR option of GCOL. These crosswires specify the 
point at their intersection. The cursor is moved in any one of eight directions by 
the standard cursor keys either singly or in pairs. If you have a joystick or similar 
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peripheral attached to your computer then alter the ‘cursor’ procedure so that it 
receives information from your device rather than from the keyboard. 

The ‘cursor’ procedure may be called to initiate a single movement by using 
the parameter 1 in the call (externally initiated by pressing the f4 key when the 
equivalent pseudo-key shows red and explicitly typing the coordinates, as in the 
‘sketch’ procedure), or a continuous sequence of moves using parameter 0 
(externally initiated by pressing the cursor keys). The coordinate values of the 
present cursor position are requested by the program when the pseudo-key f4 
shows (default) white, and they are entered by pressing soft key f4. When a 
cursor key is held down the speed of movement gradually increases (a cursor that 
always moves just one addressable point per key depression is tedious to use!). 
To aid in positioning the cursor there is a grid which is switched on and off by 
pressing G. If operative then it is automatically removed when you press f4 to 
enter a point. 

 
Listing 6.1 

10 MODE 1 : VDU23,1,0;0;0;0; 
20 PROCinitdims 
30 PROCinitkeys 
40 PROCinitprompt 
50 PROCinitdiag(0) 
60 PROCinitcursor(640,512) 
70 LEVEL=0 : OL=-1 
80 BC=0 : OC=1 : TC=2 : GC=3 

100 REM main loop 
110 REPEAT 
120 IF LEVEL<>OL THEN PROCprompt(LEVEL) : OL=LEVEL 
130 IF INKEY(K(0)) THEN PROCkey0 
140 IF INKEY(K(1)) THEN PROCkey1 
150 IF INKEY(K(2)) THEN PROCkey2 
160 IF INKEY(K(3)) THEN PROCkey3 
170 IF INKEY(K(4)) THEN PROCkey4 
180 UNTIL INKEY(-120) 
190 STOP 

 
200 REM initdiag 
210 DEF PROCinitdiag(BACK) 
219 REM set window and clear graphics to BACKground colour 
220 VDU24,0;65;1279;1023; 
230 GCOL0,128+BACK : CLG 
240 ENDPROC 

 
300 REM initkeys 
310 DEF PROCinitkeys 
320 DIM K$(4),K(4) : RESTORE 380 
329 REM remove key definitions from key 0 to key 4 
330 FOR I%=0 TO 4 : A$="KEY"+STR$(I%) 
340 $32512=A$ : X%=0 : Y%=127 : CALL &FFF7 
350 NEXT I% 
359 REM set up arrays of INKEY values and strings for display 
360 FOR I%=0 TO 4 : READ K$(I%),K(I%) 
370 NEXT I% 
380 DATA"  f0  ",-33,"  f1  ",-114," f2 ",-115," f3 ",-116 

,"  f4 X,Y ",-21 
390 ENDPROC 
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400 REM prompt 
410 DEF PROCprompt(A) 
419 REM clear the bottom two lines 
420 PROCtext(2) : PROCtext(0) 
429 REM display keys with appropriate prompts for level A 
430 FOR I%=0 TO 3 
440 PROClight(I%,1,3) 
450 PRINT TAB(I%*7,31);P$(A,I%); 
460 NEXT I% 
470 PROClight(4,1,3) 
480 PRINT TAB(30,31);X; : PRINT TAB(34,31);",";Y; 
490 ENDPROC 

 
500 REM light 
510 DEF PROClight(KEY,BACK,TEXT) 
519 REM print key in BACK colour with label in TEXT colour 
520 COLOUR 128+BACK : COLOUR TEXT 
530 PRINT TAB(KEY*7,30);K$(KEY); 
540 COLOUR 128 : COLOUR 3 
549 REM make sure key is not still being held down 
550 REPEAT : UNTIL NOT INKEY(K(KEY)) 
560 ENDPROC 

 
600 REM text 
610 DEF PROCtext(N) 
619 REM set text window of N lines up from bottom and clear buffers 
620 IF N<>0 THEN N=32-N 
630 VDU 28,0,31,39,N : *FX15,0 
639 REM if N=0 then window is whole of screen so don't clear it 
640 IF N<>0 THEN CLS 
650 ENDPROC 

 
700 REM initcursor 
710 DEF PROCinitcursor(XPOS,YPOS) 
719 REM set starting point for cursor 
720 X=XPOS : Y=YPOS : OX=-1 : OY=-1 
730 ENDPROC 

 
800 REM cursor 
810 DEFPROCcursor(M) 
819 REM M=0 means continue till f4 is pressed. M=1 is single step. 
820 GCOL3,3 : IF M=0 THEN S=1 ELSE S=4 
829 REM if cursor has moved then use PROCcross to change display 
830 IF OX<>X OR OY<>Y THEN PROCcross:OX=X:OY=Y 
840 IF INKEY(-122) AND X<1280-S THEN X=X+S 
850 IF INKEY(-26) AND X>=S THEN X=X-S 
860 IF INKEY(-42) AND Y>=65+S THEN Y=Y-S 
870 IF INKEY(-58) AND Y<1024-S THEN Y=Y+S 
879 REM if cursor is moving then add to step size and update the 

display of coordinates 
880 IF OX=X AND OY=Y THEN S=1 ELSE S=S+1 : PRINT TAB(30,31);" 

"; 
: PRINT TAB(30,31);X; : PRINTTAB(34,31);",";Y; 

889 REM if not single step mode then keep monitoring cursor keys 
unless f4 has been pressed while cursor is stationary 

890 IF M=0 AND ( S>1 OR NOT INKEY(-21) ) THEN 830 
899 REM in continuous mode cursor is removed when point is entered 
900 IF M=0 THEN OX=-1 : OY=-1 : PROCcross 
910 ENDPROC 

 
1000 REM cross 
1010 DEF PROCcross 
1019 REM erase cross at OldX and OldY place new cross at X and Y 
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1020 MOVE 0,OY : DRAW 1280,OY : MOVE 0,Y : DRAW 1280,Y 
1030 MOVE OX,0 : DRAW OX,1024 : MOVE X,0 : DRAW X,1024 
1040 ENDPROC 

 
1100 REM fill 
1110 DEF PROCfill(X1,Y1,X2,Y2,X3,Y3) 
1120 IF ((Y1 DIV 4)=(Y2 DIV 4) AND (Y1 DIV 4)=(Y3 DIV 4)) 

THEN MOVEX1,Y1 : DRAWX2,Y2 : DRAWX3,Y3 : ENDPROC 
1130 MOVE X1,Y1 : MOVE X2,Y2 : PLOT 85,X3,Y3 
1140 ENDPROC 

 
1200 REM save 
1210 DEF PROCsave 
1220 PROCtext(1) 
1230 INPUT "FILENAME ",F$ 
1240 A$="*SAVE """+F$+""" 3000 7B00" 
1249 REM use Command Line Interpreter to execute A$ 
1250 $32512=A$ : X%=0 : Y%=127 : CALL &FFF7 
1260 PROCtext(0) 
1270 ENDPROC 

 
1300 REM load 
1310 DEF PROCload 
1320 PROCtext(1) 
1330 INPUT "FILENAME ",F$ 
1340 A$="*LOAD """+F$+""" 3000" 
1349 REM use Command Line Interpreter to execute A$ 
1350 $32512=A$ : X%=0 : Y%=127 : CALL &FFF7 
1360 PROCtext(0) 
1370 ENDPROC 

 
1500 REM initdims 
1510 DEF PROCinitdims 
1520 ENDPROC 

 
1600 REM initprompt 
1610 DEF PROCinitprompt 
1619 REM read prompts for keys for up to six levels of prompting 
1620 DIM P$(5,3) 
1630 FOR I%=0 TO 5 : FOR J%=0 TO 3 
1640 READP$(I%,J%) 
1650 NEXT J%:NEXT I% 
1660 DATA"SAVE","LOAD","ERASE","ETC." 
1670 DATA"","","","" 
1680 DATA"","","","" 
1690 DATA"","","","" 
1700 DATA"","","","" 
1710 DATA"","","","" 
1720 ENDPROC 

 
2000 REM key0 
2010 DEF PROCkey0 
2019 REM light key up when pressed & redisplay key 

as normal when finished 
2020 PROClight(0,2,0) 
2029 REM perform action appropriate to level when pressed. 

If OL is different to LEVEL either by LEVEL change or 
resetting OL to -1 prompts are refreshed. 

2030 IF LEVEL=0 THEN PROCsave : OL=-1 
2040 IF LEVEL=1 THEN PROChisto : OL=-1 
2050 PROClight(0,1,3) 
2060 ENDPROC 
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2200 REM key1 
2210 DEF PROCkey1 
2219 REM see key0 
2220 PROClight(1,2,0) 
2230 IF LEVEL=0 THEN PROCload : OL=-1 
2240 PROClight(1,1,3) 
2250 ENDPROC 

 
2400 REM key2 
2410 DEF PROCkey2 
2419 REM see key0 
2420 PROClight(2,2,0) 
2430 IF LEVEL=0 THEN PROCtext(1) : INPUT "ARE YOU SURE ",A$ 

: PROCtext(0) : OL=-1 : IF A$="Y" OR A$="y" THEN CLG 
2440 PROClight(2,1,3) 
2450 ENDPROC 

 
2600 REM key3 
2610 DEF PROCkey3 
2619 REM see key0 
2620 PROClight(3,2,0) 
2630 PROClight(3,1,3) 
2640 ENDPROC 

 
2800 REM key4 
2810 DEF PROCkey4 
2819 REM see key0 but same action taken at any LEVEL 
2820 PROClight(4,2,0) 
2830 PROCtext(1) : INPUT"NEW POSITION X,Y ",X,Y : PROCtext(0) 
2840 OL=-1 : PROClight(4,1,3) 
2850 ENDPROC 

 
Exercise 6.1 
Change the ‘cursor’ procedure so that the standard cursor keys may be used with 
the shift key held down. In this case the crosswires are to move in character block 
steps about the graphics area. 

 
 

The Four Diagram Construction Programs 
 

Having dealt with level 0 we now look at the four separate programs, each of 
which must be individually merged with listing 6.1 to produce the required 
DIAGRAM CONSTRUCTOR. Those who have system OS 1.0 and above will 
find that they do not have enough memory to hold and REM each of these four 
programs. What they must do is create the program, strip the REMs, save it, and 
reload it after typing PAGE = &1100. This will give them enough memory for 
loading and running. Now we shall look at each of the four programs in turn. 

 
Histograms 
Histograms (or bar-charts) can be constructed by our programs to any height and 
in any colour. Since we know how many addressable points are available on the 
screen we can formulate a method for calculating the spacing and 
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width of bars once we know their number. The first part of the ‘histo'  gram 
procedure (listing 6.2, which is used in conjunction with listing 6.1) is called by 
pressing f9 on level 1; f3 (ETC.) returns you to level 0. It immediately asks for 
the range of the vertical data (two integers in increasing order), creates the 
vertical scale, draws the horizontal and vertical axes, labels the vertical and then 
asks for the number of bars. Then the width of the bars and the size of the gaps 
between the neighbouring bars are calculated by a method similar to the scaling 
of the screen for two-dimensional  graphics. For each bar the machine needs to 
know its height, and the inner and outer colours. On receiving these data the 
procedure uses the area-filling PLOT 85 option to colour in the bar. When the 
diagram is complete you must return to level 0 and SAVE the picture. Then load 
in the labelling program (listings 6.1 and 6.6), reLOAD the picture on level 0 and 
then on the lower levels add the necessary labels and headings. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6.1 
 

Example 6.1 
 

Figure 6.1 for example, a diagram that presents the annual rainfall in Egham, was 
constructed (unlabeled) and saved, then reloaded with the general adjustment 
program (see later) and labels added until it was in the form above. 
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Listing 6.2 
 

1500 REM initdims 
 

1600 REM initprompt 
1670 DATA"HISTOGRAM","","","ETC." 

 
2000 REM key0 
2040 IF LEVEL=1 THEN PROChisto : OL=-1 
2050 PROClight(0,1,3) 
2060 ENDPROC 

 
2800 REM key4 

 
3000 REM histo 
3010 DEF PROChisto 
3020 PROCtext(2) : INPUT"Range of vertical "YB," to "YT : PROCtext(0) 
3030 IF YB>=YT THEN 3020 
3040 YSCALE=640/(YT-YB) 
3049 REM draw axes 
3050 GCOL 0,3 : MOVE 208,864 : DRAW 208,208 : DRAW 1184,208 
3060 YDIF=(YT-YB)/4 : TICK=YB 
3069 REM put ticks & labels on y-axis 
3070 FOR I%=1 TO 5 : TK=INT(TICK+0.5) 
3080 Y=5*32*I%+48 : MOVE 208,Y : DRAW 196,Y : ROW=INT((1024-Y)/32) 
3089 REM make sure label is sensible and correct length 
3090 A$=STR$(TK) : IF LEN(A$)>3 THEN A$=LEFT$(A$,3) 

: IF TK>999 OR TK<-99 THEN A$="***" 
3100 IF LEN(A$)<3 THEN REPEAT A$=" "+A$:UNTIL LEN(A$)=3 
3110 PRINT TAB(3,ROW);A$ : TICK=TICK+YDIF 
3120 NEXTI% 
3130 PROCtext(2) : INPUT"NO. OF BARS "NB : PROCtext(0) 
3139 REM calculate width of bars and gaps to fit x-axis 
3140 XSCALE=976/NB : GAP=XSCALE/3 : WID=XSCALE-GAP 
3149 REM get details and display each of the bars 
3150 FOR I%=1 TO NB 
3160 PROCtext(2) : PRINT"DATA FOR BAR ";I%; 
3170 INPUT":"D,"INNER COL "C,"OUTER COL "OC : PROCtext(0) 
3179 REM calculate bottom-left and top-right corners of block 
3180 GCOL 0,C : X1=208+GAP/2+(I%-1)*XSCALE : X2=X1+WID : Y1=208 
3190 IF D<=YB THEN Y2=212 : GOTO 3210 
3200 D=D-YB : Y2=Y1+INT(D*YSCALE+0.5) 
3209 REM fill in bar in inner colour 
3210 PROCfill(X1,Y1,X2,Y2,X1,Y2) : PROCfill(X1,Y1,X2,Y2,X2,Y1) 
3219 REM outline bar in outer colour 
3220 GCOL 0,OC : MOVE X1,Y1 : DRAW X1,Y2 : DRAW X2,Y2 

: DRAW X2,Y1 : DRAW X1,Y1 
3230 NEXT I% 
3240 ENDPROC 
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Exercise 6.2 
Write variations on this standard ‘histo’ procedure that can be substituted into the 
complete package as and when required. For example write a procedure that 
draws the histogram as a set of pairs of bars. The space between any two bars 
that form a pair should be half the distance between neighbouring bars that do 
not form a pair. Use this to construct diagrams that are similar to figure 6.2. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6.2 
 

Example 6.2 
In listing 6.3 we give an example of such a replacement ‘histo’ procedure. This 
version of ‘histo’ (using a variation on the fake-perspective  cube procedure from 
chapter 1) produces an apparently three-dimensional  graph. Two data values are 
requested for each bar, a MAXimum and a MINimum; the maximum bar is 
drawn behind the minimum bar. This program can be used to create charts similar 
to figure 6.3 which shows the monthly temperature variation in Egham. 

 
Exercise 6.3 
There are many, many more possible variations, for example drawing bars above 
and below a central line in order to display fluctuations in currency exchange 
rates. See the Money Programme on BBC2 for ideas. The fundamental notions 
we have introduced here should enable you to produce histograms to your own 
specifications. 
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Listing 6.3 
 

1500 REM initdims 
 

1600 REM initprompt 
1670 DATA"HISTOGRAM","","","ETC." 

 
2000 REM key0 
2040 IF LEVEL=1 THEN PROChisto : OL=-1 
2050 PROClight(0,1,3) 
2060 ENDPROC 

 
2200 REM key1 

 
2400 REM key2 

 
2600 REM key3 
2630 LEVEL=(LEVEL+1) MOD 2 
2640 PROClight(3,1,3) 
2650 ENDPROC 

 
2800 REM key4 

 
3000 REM histo 
3010 DEF PROChisto 
3020 PROCtext(2) : INPUT"Range of vertical "YB," to "YT : PROCtext(0) 
3030 IF YB>=YT THEN 3020 
3040 YSCALE=640/(YT-YB) 
3049 REM draw axes 
3050 GCOL 0,3 : MOVE 208,864 : DRAW 208,208 : DRAW 1184,208 
3060 YDIF=(YT-YB)/4 : TICK=YB 
3069 REM put ticks & labels on y-axis 
3070 FOR I%=1 TO 5 : TK=INT(TICK+0.5) 
3080 Y=5*32*I%+48 : MOVE 196,Y : DRAW 208,Y : MOVE 248,Y+40 

: DRAW 168,Y-40 : ROW=INT((1024-Y)/32) 
3089 REM"make sure label is sensible and correct length 
3090 A$=STR$(TK) : IF LEN(A$)>3 THEN A$=LEFT$(A$,3) 

: IF TK>999 OR TK<-99 THEN A$="***" 
3100 IF LEN(A$)<3 THEN REPEAT A$=" "+A$:UNTIL LEN(A$)=3 
3110 PRINT TAB(3,ROW);A$ : TICK=TICK+YDIF 
3120 NEXT I% 
3130 PROCtext(2) : INPUT"NO. OF BARS "NB : PROCtext(0) 
3139 REM calculate width of bars and gaps to fit x-axis 
3140 XSCALE=976/NB : GAP=XSCALE/3 : WID=XSCALE-GAP 
3149 REM get details and display each pair of bars 
3150 FOR I%=1 TO NB 
3160 PROCtext(2) : PRINT"DATA FOR BAR ";I%; 
3170 INPUT":"D,D1 : PROCtext(0) 
3180 C=1 : OC=3 : VDU19,2,4,0,0,0 
3189 REM calculate bottom-left and top-right corners of blocks 
3190 GCOL 0,C : X1=208+GAP+(I%-1)*XSCALE : X2=X1+WID : Y1=208 
3200 IF D<=YB THEN Y2=212 : GOTO 3220 
3210 D=D-YB : Y2=Y1+INT(D*YSCALE+0.5) 
3219 REM draw back block in 3d then change colour and do front 

block over the top 
3220 PROCfake3d(X1,Y1,X2,Y2) : C=2 
3230 D1=D1-YB : Y2=Y1+INT(D1*YSCALE+0.5) 
3240 X2=X2-WID/3 : X1=X1-WID/3 : Y1=Y1-WID/3 : Y2=Y2-WID/3 
3250 PROCfake3d(X1,Y1,X2,Y2) 
3260 NEXT I% 
3270 ENDPROC 
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3400 REM fake3d 
3410 DEF PROCfake3d(X1,Y1,X2,Y2) 
3419 REM draw rectangle defined by coordinates of its diagonal 
3420 PROCquad(X1,Y1,X1,Y2,X2,Y2,X2,Y1) 
3429 REM add rhombus to top and side to simulate a 3d box 
3430 PROCquad(X2,Y1,X2,Y2,X2+WID/3,Y2+WID/3,X2+WID/3,Y1+WID/3) 
3440 PROCquad(X1,Y2,X2,Y2,X2+WID/3,Y2+WID/3,X1+WID/3,Y2+WID/3) 
3450 ENDPROC 

 
3500 REM quad 
3510 DEF PROCquad(XA,YA,XB,YB,XC,YC,XD,YD) 
3519 REM fill in a quadrilateral in colour C 

and outline it in colour OC 
3520 GCOL 0,C : MOVE XA,YA : MOVE XB,YB 
3530 PLOT 85,XD,YD : PLOT 85,XC,YC 
3540 GCOL 0,OC : DRAW XD,YD : DRAW XA,YA 
3550 DRAW XB,YB : DRAW XC,YC 
3560 ENDPROC 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6.3 
 

Pie-charts 
The pie-chart is a favourite with economists and biologists who delight in telling 
us how big each slice of our capital expenditure cake is, or alternatively which 
fungi are growing on it. The usual requirements of a pie-chart program are that it 
should draw ‘pies’ of variable radii, it must be possible for some slices to be 
pulled out from the centre, and provision must be made for these slices to be 
filled-in or cross-hatched. A pie-chart and associated procedures are given in 
listing 6.4. It is entered by pressing f0 on level 1; pressing f3 (ETC.) returns you 
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to level 0. The program first requires the number of pie-slices and the individual 
data values; the sum of values is used to establish an angular scale for the pie- 
chart. The ‘pie’ is centred by the crosswires, that is, by using the cursor keys to 
position it, and the coordinates are entered with f4 (showing white). The radius of 
the pie-chart (in addressable points) is then INPUT. Each slice is centred with the 
cursor; any displacement of the cursor from the centre of the ‘pie’ is treated as a 
distance along the bisector of the slice and not as an absolute position. With each 
new section the cursor re-appears at the original centre of the ‘pie’. Then the 
program enquires if you wish to hatch the ‘pie’ (x, y, b, n?) in the x-direction, y- 
direction, both or neither (this is explained in a moment); should you wish to 
hatch a slice then the program asks for further information about the position of 
the hatching lines and the distance between them. It then requests the inner and 
outer colour of the pie-slice and finally draws it. Figure 6.4 was generated using 
this procedure, the hatching procedure below and the labelling program. After the 
picture is complete you return to level 1 . 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6.4 
 

Hatching 
Hatching latching the area of a pie-slice involves the intersection of a line with 
the boundaries of the slice. To make the calculations simpler we shall hatch only 
with lines in the horizontal or vertical directions, or both. Furthermore we only 
hatch ‘pies’ that subtend angles less than or equal to    radians (180 degrees) 
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Listing 6.4 
 

1500 REM initdims 
1520 DIM D(20),Z(4) 
1530 ENDPROC 

 
1600 REM initprompt 
1670 DATA"PIE-CHART","","","ETC." 

 
2000 REM key0 
2040 IF LEVEL=1 THEN PROCpie : OL=-1 
2050 PROClight(0,1,3) 
2060 ENDPROC 

 
2200 REM key1 

 
2400 REM key2 

 
2600 REM key3 
2630 LEVEL=(LEVEL+1) MOD 2 
2640 PROClight(3,1,3) 
2650 ENDPROC 

 
2800 REM key4 

 
3000 REM pie-chart 
3010 DEF PROCpie 
3020 PROCtext(2) : INPUT"No. OF SEGMENTS "NB : SUM=0 
3029 REM get data for all sections 
3030 FOR I%=1 TO NB 
3040 PRINT"DATA ";I%; : INPUT": "D(I%) : SUM=SUM+D(I%) 
3050 NEXT I% 
3060 PROCtext(0) 
3069 REM use the cursor to indicate the centre of the pie-chart 
3070 PROCprompt(5) : PRINT TAB(0,31);"CENTRE PIE"; 
3080 PROClight(4,3,1) : PROCcursor(0) : PROClight(4,1,3) 
3090 XC=X : YC=Y 
3100 PROCtext(1) : INPUT"RADIUS (in addressable points) "R : 
PROCtext(0) 
3110 SCALE=2*PI/SUM : A1=PI/2 
3119 REM if cursor is moved from centre movement is treated as 

along bisector of angle subtended by segment 
3120 FOR I%=1 TO NB 
3130 PROCtext(1) : PRINT"CENTRE SEGMENT ";I%; : PROCtext(0) 
3140 PRINT TAB(30,31);X; : PRINT TAB(34,31);",";Y; 
3150 PROCinitcursor(XC,YC) : PROClight(4,3,1) : PROCcursor(0) : 
PROClight(4,1,3) 
3159 REM make sure pie joins up and get scale size of segment 
3160 IF I%=NB THEN A2=-3*PI/2 : ANG=A1-A2 

ELSE ANG=SCALE*D(I%) : A2=A1-ANG 
3170 IF X=XC AND Y=YC THEN 3200 
3179 REM deal with displacement 
3180 A3=A1-ANG/2 : DIST=SQR((X-XC)^2+(Y-YC)^2) 
3190 X=INT(XC+DIST*COS(A3)+0.5) : Y=INT(YC+DIST*SIN(A3)+0.5) 
3199 REM is hatching to be along the 'x' axis, 'y' axis, 'b'oth 

or 'n'ot at all 
3200 PROCtext(1) : INPUT"HATCH (x,y,b,n) "H$ 

: IF ASC(H$)<96 THEN H$=CHR$(ASC(H$)+32) 
3209 REM what spacing between lines and what initial offset 
3210 IF H$<>"n" THEN INPUT "JUMP"JUMP,"FROM "FROM 
3220 INPUT"INNER COLOUR",IC,"OUTER COLOUR",OC 
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3229 REM fill in segment 
3230 GCOL 0,IC : X1=X+INT(R*COS(A1)+0.5) : 
Y1=Y+INT(R*SIN(A1)+0.5) 
3240 MOVE X1,Y1 : ADIF=-10/R 
3250 FOR T=A1+ADIF TO A2 STEP ADIF 
3260 MOVE X,Y : PLOT 81,COS(T)*R,SIN(T)*R 
3270 NEXT T 
3279 REM make sure filled in to end of segment 
3280 MOVE X,Y : XS=INT(COS(A2)*R+0.5) : YS=INT(SIN(A2)*R+0.5) 

: PLOT81,XS,YS 
3289 REM draw outline round segment 
3290 GCOL 0,OC : MOVE X,Y : DRAW X1,Y1 
3300 FOR T=A1+ADIF TO A2 STEP ADIF 
3310 DRAW X+COS(T)*R,Y+SIN(T)*R 
3320 NEXT T 
3329 REM make sure outline goes to edge of segment 
3330 DRAW X+XS,Y+YS : DRAW X,Y 
3340 IF H$="n" THEN 3370 ELSE A2S=A2 
3349 REM deal with hatching if the segment is more than half 
circle 

treat as two parts 
3350 IF ANG>PI THEN A2=A1-PI : X2=2*X-X1 : Y2=2*Y-Y1 : 
PROChatch(H$) : X1=X2 : Y1=Y2 : A1=A2 : A2=A2S 
3360 PROCtext(0) : X2=X+XS : Y2=Y+YS : PROChatch(H$) 
3370 A1=A2 
3380 NEXT I% 
3390 ENDPROC 

 
3400 REM hatch 
3410 DEF PROChatch(H$) 
3419 REM easy way to get both ways 
3420 IF H$="b" THEN PROChatch("x") : PROChatch("y") : ENDPROC 
3430 IF H$="y" THEN PZ=X : PT=Y : Z1=X1 : T1=Y1 : Z2=X2 : T2=Y2 
3440 IF H$="x" THEN PZ=Y : PT=X : Z1=Y1 : T1=X1 : Z2=Y2 : T2=X2 
3449 REM find the max. and min. coordinates for lines which pass 

through segment. 
3450 T=PI/2 : MAX=0 : MIN=0 
3460 IF H$="x" THEN V=COS(A1) ELSE V=SIN(A1) 
3470 IF MAX < V THEN MAX=V ELSE IF MIN > V THEN MIN=V 
3480 IF T>A1 THEN REPEAT : T=T-PI/2 : UNTIL T<=A1 
3490 IF T<A2 THEN 3530 
3500 IF H$="x" THEN V=COS(T) ELSE V=SIN(T) 
3510 IF MAX < V THEN MAX=V ELSE IF MIN > V THEN MIN=V 
3520 T=T-PI/2 : GOTO3490 
3530 IF H$="x" THEN V=COS(A2) ELSE V=SIN(A2) 
3540 IF MAX < V THEN MAX=V ELSE IF MIN > V THEN MIN=V 
3550 NMIN=INT(INT(R*MIN+1)/JUMP)*JUMP+FROM 
3559 REM for lines which cross segment find intersections 

with radii and arc 
3560 FOR E=NMIN TO MAX*R STEP JUMP 
3570 C=0 : DENOM=T1-PT : IF DENOM=0 THEN 3600 
3580 MU=E/DENOM : IF MU<0 OR MU>1 THEN 3600 
3590 C=C+1 : Z(C)=PZ+MU*(Z1-PZ) 
3600 DENOM=T2-PT : IF DENOM=0 THEN 3640 
3610 MU=E/DENOM : IF MU<0 OR MU>1 THEN 3640 
3620 C=C+1:Z(C)=PZ+MU*(Z2-PZ) 
3629 REM if more than two points of intersection found, 

delete duplicates 
3630 IF C=2 AND Z(1)=Z(2) THEN C=1 
3640 IF C<>2 THEN 3670 
3650 IF H$="y" THEN MOVE Z(1),E+PT : DRAW Z(2),E+PT : GOTO 3730 
3660 IF H$="x" THEN MOVE E+PT,Z(1) : DRAW E+PT,Z(2) : GOTO 3730 
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3670 DISC=R*R-E*E : IF DISC<0 THEN 3730 
3680 DISC=INT(SQR(DISC)+0.5) 
3690 ZZ=PZ+DISC : AZ=DISC : PROCin : IF IN THEN C=C+1 : Z(C)=ZZ 
3700 ZZ=PZ-DISC : AZ=-DISC : PROCin : IF IN THEN C=C+1 : Z(C)=ZZ 
3710 IF C>2 AND Z(1)=Z(2) THEN Z(2)=Z(3) 
3720 IF C>=2 THEN 3650 
3730 NEXT E 
3740 ENDPROC 

 
3800 REM in 
3810 DEF PROCin 
3819 REM if angle lies between angles of ends of segment then 

point of intersection is on the arc of the segment 
3820 IF H$="x" THEN BZ=E : EZ=AZ ELSE BZ=AZ : EZ=E 
3829 REM find angle from centre to point of intersection 
3830 IF BZ=0 THEN PHI=-PI/2 : IF EZ>0 THEN PHI=-PHI 
3840 IF BZ<>0 THEN PHI=ATN(EZ/BZ) : IF BZ<0 THEN PHI=PHI-PI 
3849 REM IN is true if PHI is between angles of edges 
3850 IN=(PHI<=A1) AND (PHI>=A2) 
3860 ENDPROC 

 
 

at the centre. For obtuse angles the ‘pie’ is treated as two pieces, the first subtending    
radians at the centre. The ‘pie’ procedure enquires whether the hatching is to be 
horizontal (answer ‘x'  ), vertical (answer ‘y'  ), both ways (answer 
‘b'  ) or neither (answer ‘n'  ). 

The pie sections we are considering are each bounded by two line segments 
and a circular arc. We must find which part of a hatching line (if any) lies inside 
this segment. Because the ‘pie’ does not subtend an angle greater than p radians 
at its centre there are only four possibilities: 

 
(1) A line may miss the pie altogether. 
(2) It may intersect the arc at two points. 
(3) It may intersect the arc and one of the line segments. 
(4) It may intersect both line segments. 

 
The special cases where the line coincidently cuts the arc and a line segment at 

the same point may be included in one of the above four possibilities. The 
explanation of the hatching algorithm is given with reference to horizontal 
hatching; the vertical follows in an equivalent manner. We first find the 
MAXimum and MINimum y-values of points within the ‘pie’ section. Then we 
consider all horizontal hatching lines with equations of the form Y = k * JUMP + 
FROM between these limits (0    FROM    JUMP    1). For each hatching line we 
calculate the two points of intersection with the extended line segments and then 
check whether their MU values lie between 0 and 1, that is, whether the 
intersection is between the centre of the circle and the arc. Next we find the two 
points of intersection of the hatching line with the complete circle that contains 
the arc and then check whether they lie on the arc. From these we can find the two 
points of intersection of the pie section and the hatching line, and these are 
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then joined. This whole process is programmed in listing 6.4 and an example of its 
use is given in figure 6.4 above. Note that if we set the JUMP to a number that is 
not the size of a whole number of pixels (in addressable points) we get unusual 
candy-stripe or dotted hatching. 

 
Graphs 
As our third example of graphical data presentation we must consider scientific 
graphs of functions and graphs of discrete points, called by f9 at level 1 (listings 
6.1 and 6.5). Such diagrams require coordinate axes that need be neither of fixed 
size nor of fixed scale. The program requests the lower and upper x-value and y- 
value of the data. Then a standard method is used to decide on the placing of a 
particular axis: if zero should lie in the range of the graph then the axis passes 
through that point, otherwise it lies on the edge of the graphics area, closest to 
zero. Five marks are then placed along each axis and if automatic labelling is 
specified then the corresponding scale value is written close to each mark. The 
need for accuracy in scientific graphs necessitates the use of as many characters 
as possible across the screen. The BBC Model B has only 40 characters across the 
screen and 32 up it, so previously loaded ‘thin’ characters (character set 4 from 
chapter 5) are placed two per character block, enabling us to draw 80 characters 
on each line. When numbers are to be printed as ‘thin’ ‘label’s they need to be 
converted into strings and made consistent in length and/or decimal accuracy. 
This is achieved by the procedure ‘number’ (listing 6.5). 

 
Exercise 6.4 
Write an extended ‘number’ procedure that allows you to specify the format of the 
string to be printed. One way of doing this is to enter a string that contains a 
template for the number format, for example the string ‘##.###’ could specify a 
number with two digits before the decimal point and three decimal places after it. 
Also see the @% option in the user manual. 

The choice is now offered between entering a functional representation of 
points on a continuous curve, and entering a set of discrete data points to be joined 
in a saw-tooth two pattern by straight lines. In the functional section of the 
procedure the program asks for an algebraic expression for the function, which 
may include the standard in-built functions (like SIN or COS) as well as our own 
functions. The height of the point on the curve above each pixel point on the X- 
axis is calculated, and these points are joined by lines. 

In the discrete section the number of data points is INPUT, followed by the 
individual X and Y coordinates which are sorted into ascending order of the X 
coordinate. Consecutive points are then joined by lines. One example of each type 
of diagram is given. Figure 6.5 shows a typical continuous cosine curve and figure 
6.6 shows discrete scientific data that illustrate the pH levels of a river. 
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Listing 6.5 
 
1500 REM initdims 
1520 DIM X(100),Y(100) 
1530 ENDPROC 

 
1600 REM initprompt 
1670 DATA"GRAPH","","","ETC." 

 
2010 DEF PROCkey0 
2040 IF LEVEL=1 THEN PROCgraph : OL=-1 
2050 PROClight(0,1,3) 
2060 ENDPROC 

 
2200 REM key1 

 
2400 REM key2 

 
2600 REM key3 
2630 LEVEL=(LEVEL+1) MOD 2 
2640 PROClight(3,1,3) 
2650 ENDPROC 

 
2800 REM key4 

 
3000 REM graph 
3010 DEF PROCgraph 
3020 PROCtext(2) 
3030 REPEAT : INPUT"X GOES FROM "XB,"TO "XT : UNTIL XT>XB 
3040 REPEAT : INPUT"Y GOES FROM "YB,"TO "YT : UNTIL YT>YB 
3050 INPUT"AUTOMATIC LABELLING (Y/N) ",L$ : PROCtext(0) 
3060 XSCALE=1024/(XT-XB) : YSCALE=704/(YT-YB) 
3069 REM draw axes through origin or on side closest to origin 
3070 IF YT<0 THEN YO=896 ELSE IF YB>0 THEN YO=192 

ELSE YO=INT(-YB*YSCALE+192.5) 
3080 IF XT<0 THEN XO=1152 ELSE IF XB>0 THEN XO=128 

ELSE XO=INT(-XB*XSCALE+128.5) 
3090 MOVE XO,192 : DRAW XO,896 : MOVE 128,YO : DRAW 1152,YO 
3100 XDIF=(XT-XB)/4 : YDIF=(YT-YB)/4 
3109 REM put five ticks along each axis with 'thin' labels 
3110 X=XB : Y=YB : FOR J=1 TO 5 
3120 PX=INT((X-XB)*XSCALE+128.5) : PY=YO 
3130 MOVE PX,PY-8 : DRAW PX,PY+8 
3139 REM calculate text positions 
3140 TX=PX DIV 32 -1 : TY=(1024-PY) DIV 32+1 
3150 IF L$="Y" THEN PROCthin(1,TX,TY,STR$(X)) 
3160 PX=XO : PY=INT((Y-YB)*YSCALE+192.5) 
3170 MOVE PX-8,PY : DRAW PX+8,PY 
3180 TX=PX DIV 32 +1 : TY=(1024-PY) DIV 32-1 
3190 IF L$="Y" THEN PROCthin(1,TX,TY,STR$(Y)) 
3200 X=X+XDIF : Y=Y+YDIF : NEXT J 
3210 PROCtext(2) 
3220 REPEAT : INPUT"CONTINUOUS OR DISCRETE ",D$ : UNTIL D$="C" OR D$="D" 
3230 IF D$="D" THEN 3330 
3239 REM section to plot graph of a function 
3240 INPUT"F(X): Y="F$ 
3249 REM evaluate function for X to find point on curve 
3250 X=XB : Y=EVAL(F$) : IY=INT((Y-YB)*YSCALE+192.5) 
3260 MOVE 128,IY 
3269 REM repeat for values of X one pixel apart 
3270 FOR I%=128 TO 1152 STEP 4 



Diagrams and Data Graphs 125  
 
 
 

3280 X=(I%-128)/XSCALE+XB 
3290 Y=EVAL(F$) : IY=INT((Y-YB)*YSCALE+192.5) 
3300 DRAW I%,IY 
3310 NEXT I% : X=640 : Y=512 
3320 ENDPROC 
3329 REM come here if points to be joined are to be input 
3330 INPUT"NO. OF POINTS "NP 
3339 REM get all points 
3340 FOR I%=1 TO NP 
3350 PRINT"X(";I%;"),Y(";I%;") "; : INPUTX(I%),Y(I%) 
3360 NEXT I% 
3369 REM use simple bubble-sort to get points in ascending order 

of X-coordinate 
3370 FOR I%=1 TO NP-1 : FOR J%=I%+1 TO NP 
3380 IF X(J%)<X(I%) THEN T=X(J%) : X(J%)=X(I%) : X(I%)=T 

: T=Y(J%) : Y(J%)=Y(I%) : Y(I%)=T 
3390 NEXT J% : NEXT I% 
3399 REM find scale coordinates of first point and draw symbol 
3400 X=INT((X(1)-XB)*XSCALE+128.5) : Y=INT((Y(1)- 
YB)*YSCALE+192.5) 
3410 MOVE X,Y : PROCsymbol(X,Y) 
3419 REM repeat for other points joining them up 
3420 FOR I%=2 TO NP 
3430 X=INT((X(I%)-XB)*XSCALE+128.5) : Y=INT((Y(I%)- 
YB)*YSCALE+192.5) 
3440 DRAW X ,Y : PROCsymbol(X,Y) 
3450 NEXT I% 
3460 ENDPROC 

 
3500 REM symbol 
3510 DEF PROCsymbol(X,Y) 
3519 REM draw a little square round X,Y to mark it 
3520 MOVE X+8,Y+8 : DRAW X-8,Y+8 : DRAW X-8,Y-8 

: DRAW X+8,Y-8 : DRAW X+8,Y+8 : MOVE X,Y 
3530 ENDPROC 

 
4000 REM thin 
4010 DEF PROCthin(M,X,Y,A$) 
4019 REM output a numeric string using thin characters 
4020 LOCAL I%,A%,P$ 
4030 A%=2^(4+M) : VDU 5 
4040 MOVE X*A%,1023-Y*32 
4050 FOR I%=1 TO LEN(A$) : P$=MID$(A$,I%,1) 
4060 IF P$>="0" AND P$<="9" THEN VDU (80+ASC(P$)) : GOTO 4080 
4070 IF P$="+" THEN VDU 144 ELSE IF P$="-" THEN VDU 145 

ELSE VDU 146 
4080 MOVE (X+I%/2)*A%,1023-Y*32 
4090 NEXT I% 
4100 VDU 4 
4110 ENDPROC 

 
Exercise 6.5 
It has been noted that the only requirement for such graphs is a set of coordinates 
in ascending order of X which are then joined up. This set can be created in any 
manner: by a series of READ statements or by a multi-line calculation in a user- 
defined function FNf, which can be drawn by simply typing Y = f(X) instead of 
just using functions provided by the system. DEFine an FN that allows the graph 
of SIN(X)/X to be drawn; avoid the calculation of SIN (0)/0! 
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Figure 6.5 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6.6 
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Diagram adjustment and labelling 
Having drawn diagrams we now need simple control over the superimposition  of 
labels and other graphics objects on them. This requires procedures for drawing 
lines and shapes, even perhaps for filling in the shapes (listing 6.6). On level 1 
we have the options SKETCH (f9), LINE (fl), SHAPE (f2), ETC. (f3) and the 
Cursor adjustment (f4). SKETCH enables you to sketch in small details. The 
cursor keys move the crosswires around the screen, and if ‘P’ is pressed 
simultaneously  then a trail is left behind (compare with listing 1.8). fD returns 
you to level 1. It would be very tedious to sketch in every pixel for a large block 
of the screen. Instead we use a set of procedures that draw lines and draw and/or 
fill triangles, boxes, polygons and circles. The LINE option uses the ‘line’ 
procedure which specifies two points on the screen by using the cursor, and then 
draws a line between them. It also demonstrates some of the other procedures 
that are provided for this part of the diagram package, such as ‘mark’ which 
places a small cross on the screen to show previous positions of the cursor. 

SHAPE takes us down to level 3 with options DRAW (f9), FILL (fl) or BOTH 
(f3) which specifies the mode of colouring: outline only (f0), solid area only (fl) or 
both (f2). This leads on directly to level 4 with options TRIANG (f0), BOX 
(fl), CIRCLE (f2) and POLY (f3). The first two options allow us to draw a triangle 
or a quadrilateral with corners entered via the cursor. CIRCLE draws a circle with 
centre and radius given by the cursor. POLY draws a regular polygon with centre 
and radius specified by the cursor and the angle that one of the vertices makes 
with the horizontal given as a multiple of PI, and then returns to level 1. ETC. (f3) 
leads directly to level 2 which defines labels and the colours in use. LABEL (f0) 
enters the ‘label’ procedure which asks for Normal, Thin or Graphics characters 
and the string to be printed. Note that references are 
regularly made to the level 0 procedures, and to the ‘thin’ procedure (taken from 
listing 5.4). Naturally we must first place the ‘thin’ characters in character set 4 
position between &C00 and &D00. Obviously you can create other characters 
(such as a ‘thin’   ) and as long as you place them in set 4 they can be printed out 
by ‘label'  . 

COLOUR (fl) changes the foreground and/or background colours of labels. 
GCOL (f2) changes the Graphics and outline colours. ETC. (f3) leads you back 
to level 0. In most of these levels if the pseudo-soft key f4 is coloured red then 
you can INPUT a new position for the cursor rather than use the cursor keys. 

 
Exercise 6.6 
Draw a picture of your BBC micro, or perhaps a scene like that given at the end of 
chapter 1. Adapt your program from exercise 1.3 for use as a procedure to draw an 
n-sided polygon by using the ‘cursor’ to enter the n points. 

If you have a graphics pad then you can copy rough sketches from the pad 
into the machine. You should then write programs to tidy up these pictures, that 
is to straighten lines and to smooth out curves. 
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Listing 6.6 
1500 REM initdims 

 
1600 REM initprompt 

 
1670 DATA"SKETCH","LINE","SHAPE","ETC." 
1680 DATA"LABEL","COLOUR","GCOL","ETC." 
1690 DATA"DRAW","FILL","BOTH","" 
1700 DATA"TRIANG","BOX","CIRCLE","POLY" 

 
2000 REM key0 
2040 IF LEVEL=1 THEN PROCsketch 
2050 IF LEVEL=2 THEN PROClabel 
2060 IF LEVEL=3 THEN OUTLINE=TRUE : FILL=FALSE : LEVEL=4 : GOTO 2080 
2070 IF LEVEL=4 THEN PROCtriang : LEVEL =1 
2080 PROClight(0,1,3) 
2090 ENDPROC 

 
2200 REM key1 
2240 IF LEVEL=1 THEN PROCline : OL=-1 
2250 IF LEVEL=2 THEN PROCtext(1) : INPUT "BACKGROUND ",BC, 

"TEXT COLOUR ",TC : PROCtext(0) : OL=-1 
2260 IF LEVEL=3 THEN OUTLINE=FALSE : FILL=TRUE: LEVEL=4 : GOTO 2280 
2270 IF LEVEL=4 THEN PROCbox : LEVEL=1 
2280 PROClight(1,1,3) 
2290 ENDPROC 

 
2400 REM key2 
2440 IF LEVEL=1 THEN LEVEL=3 : GOTO 2480 
2450 IF LEVEL=2 THEN PROCtext(1) : INPUT "GCOL ",GC, 

"OUTLINE COLOUR ",OC : PROCtext(0) : OL=-1 
2460 IF LEVEL=3 THEN OUTLINE=TRUE : FILL=TRUE : LEVEL=4 : GOTO 2480 
2470 IF LEVEL=4 THEN PROCcircle : LEVEL=1 
2490 ENDPROC 

 
2600 REM key3 
2630 IF LEVEL<3 THEN LEVEL=(LEVEL+1) MOD 3 
2640 IF LEVEL=4 THEN PROCtext(1) : INPUT "No. OF SIDES",N,"ANGLE PI*"A 

: ANG=PI*A : PROCtext(0) : PROCpoly(N,ANG) : LEVEL=1 
2650 PROClight(3,1,3) 
2660 ENDPROC 

 
2800 REM key4 

 
3000 REM sketch 
3010 DEF PROCsketch 
3020 REPEAT 
3030 PROCcursor(1) 
3040 IF INKEY(-56) THEN GCOL 3,GC : PLOT69,X,Y : GCOL 3,3 
3050 PROCcross : OX=-1 : OY=-1 : PROCcross 
3060 UNTIL INKEY(K(0)) 
3070 ENDPROC 

 
3100 REM label 
3110 DEF PROClabel 
3120 PROClight(4,3,1) : PROCcursor(0) : PROClight(4,1,3) 
3130 PROCtext(1) : INPUT"LABEL TYPE (N,T,G) ",T$ 

: INPUT"LABEL ",A$ : PROCtext(0) 
3140 COLOUR 128+BC : COLOUR TC : GCOL 0,TC 
3150 IF T$="T" THEN PROCthin(1,X/32,(1024-Y)/32,A$) : GOTO 3180 
3160 IF T$="N" THEN PRINT TAB(X/32,(1024-Y)/32);A$ 
3170 IF T$="G" THEN MOVE X,Y : VDU 5 : PRINT A$ : VDU 4 
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3180 OL=-1 
3190 ENDPROC 

 
3200 REM point 
3210 DEF PROCpoint(A$) 
3220 PROClight(4,3,1) : PROCtext(1) : PRINTA$; : PROCtext(0) 
3230 PROCcursor(0) : SOUND1,-15,200,1 
3240 PROClight(4,1,3) 
3250 ENDPROC 

 
3300 REM mark 
3310 DEF PROCmark(X,Y) 
3320 GCOL3,3 : MOVE X-12,Y-12 : DRAW X+12,Y+12 
3330 MOVE X+12,Y-12 : DRAW X-12,Y+12 
3340 ENDPROC 

 
3400 REM line 
3410 DEF PROCline 
3420 PROCpoint("START") : A=X : B=Y : PROCmark(A,B) 
3430 PROCpoint("END") : PROCmark(A,B) 
3440 MOVE A,B : GCOL 0,GC : DRAW X,Y 
3450 ENDPROC 

 
3500 REM triang 
3510 DEF PROCtriang 
3520 PROCpoint("FIRST") : A=X : B=Y : PROCmark(A,B) 
3530 PROCpoint("SECOND") : C=X : D=Y : PROCmark(C,D) 
3540 PROCpoint("FINAL") : PROCmark(A,B) : PROCmark(C,D) 
3550 GCOL0,GC : IF FILL THEN PROCfill(X,Y,A,B,C,D) : GCOL 0,OC 
3560 IF OUTLINE THEN MOVE X,Y : DRAW A,B : DRAW C,D : DRAW X,Y 
3570 ENDPROC 

 
3600 REM box 
3610 DEF PROCbox 
3620 PROCpoint("FIRST") : A=X : B=Y : PROCmark(A,B) 
3630 PROCpoint("SECOND") : C=X : D=Y : PROCmark(C,D) 
3640 PROCpoint("THIRD") : E=X : F=Y : PROCmark(E,F) 
3650 PROCpoint("FINAL") : PROCmark(A,B) : PROCmark(C,D) 

: PROCmark(E,F) 
3660 GCOL0,GC : IF FILL THEN PROCfill(X,Y,A,B,E,F) 

: PROCfill(A,B,E,F,C,D) : GCOL 0,OC 
3670 IF OUTLINE THEN MOVE X,Y : DRAW A,B : DRAW C,D : DRAW E,F : DRAW X,Y 
3680 ENDPROC 

 
3700 REM poly 
3710 DEF PROCpoly(N,PHI) 
3720 PROCpoint("CENTRE") : A=X : B=Y : PROCmark(A,B) 
3730 PROCpoint("RADIUS") : PROCmark(A,B) 
3740 R=SQR((X-A)^2+(Y-B)^2) 
3750 OX=A+COS(PHI)*R : OY=B+SIN(PHI)*R 
3760 FOR I=PHI TO 2*PI+PHI+PI/N STEP 2*PI/N 
3770 X=A+COS(I)*R : Y=B+SIN(I)*R 
3780 IF FILL THEN GCOL 0,GC : PROCfill(A,B,X,Y,OX,OY) 
3790 IF OUTLINE THEN GCOL 0,OC : MOVE OX,OY : DRAW X,Y 
3800 OX=X : OY=Y 
3810 NEXT I : PROCinitcursor(A,B) 
3820 ENDPROC 

 
3900 REM circle 
3910 DEFPROCcircle 
3920 PROCpoly(100,0) 
3930 ENDPROC 
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4000 REM thin 
4010 DEF PROCthin(M,X,Y,A$) 
4020 LOCAL I%,A%,P$ 
4030 A%=2^(4+M) : VDU 5 
4040 MOVE X*A%,1023-Y*32 
4050 FORI%=1 TO LEN(A$) : P$=MID$(A$,I%,1) 
4060 IF P$>="0" AND P$<="9" THEN VDU (80+ASC(P$)) : GOTO 4080 
4070 IF P$="+" THEN VDU 144 ELSE IF P$="-" THEN VDU 145 ELSE VDU 
146 
4080 MOVE (X+I%/2)*A%,1023-Y*32 
4090 NEXT I% 
4100 VDU 4 
4110 ENDPROC 

 
 

Complete Programs 
 

To clarify the use of the programs given in this chapter we have underlined 
typical responses in the examples below. All the listings should be loaded with 
PAGE = &1100. Also use the REM stripper. 

 
I     Listings 6.1 and 6.2. 

Type f3 (ETC.), f0 (histogram) 
Rang of vertica1 0 to 100, number of bars 6 
Data for bar 1: 75, inner colour 1, outer colour 3 
Data for bar 2: 60, inner colour 0, outer colour 2 
Data for bar 3: 88, inner colour 2, outer colour 1 
Data for bar 4: 23, inner colour 3, outer colour 1 
Data for bar 5: 17, inner colour 3, outer colour 1 
Data for bar 6: 97, inner colour 1, outer colour 2 
f3 (ETC.), f0 (SAVE), Filename? PIC1 

 
II     Listings 6.1 and 6.3. 

 
Type f3 (ETC.), f0 (histogram/second  type) 
Range of vertical 0 to 200, number of bars 4 
Data for bar 1: 166, 84 
Data for bar 2: 100, 44 
Data for bar 3: 80, 33 
Data for bar 4: 40, 10 
f3 (ETC.), f0 (SAVE), Filename? PIC2 

 
III     Listings 6.1 and 6.4. 

 
Type f3 (ETC.), f0 (pie-chart), number of segments 4 
Data 1: 4 
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Data 2: 3 
Data 3: 2 
Data 4: 3 
Centre pie by using cursors, and enter with f4 
Radius in addressable points 400 
Centre segment 1 by using cursors and f4 
Hatch? X, JUMP 8 FROM 1, inner colour 3, outer colour 1 
Centre segment 2 using cursors and f4 
Hatch? N,  , inner colour 0, outer colour 3 
Centre segment 3 by using cursors and f4 
Hatch? B, JUMP 12 FROM 0 ,inner colour 1, outer colour 3 
Centre segment 4 by using cursors and f4 
Hatch? Y, JUMP 11 FROM 0, inner colour 0, outer colour 2 
f3 (ETC.), f0 (SAVE), Filename? PIC3 

 
IV     Listings 6.1 and 6.5 

 
Type f3 (ETC.), f0 (graph) 
X goes from   10 to 10 
Y goes from   1 to 1 
Automatic labelling (Y/N) N 
Continuous or Discrete, C 
F(X): Y = COS(X) 
f3 (ETC.), f0 (SAVE), Filename? PIC4 

 
V     Listing 6.1 and 6.6 

 
Type f1 (LDAD), Filename? PIC1 
f3 (ETC.), f3 (ETC.), note ETC. twice! 
f1 (COLOUR), background 3, text colour 1, f3, f3 
f2 (SHAPE), f2 (BOTH), f0 (TRIANG) 
FIRST (use cursor and f4) 
SECOND (use cursor and f4) 
FINAL (use cursor and f4), f3 
f0 (LABEL), cursor to position and f4 
label type (N, T, G)? N 
LABEL: HELLO FOLKS 
f3 (ETC.) f0 (SAVE), Filename? PIC5 
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7 Three-Dimensional Coordinate 
Geometry 

 
 
 
 

Before we lead on to a study of the graphical display of objects in three- 
dimensional space, we first have to come to terms with the three-dimensional 
Cartesian coordinate geometry. As in two-dimensional  space, we arbitrarily fix a 
point in the space, named the coordinate origin (or or origin for short). We then 
imagine three mutually perpendicular lines through this point, each line going off 
to infinity in both directions. These are the x-axis, the y-axis and the z-axis. Each 
axis is thought to have a positive and a negative half, both starting at the origin; 
that is, distances measured from the origin along the axis are positive on one side 
and negative on the other. We may think of the x-axis and y-axis in the same way 
as we did for two-dimensional  space, both lying on the page of this book say, the 
positive x-axis ‘horizontal’ and to the right of the origin, and the positive y-axis 
‘vertical’ and above the origin. This just leaves the position of the z-axis: it has to 
be perpendicular to the page (since it is perpendicular to both the x-axis and the 
y-axis). The positive z-axis can be into the page (the so-called left-handed triad 
of axes) or out of the page (the right-handed triad). In this book we always use 
the left-handed triad notation. What we say in the remainder of the book, using 
left-handed axes, has its equivalent in the right-handed system - it does not 
matter which notation you finally decide to use as long as you are consistent. 

We specify a general point p in space by a coordinate triple or vector (X, Y, 
Z), where the individual coordinate values are the perpendicular projections of 
the point on to the respective x-axis, .y-axis and z-axis. By projection we mean 
the unique point on the specified axis such that a line from that point to p is 
perpendicular to that axis. 

Initially there are two operations we need to consider for three-dimensional 
vectors. Suppose  we have two vectors, p1      (x1, y1, z1) and p2      (x2, y2, z2) then 

scalar multiple: we multiply the three individual coordinate values by a scalar 
number k 

 
kp1 = (k × x1, k × y1, k × z1) 

 

vector addition: we add the x-coordinates together, then the y-coordinates and 
finally the z-coordinates to form a new vector 

 
p1 + p2      (x1 + x2, y1 + y2, z1 + z2) 
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Definition of a Straight Line 
 

A straight line in three-dimensional  space that passes through two points such as 
p1      (x1, y1, z1) and p2      (x2, y2, z2) is the next object to be defined. We may do 
this by describing the coordinates of a general point p    (x, y, z) 

 

(x    x1) × (y2      y1) = (y    y1) × (x2      x1) 
(y    y1) × (z2      z1) = (z    z1) × (y2      y1) 
(z    z1) × (x2      x1) = (x    x1) × (z2      z1) 

 
Although these are three equations in three unknowns, we shall see that they are 
inter-related (or so-called linearly dependent) and so there is no unique solution 
(that is natural since we are generating a general point on the line, not just one 
point). These equations enable us to calculate two of the coordinates in terms of a 
third (see example 7.1). 

As with two dimensions, this is not the only way of representing a line, in fact 
the second way we introduce is possibly more useful. The general point on the line 
is represented as a vector that is dependent on only one real number   , and is 
given as the vector sum of two scalar multiples of vectors: 

 
p(  )    (1  )p1 +   p2    where  <    < 

That is 

p(  )    ((1       ) × x1 +    × x2, (1      ) × y1 +    × y2, (1      ) × z1 +    × z2) 

This form is exactly equivalent to the two-dimensional  parametric form of a line 
that we saw in chapter 3. Here we place    in brackets after p to demonstrate the 
dependence of p on   ; however, when this concept has been fully investigated, 
then (  ) will be ignored. Note that when    = 0 the equation returns point p1 and 
when    = 1 it gives point p2. 

We may rewrite this vector expression as 
 

p(  ) = p1 +   (p2      p1) 

Like its counterpart in two dimensions, p1 is called a base vector and (p2      p1) a 
directional vector. Again we see the dual interpretation of a vector. A vector may 
be used to specify a point uniquely in three-dimensional  space, or it may be 
considered as a general direction, namely any line parallel to the line that joins 
the origin to the vector (considered as a point). We can move along a line in one 
of two directions, so we say that the direction from the origin to the point has a 
positive sense, and the direction from the point to the origin has a negative sense. 
Hence vectors d    (x, y, z) and   d    (  x,   y,   z) represent the same line in space 
but their directions are of opposite senses. We define the length of a vector d    (x, 
y, z) (sometimes called its modulus, or absolute value) as | d |, and the distance of 
the point vector from the origin is 

 

| d | =   (x2 + y2 + z2) 
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( ) 

 
 
 

So any point on the line p +   d is found by moving to the point p and then 
travelling along a line that is parallel to the direction d, a distance of    | d | in the 
positive sense of d if    is positive, and in the negative sense otherwise. Note that 
any point on the line can act as a base vector, and the directional vector may be 
replaced by any non-zero scalar multiple of itself. 

If the directional vector d    (x, y , z) makes angles of   x,   y and   z with the 
respective positive x-direction, y-direction and z-direction, then 

 
x : y : z = cos   x : cos   y : cos   z 

which means that 
 

d    (   × cos   x,    × cos   y,    × cos   z) for some   . 

We know from the properties of three-dimensional  geometry that 
 

cos2   
x + cos2   

y + cos2   
z = 1 

Hence    = | d |, and if the directional vector has unit modulus (that is, modulus = 
= 1), then the coordinates of this vector must be cos   x, cos   y, cos   z. The 

coordinates of a directional vector given in this way are called the direction 
cosines of the set of lines that is generated by the vector. In general, if the 
direction vector is d    (x, y, z) then the direction cosines are 

 
x  y  z 

——, ——, —— 
| d |  | d |    | d | 

 
Example 7.1 
Describe the line joining (1 , 2, 3) to (  1 , 0, 2), by using the three methods 
shown so far 

The general point (x, y, z) on the line satisfies the equations 
 

(x    1) × (0    2) = (y    2) × (  1    1) 

(y    2) × (2    3) = (z    3) × (0    2) 

(z    3) × (  1    1) = (x    1) × (2    3) 
 

That is 
 

2x + 2y = 2  (7.1) 
 

y  + 2z = 4  (7.2) 

2x + x =   5  (7.3) 

Note that equation (7.1) is   2 times the sum of equations (7.2) and (7.3). Thus we 
need consider only these latter two equations, to get 

 
x = 2z    5 

 
y = 2x    4 
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Hence the general point on the line depends only on one variable, in this case z, 
and it is given by (2z    5, 2z    4, z). This result can easily be checked by noting 
that when z = 3 we get (1, 2, 3) and when z = 2 we get (  1, 0, 2), the two original 
points that define the line. 

In vector form the general point on the line (depending on   ) is 
 

p(  )    (1  )(1, 2, 3) +   (  1, 0, 2)    (1    2  , 2    2  , 3  ) 
 

Again the coordinates depend on just one variable (  ), and to check the validity 
of this representation of a line we note that p(0)    (1, 2, 3) and p(1)    (  1, 0, 2). 

If we put the line into base/directional  vector form we see that 
 

p(  )    (1, 2, 3) +   (  2 ,  2,   1) 
 

with (1, 2, 3) as the base vector and (  2,   2,   1) as the direction (which 
incidentally has modulus   (4 + 4 + 1) =   9 = 3). We also noted that any point on 
the line can act as a base vector, and so we can give another form for the general 
point on this line, p'  : 

 
p'  ()    (  1, 0, 2) +   (  2,   2,   1) 

 
We can change the directional vector into its direction cosine form (  2/3,   2/3, 
1/3) and represent the line in another version of the base/direction form: 

 
p'  ' )( 

 
(1, 2, 3) +   (  2/3,   2/3,   1/3) 

 
Naturally the same m value will give different points for different representations 
of the line; for example p(3)    (  5,   4, 0), p'  (3)  (  7,   6,   1) and p'  '  (3)(  1, 0, 
2). The direction of this line makes angles of 131.81 degrees (= cos 1 (  2/3)), 
131.81 degrees and 109.47 degrees (= cos  1 (  1/3)) with the positive x- 
direction, y-direction and z-direction respectively. 

 
The Angle between Two Directional Vectors 

 
In order to calculate such an angle we first introduce the operator ·, the dot 
product or scalar product. This operates on two vectors and returns a scalar (real) 
result thus: 

 
p    q = (x1, y1, z)    (x2, y2, z2) = x1 × x2 + y1 × y2 + z1 × z2 

If p and q are both unit vectors (that is, they are in direction cosine form), and q 
is the angle between the lines, then cos    = p    q (see chapter 3 for the equivalent 
two-dimensional  relationship). In general, therefore, the angle between two 
directional vectors p and q (we can assume they meet at the origin) is 

p  q 
——  —— 

| p |  | q | 
 

Obviously p and q are mutually perpendicular directions if and only if p    q = 0. 
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Definition of Plane 
 

The plane is the next object we must consider in three-dimensional  space. The 
general point x    (x, y, z) on the plane is given by the vector equation: 

 
n    x = k 

 
where k is a scalar, and n is the directional vector of the set of lines that are 
perpendicular to (or norma1 to) the plane (see example 7.2). If a is any point on 
the plane then naturally n    a = k and so by replacing k in the above equation, we 
may rewrite it as 

 
n    x = n    a   or   n    (x    a) = 0 

 
This latter equation is self-evident from the property of the dot product - two 
mutually perpendicular lines have zero dot product. For any point x    (x, y, z) in 
the plane that is not equal to a, we know that (x    a) can be considered as the 
direction of a line in the plane. Since n is normal to the plane, and incidentally 
perpendicular to every line in the plane, then n    (x    a) = cos(  /2) = 0. 

By expanding the original equation of the plane with normal n    (n1, n2, n3), 
we get the usual coordinate representation of a plane: 

 
(n1, n2, n3)    (x, y, z) = n1 × x + n2 × y + n3 × z) = k 

Note that two planes with normals n and m (say) are parallel if and only if one 
normal is a scalar multiple of the other, that is if n =   m for some  0. 

 
The Point of Intersection of a Line and a Plane 

 
Suppose the line is given by b +   d and the plane by n    x = k. Since the point of 
intersection lies on both the line and the plane we have to find the unique value of     
(if one exists) for which 

 
n    (b +   d) = k 

 
that is 

 
= (k    n    b)/(n    d) provided n    d    0 

 
n    d = 0 if the line and plane are parallel and so either there is no point of 
intersection or the line is in the plane. 

 
The Distance of a Point from a Plane 

 
The distance of a point p1 from a plane n    x = k is the distance of p1 from the 
nearest point p2 on the plane. Hence the normal from the plane at p2 must pass 
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through p1. This line can be written p1 +   n, and the    value that defines p2 is 
such that 

 
= (k    n    p1)/(n    n) 

from the equation above, and the distance of the point p2      p1 +   n from p1 is 

× | n | = | k    n    p1| / | n | 

In particular, if p1 is the origin 0 then the distance of the plane from the origin is 
| k | / | n |. Furthermore, if n is a direction cosine vector we see that the distance 
of the origin from the plane is | k |, the absolute value of the real number k. 

 
Example 7.2 
Find the point of intersection of the line joining (1, 2, 3) to (  1, 0, 2) with the 
plane (0,   2, 1)    x =5, and also find the distance of the plane from the origin. 

 
n    (0,   2, 1) 

 
b    (1, 2, 3) 

 
d    (  1, 0, 2)    (1, 2, 3)    (  2,   2,   1) 

 
n    b = (0 × 1 + 2 × 2 + 1 × 3) =   1 

 
n    d = (0 ×   2 +   2 ×   2 + 1 ×   1) = 3 

 
hence the m value of the point of intersection is (5    (  1))/3 = 2, and the point 
vector is 

 
(1, 2, 3) + 2(  2,   2,   1)    (  3,   2, 1) 

 
and the distance from the origin is 5/ | n | = 5/  5 =   5. 

The program given in listing 7.1 enables us to calculate the point of 
intersection (array P) of a line and a plane. The line has base vector B and 
direction D, and the plane has normal N and plane constant K. Note that, since 
we are working with decimal numbers, and thus are subject to rounding errors, 
we cannot check if a dot product is zero. We can find only if it is sufficiently 
small to be considered zero, and what is meant by sufficiently small is left to the 
programmer (on the BBC micro about six places after the decimal point is 
reasonable). 

 
The Point of Intersection of Two Lines 

 
Suppose we have two lines b1 +   d1 and b2 +   d2. Their point of intersection, if it 
exists (if the lines are not coplanar or are parallel then they will not intersect), is 
identified by finding unique values of m and l that satisfy the vector equation 
(three separate coordinate equations): 

 
b1 +   d1 = b2 +   d2 
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Listing 7.1 
 

100 REM Intersection of line and plane 
110 DIM B(3),D(3),N(3),P(3) 
119 REM input line and plane data 
120 CLS :PRINT TAB(0,2)," Intersection of line and plane " 
130 INPUT" Base vector of line ",B(1),B(2),B(3) 
140 INPUT" Direction vector of line ",D(1),D(2),D(3) 
150 INPUT" Normal to plane ",N(1),N(2),N(3) 
160 INPUT" Plane constant ",K 
170 DOT=N(1)*D(1)+N(2)*D(2)+N(3)*D(3) 
179 REM output line and plane data 
180 CLS 
190 PRINT TAB(0,5);"Base vector of line " 
200 PRINT TAB(0,6);"(";B(1);",";B(2);",";B(3);")" 
210 PRINT TAB(0,8);"Direction vector of line " 
220 PRINT TAB(0,9);"(";D(1);",";D(2);",";D(3);")" 
230 PRINT TAB(0,11);"Normal to plane " 
240 PRINT TAB(0,12);"(";N(1);",";N(2);",";N(3);")" 
250 PRINT TAB(0,14);"Plane constant ";K 
260 PRINT TAB(0,18);"Point of intersection" 
269 REM find point of intersection 
270 IF ABS(DOT)<0.000001 THEN PRINT TAB(22,18) "does not exist" : GOTO 330 
280 MU=(K-N(1)*B(1)-N(2)*B(2)-N(3)*B(3))/DOT 
290 FOR I%=1 TO 3 
300 P(I%)=B(I%)+MU*D(I%) 
310 NEXT I% 
320 PRINT TAB(0,19);"(";P(1);",";P(2);",";P(3);")" 
330 PRINT TAB(0,22); : STOP 

 
 
 

Three equations in two unknowns means that for the equations to be meaningful 
there must be at least one pair of the equations that are independent, and the 
remaining equation must be a combination of these two. Two lines are parallel if 
one directional vector is a scalar multiple of the other. So we take two 
independent equations, find the values of    and    (we have two equations in two 
unknowns), and put them in the third equation to see if they are consistent. 
Example 7.3 will demonstrate this method, and listing 7.2 is a way of 
implementing it on a computer. The first line has base and direction stored in 
arrays B and D, and the second line in C and E: the calculated point of 
intersection goes into array P. 

Note that if the two independent equations are 
 

a11 × m + d12 ×    = b1 

a21 × m + a22 ×    = b2 

then the determinant of this pair of equations,     = a11 × a22 - a12 × a21 will be 
non-zero (because the equations are not related), and we have the solutions: 

 
= (a22 × b1      a12 × b2)/    and  = (a11 × b2      a21 × b1)/ 
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Listing 7.2 
100 REM Intersection of two lines 
110 DIM B(3),D(3),C(3),E(3),N(3),P(3) 
120 CLS : PRINT TAB(1,2)"Intersection of two lines",SPC(9) 
129 REM input data on two lines 
130 INPUT" Base vector of first line ",B(1),B(2),B(3) 
140 INPUT" Direction vector of first line ",D(1),D(2),D(3) 
150 INPUT" Base vector of second line "C(1),C(2),C(3) 
160 INPUT" Direction vector of second line ",E(1),E(2),E(3) 
169 REM output data on two lines 
170 CLS 
180 PRINT TAB(0,5);"Base vector of first line " 
190 PRINT TAB(0,6);"(";B(1);",";B(2);",";B(3);")" 
200 PRINT TAB(0,8);"Direction vector of first line " 
210 PRINT TAB(0,9);"(";D(1);",";D(2);",";D(3);")" 
220 PRINT TAB(0,11);"Base vector of second line " 
230 PRINT TAB(0,12);"(";C(1);",";C(2);",";C(3);")" 
240 PRINT TAB(0,14);"Direction vector of second line " 
250 PRINT TAB(0,15);"(";E(1);",";E(2);",";E(3);")" 
260 PRINT TAB(0,18);"Point of intersection" 
269 REM find independent equations 
270 FOR I%=1 TO 3 
280 J%=(I% MOD 3)+1 
290 DELTA=E(I%)*D(J%)-E(J%)*D(I%) 
300 IF ABS(DELTA)>0.000001 THEN GOTO 330 
310 NEXT I% 
319 REM find point of intersection 
320 PRINT TAB(22,18) "does not exist" : GOTO 410 
330 MU=(E(I%)*(C(J%)-B(J%))-E(J%)*(C(I%)-B(I%)))/DELTA 
340 LAMBDA=(D(I%)*(C(J%)-B(J%))-D(J%)*(C(I%)-B(I%)))/DELTA 
350 K%=(J% MOD 3)+1 
360 IF ABS(B(K%)+MU*D(K%)-C(K%)-LAMBDA*E(K%)) > 0.000001 THEN GOTO 320 
370 FOR I%=1 TO 3 
380 P(I%)=B(I%)+MU*D(I%) 
390 NEXT I% 
400 PRINT TAB(0,19);"(";P(1);",";P(2);",";P(3);")" 
410 PRINT TAB(0,22); : STOP 

 
Example 7.3 
Find the point of intersection (if any) of 
(a) (1, 1, 1) +   (2, 1, 3) with (0, 0, 1) +   (  1, 1, 1) 
(b) (2, 3, 4) +   (1, 1, 1) with (  2,   3,   4) +   (1, 2, 3) 

In (a) the three equations are 
 

1 + 2    = 0  (7.4) 
 

1 +  = 0 +  (7.5) 

1 + 3    = 1 +  (7.6) 

From equations (7.4) and (7.5) we get    =   2/3 and    = 1/3, which when 
substituted in equation (7.6) gives 1 + 3 × (  2/3) =   1 on the left-hand side and 1 
+ 1 × (1/3) = 4/3 on the right hand side, which are obviously unequal so the lines 
do not intersect. 

From (b) we get the equations 
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2 +    =   2 +  (7.7) 
 

3 +    =   3 +2  (7.8) 
 

4 +    =   4 +3  (7.9) 

and from equations (7.7) and (7.8) we get    =   2 and    = 2, and these values also 
satisfy equation (7.9) (left-hand side = right-hand side = 2). So the point of 
intersection is 

 
(2, 3, 4)   2(1, 1, 1) = (  2,   3,   4) + 2(1, 2, 3) = (0 ,1, 2) 

 
 

The Plane through Three Non-collinear Points 
 

In order to solve this problem we must introduce a new vector operator, X the 
vector product, which operates on two vectors p and q (say) giving the vector 
result 

 
p X q = (p1, p2, p3) X (q1, q2, q3) = (p2 × q3      p2 × q2, p3 × q1      p1 × q3, 

p1 × q2      p2 × q1 

If p and q are non-parallel directional vectors then p X q is the directional vector 
that is perpendicular to both p and q. It should also be noted that this operation is 
non-commutative.  That is, in general for given values of p and q we note that p X 
q    q X p; these two vector products will represent directions on the same line 
but with opposite sense. For example (1, 0, 0) X (0, 1, 0) = (0, 0, 1) but (0, 1, 0) 
X (1, 0, 0) = (0, 0,   1); (0, 0, 1) and (0, 0,   1) are both parallel to the z-axis (and 
so perpendicular to the directions (1, 0, 0) and (0, 1, 0)), but they are of opposite 
sense. Listing 7.3 gives a main program that calls the procedures ‘vecprod’ (for 
the vector product of two vectors L and M returning vector N) and ‘dotprod’ 
(which calculates the dot product DOT of the vectors L and M). 

Suppose we are given three non-collinear points p1, p2 and p3. Then the two 
vectors p2      p1 and p3      p1 represent the directions of two lines that are 
coincident at p1, both of which lie in the plane that contains the three points. We 
know that the normal to the plane is perpendicular to every line in the plane, in 
particular to the two lines mentioned above. Also, because the points are not 
collinear, p2      p1      p3      p1, the normal to the plane is (p2      p1) X (p3      p1), since 
p1 lies in the plane the equation is 

((p2      p1) X (p3      p1))    (x    p1) = 0 
 

Example 7.4 
Give the coordinate equation of the plane through the points (0, 1, 1), (1, 2, 3) 
and (  2, 3,   1). 
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Listing 7.3 
 

100 REM Example of dot/vector product 
110 DIM L(3),M(3),N(3) : CLS 
120 PRINT TAB(0,3)"Example of dot/vector product",SPC(10) 
130 INPUT" Vector L ",L(1),L(2),L(3) 
140 INPUT" Vector M ",M(1),M(2),M(3) 
150 CLS : PROCvecprod 
160 PRINT TAB(0,5);"Vector L " 
170 PRINT TAB(0,6);"(";L(1);",";L(2);",";L(3);")" 
180 PRINT TAB(0,8);"Vector M " 
190 PRINT TAB(0,9);"(";M(1);",";M(2);",";M(3);")" 
200 PRINT TAB(0,11);"Vector Product " 
210 PRINT TAB(0,12);"(";N(1);",";N(2);",";N(3);")" 
220 PRINT TAB(0,14);"Dot Product "; FNdotprod 
230 PRINT TAB(0,22) : STOP 

 
300 REM vecprod 
310 DEF PROCvecprod 
320 LOCAL I%,J%,K% 
330 FOR I%=1 TO 3 
340 J%=(I% MOD 3)+1 : K%=(J% MOD 3)+1 
350 N(I%)=L(J%)*M(K%)-L(K%)*M(J%) 
360 NEXT I% 
370 ENDPROC 

 
400 REM dotprod 
410 DEF FNdotprod=L(1)*M(1)+L(2)*M(2)+L(3)*M(3) 

 
 
 
 

This is given by the general point x    (x, y, z) where 
 

(((1, 2, 3)    (0, 1, 1)) X ((  2, 3,   1)    (0, 1, 1)))    (x, y, z) 

(0, 1, 1) = 0 

that is 
 

((1, 1, 2) X (  2, 2,   2))    (x, y    1, z    1) = 0 
 

or 
 

(  6,   2, 4)    (x, y    1, z    1) = 0 
 

which in coordinate form is   6x    2y + 4z    2 = 0 or in the equivalent form 3x + 
y    2z =   1 

 
The Point of Intersection of Three Planes 

 
We assume that the three planes are defined by equations (7.10) to (7.12) below. 
The point of intersection of these three planes, b    (x, y, z), must be in all three 
planes and satisfy 
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n1     x = k1                                                                                                                              (7.10) 

n2     x = k2                                                                                                                              (7.11) 

n3     x = k3                                                                                                                              (7.12) 

where n1      (n11, n12, n13), n2      (n21. n22, n23) and n3      (n31, n32, n33). We can 
rewrite these three equations as one matrix equation 

( n21      n22      n23  )
 

X   (y ) =

 

(k2 )
 

n11      n12      n13  x  k1 
 
 

n31      n32      n33  z  k3 

and so the solution for b is given by the column vector 

( y ) =
 

( n21     n22      n23 )
 

X  ( k2 )
 

x  n11     n12      n13  1  k1 
 
 

z  n31     n32      n33  k3 

So any calculation that requires the intersection of three planes necessarily 
involves the inversion of a 3 × 3 matrix. Listing 7.4 gives the Adjoint method of 
finding NINV, the inverse of matrix N. It also returns variable SNG which equals 
0 if N is non-singular and 1 otherwise. 

 
 
 

Listing 7.4 
 
 

500 REM Find NINV, the inverse of 3x3 matrix N 
using the Adjoint method 

510 DEF PROCinv 
520 LOCAL I%,J%,NI%,NNI% 
529 REM find DET, determinant of N 
530 DET=0 : NI%=2 : NNI%=3 
540 FOR I%=1 TO 3 
550 DET=DET+N(1,I%)*(N(2,NI%)*N(3,NNI%)-N(3,NI%)*N(2,NNI%)) 
560 NI%=NNI% : NNI%= (NNI% MOD 3)+1 
570 NEXT I% 
579 REM if DET zero then N singular 
580 IF ABS(DET)<0.000001 THEN SNG=1 : ENDPROC ELSE SNG=0 
589 REM calculate NINV 
590 NI%=2 : NNI%=3 
600 FOR I%=1 TO 3 
610 NJ%=2 : NNJ%=3 
620 FOR J%=1 TO 3 
630 NINV(J%,I%)=(N(NI%,NJ%)*N(NNI%,NNJ%)-N(NI%,NNJ%)*N(NNI%,NJ%))/DET 
640 NJ%=NNJ% : NNJ%= (NNJ% MOD 3)+1 
650 NEXT J% 
660 NI%=NNI% : NNI%= (NNI% MOD 3)+1 
670 NEXT I% 
680 ENDPROC 
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Again in the program to solve this problem (listing 7.5), vectors are represented as 
one-dimensional  arrays, thus array B will contain the solution of the equations (b); 
array K will contain the plane constants. We are given the normals n1, n2 and 
n3 in the form of a 3 × 3 array N, so the values in B are found by the following 
code. Obviously if any two of the planes are parallel or the three meet in a line, 
then SNG equals 1 and there is no unique point of intersection. 

 
Listing 7.5 

 
100 REM Intersection of three planes 
110 DIM N(3,3),NINV(3,3),K(3),B(3) 
120 CLS :PRINT TAB(0,2),"Intersection of three planes",SPC(10) 
129 REM input data on planes  put in arrays N and K 
130 FOR I%=1 TO 3 
140 PRINT"Input normal and constant for plane ";I% 
150 INPUT N(I%,1),N(I%,2),N(I%,3),K(I%) 
160 NEXT I% 
169 REM output data on planes 
170 CLS 
180 PRINT TAB(2,5);"PLANE No. CONSTANT NORMAL" 
190 ROW=7 
200 FOR I%=1 TO 3 
210 PRINT TAB(0,ROW),I%,K(I%)," ("; 

N(I%,1);",";N(I%,2);",";N(I%,3);")" 
220 ROW=ROW+2 
230 NEXTI% 
239 REM find NINV, the inverse of N and B, point of intersection 
240 PRINT TAB(0,14);"Point of intersection" 
250 PROCinv 
260 IF SNG THEN PRINT TAB(22,14) "does not exist" : GOTO 340 
270 FOR I%=1 TO 3 
280 B(I%)=0 
290 FOR J%=1 TO 3 
300 B(I%)=B(I%)+NINV(I%,J%)*K(J%) 
310 NEXT J% 
320 NEXT I% 
330 PRINT TAB(0,15);"(";B(1);",";B(2);",";B(3);")" 
340 PRINT TAB(0,22); : STOP 

 
Example 7.5 
Find the point of intersection of the three planes (0, 1, 1)    x = 2, (1,2, 3)    x = 4 
and (1, 1, 1)    x = 0. 

In the matrix form we have 
 

0   1   1  x  2 
 

1   2   3  ×  y  =  4 
 

1   1   1  z  0 
 

The inverse of (0 1  1 ) is  ( 1  0  1 ) 1  2  3  2  1  1 
 

1  1  1  1  1  1 
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1 1  5  2 1 
  1   2 3 =    — 

3 4  1 1 

1 1  1  1 1 

 

( ) ( ) 

 
 
 

and so 

( x ) 
 

( 1  0  1 ) 
 

( 2 ) 
 

( 2 ) y  =  2  1  1  ×  4  =  0 
 

z  1  1  1  0  2 

This solution is easily checked: (0, 1, 1)    (  2, 0, 2) = 2, (1, 2, 3)    (  2, 0, 2) = 4 
and (1, 1, 1)    (  2, 0, 2) = 0, which means the point (  2, 0, 2) lies on all three 
planes and so is their point of intersection. 

 
The Line of Intersection of Two Planes 

 
Let the two planes be 

 
p    x = (p1, p2, p3)    x = k1 

and 
 

q    x = (q1, q2, q3)    x = k2 

We assume that the planes are not parallel, and so p    q for all   . The line common 
to the two planes naturally lies in each plane, and so it must be perpendicular to 
the normals of both planes (p and q). Thus the direction of this line must be d    p 
X q and the line can be written in the form b +   d where b can be any point on the 
line. In order completely to classify the line we have to find one such b. We find a 
point that is the intersection of the two planes together with a third that is neither 
parallel to them nor cuts them in a common line. By choosing a plane with normal 
p x q we shall satisfy these conditions (and remember we have already calculated 
this vector product). We still need a value for k3 but any value will do, so we take 
k3 = 0 in order that this third plane goes through the origin. Thus b is given by the 
column vector 

 
p1  p2  p3  1  k1

 

(p2 × q3      p3 × q2      p3 × q1      p1 × q3   p1 × q2      p2 × q2
) ( 0 ) b =  q1  q2  q3  ×  k2 

 
 

Find the line that is common to the planes (0, 1, 1)    x = 2 and (1, 2, 3)    x = 2. 
p = (0, 1, 1) and q = (1, 2, 3), and so p X q = (1 × 3    1 × 2, 1 x 1    0 × 3, 0 × 

2    1 × 1) = (1, 1,    1). We require the inverse of 
 

0 
 

1 
 

1 
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and hence the point of intersection of the three planes is 

( ) ( )
 

( ) ( )
 

5    2  1  2  6  2 
1  1 

—    4    1  1  X  2  =    —  6  =  2 
3  3 

1    1  1  0  0  0 
 

and the line is (  2, 2, 0) +   (1, 1,   1). 
It is easy to check this result, because all the points on the line should lie both 

planes: 
 

(0, 1, 1)    ((  2, 2, 0) +   (1, 1,   1)) 
 

= (0, 1, 1)    (  2, 2, 0) +   (0, 1, 1)    (1, 1,   1) = 2 for all 

and 

(1, 2, 3)    ((  2, 2, 0) +   (1, 1,   1)) 
 

= (0, 1, 1)    (  2, 2, 0) +   (1, 2, 3)    (1, 1,   1) = 2 for all 
 

The program to solve this problem is given as listing 7.6; note that it is very 
similar to the previous program. Also note that arrays are not explicitly used for p 
and q - these values are stored in the first two rows of array N. Array B holds the 
base vector of the line of intersection, but we do not place d in an array because 
the values are already in the third row of N. 

 
Functional representation  of a Surface 

 
In our study of two-dimensional  space in chapter 3 we noted that curves can be 
represented in a functional notation. This idea can be extended into three 
dimensions when we study surfaces. The simplest form of surface is an infinite 
plane with normal n    (n1, n2, n3), which we have seen can be given as 
coordinate equation: 

 
n    x    k = n1 × x + n2 × y2 + n3 × z    k = 0 

This can be written in functional form for a general point x    (x, y, z) on the 
surface: 

 
f(x)    f(x, y, z)    n1 × x + n2 × y + n3 × z    k    n    x    k 

which is a simple expression in variables x, y and z(x). This enables us to divide 
all the points in space into three sets, those with f(x) = 0 (the zero set), those with 
f(x) < 0 (the negative set) and those with f(x) > 0 (the positive set). A point x lies 
on the surface if and only if it belongs to the zero set. If the surface divides space 
into two halves (each half being connected, that is any two points in a given half 
can be joined by a curve that does not cross the surface) then these two halves 
may be identified with the positive and negative sets. Again beware, there are 
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Listing 7.6 
 

100 REM Intersection of two planes 
110 DIM N(3,3),NINV(3,3),K(3),B(3) 
120 CLS : PRINT TAB(0,2),"Intersection of two planes",SPC(10) 
129 REM input plane information 
130 FOR I%=1 TO 2 
140 PRINT"Input normal and constant for plane ";I% 
150 INPUT N(I%,1),N(I%,2),N(I%,3),K(I%) 
160 NEXT I% 
169REM find third rows of N and K directional vector of the 

line of intersection is (N(3,1),N(3,2),N(3,3)) 
170 N(3,1)=N(1,2)*N(2,3)-N(1,3)*N(2,2) 
180 N(3,2)=N(1,3)*N(2,1)-N(1,1)*N(2,3) 
190 N(3,3)=N(1,1)*N(2,2)-N(1,2)*N(2,1) 
200 K(3)=0 
209 REM output plane information 
210 CLS 
220 PRINT TAB(2,5);"PLANE No. CONSTANT NORMAL" 
230 ROW=7 
240 FOR I%=1 TO 2 
250 PRINT TAB(0,ROW),I%,K(I%)," 
(";N(I%,1);",";N(I%,2);",";N(I%,3);")" 
260 ROW=ROW+2 
270 NEXTI% 
279 REM compare with listing 7.5 
280 PRINT TAB(0,13);"Line of intersection" 
290 PROCinv 
300 IF SNG THEN PRINT TAB(22,13) "does not exist" : GOTO 410 
310 FOR I%=1 TO 3 
320 B(I%)=0 
330 FOR J%=1 TO 3 
340 B(I%)=B(I%)+NINV(I%,J%)*K(J%) 
350 NEXT J% 
360 NEXT I% 
369 REM output line of intersection 
370 PRINT TAB(0,15);"Base vector" 
380 PRINT TAB(0,16);"(";B(1);",";B(2);",";B(3);")" 
390 PRINT TAB(0,18);"Directional vector" 
400 PRINT TAB(0,19);"(";N(3,1);",";N(3,2);",";N(3,3);")" 
410 PRINT TAB(0,22); : STOP 

 
many surfaces that divide space into more than two connected volumes and then 
it is impossible to relate functional representation with connected sets; for 
example f(x, y, z)    cos(y)    sin(x2 + z2). There are, however, many useful well- 
behaved surfaces with this property, the sphere of radius r for example: 

 
f(x)    r2      | x |2 

 
that is 

 
f(x, y, z)    r2      x2      y2      z2 

 
If f(x) = 0 then x lies on the sphere, If f(x) < 0 then x lies outside the sphere, and 
if f(x) > 0 then x lies inside the sphere. 
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The functional representation of a surface is a very useful concept. It can be 
used to define sets of equations that are necessary in calculating the intersections 
of various objects. The major use, however, is to determine whether or not two 
points p and q (say) lie on the same side of a surface that divides space into two 
parts. All we need to do is compare the signs of f(p) and f(q). If they are of 
opposite signs then a line joining p and q must cut the surface. Some examples 
are now given. 

 
Is a point on the same side of a plane as the origin? 
Suppose the plane is defined (as earlier) by three non-collinear points p1, p2 and 
p3. Then the equation of the plane is 

((p2      p1) X (p3      p1))    (x    p1) = 0 

We may rewrite this in functional form 
 

f(x)    ((p2      p1) X (p3      p1))    (x    p1) 

So all we need do for a point e (say) is to compare f(e) with f(O), where O is the 
origin. We assume here that neither O nor e lie in the plane. 

We shall see that this idea will be of great use in the study of hidden surface 
algorithms. 

 
Example 7.7 
Are the origin and point (1, 1, 3) on the same side of the plane defined by points 
(0, 1, 1), (1, 2, 3) and (  2, 3,   1)? 

From example 7.4 we see that the functional representation of the plane is 
 

f(x)    (  6,   2, 4)    (x    (0, 1, 1)) 

Thus 

f(0, 0, 0) =   (  6,   2, 4)    (0, 1, 1) =   2 

and 

f(1, 1, 3) = (  6,   2, 4)    ((1, 1, 3)    (0, 1, 1)) = 2 
 

Hence (1, 1, 3) lies on the opposite side of the plane to the origin and so a line 
segment that joints the two points will cut the plane at a point (1  ) (0, 0, 0) + 

(1, 1, 3) where 0 <    < 1. 
 

Is an oriented convex polygon of vertices in two dimensional space clockwise or 
anticlockwise? 
We start by assuming that the polygon is a triangle that is defined by the three 
vertices p1      (x1, y1), p2      (x2, y2) and p3      (x3, y3). Although these points are in 
two-dimensional  space we can assume they lie in the x/y plane through the origin 
of three-dimensional  space by giving them all a z-coordinate value of zero. We 
systematically define the directions of the edges of the polygon to be (p2      p1), 
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(p3      p2) and (p1      p2). Since these lines all lie in the x/y plane through the origin 
we know that for all i = 1, 2 or 3 and for some real numbers ri that depend on i 

 
(pi+1      pi) X (pi + 2    pi+1) = (0, 0, ri) 

This is because this vector product is perpendicular to the x/y plane and so 
only z-coordinate values may be non-zero. The addition of subscripts is modulo 
3. Because the vertices were taken systematically,  note that the signs of these ri 
values are always the same; but what is more important, if the pi values are 
clockwise then the ri values are all negative, and if the pi values are 
anticlockwise the ri values are all positive. 

Given an oriented convex polygon we need only consider the first three 
vertices to find if it is clockwise or anticlockwise. This technique will prove to be 
invaluable when we deal with hidden line/surface algorithms later in this book. 
Listing 7.7 allows us to find whether or not three ordered two-dimensional vertices 
form an anticlockwise triangle. 

 
Listing 7.7 

 
100 REM Orientation of 2-D triangle 
110 DIM X(3),Y(3) 
119 REM input data on triangle 
120 CLS : PRINT TAB(0,3)"TRIANGLE DEFINED BY VERTICES" 
130 ROW=2 
140 FOR I%=1 TO 3 
150 PRINT TAB(0,20) "Type in coordinates of vertex ";I% 
160 INPUT X(I%),Y(I%) 
170 PRINT TAB(0,21),SPC(32) 
180 ROW=ROW+3 
189 REM output data on triangle 
190 PRINT TAB(0,ROW) "VERTEX ";I% 
200 PRINT TAB(0,ROW+1);"(";X(I%);",";Y(I%);")" 
210 NEXT I% 
219 REM form two directional vectors (DX1,DY1,0) and (DX2,DY2,0) 
220 DX1=X(2)-X(1) : DY1=Y(2)-Y(1) 
230 DX2=X(3)-X(2) : DY2=Y(3)-Y(2) 
240 PRINT TAB(0,15);"IS "; 
249 REM check sign of z-coordinate of the vector product 
250 IF DX1*DY2-DX2*DY1>0 THEN PRINT "ANTI-"; 
260 PRINT "CLOCKWISE" 
270 PRINT TAB(0,20),SPC(32) : STOP 

 
Example 7.8 
Why is the polygon given in example 3.4 anticlockwise? 

The vertices (considered in three dimensions) are (1, 0, 0), (5, 2, 0), (4, 4, 0) 
and (  2, 1, 0). The directions of the edges are (4, 2, 0), (  1, 2, 0), (  6,   3, 0) and 
(3,   1 , 0). 

 
(4, 2, 0)  X  (  1, 2, 0)   = (0, 0, 10) 

(  1, 2, 0)   X  (  6,   3, 0) = (0, 0, 15) 
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(  6,   3, 0) X  (3,   1, 0)   = (0, 0, 15) 

(3,   1, 0)   X  (4, 2, 0)  = (0, 0, 10) 

Since these are all positive, the orientation of the polygon is anticlockwise. But 
be careful, if you 1ose this consistent order for calculating the vector product you 
can get the wrong answer. For example 

 
(  6,   3, 0) X (4, 2, 0) = (0, 0, 0) - the lines are parallel! 

 
or 

 
(  1, 2, 0) X (3,   1 , 0) = (0, 0,   5) - the edges have been taken out of 

sequence. 
 
 

Complete Programs 
 

I   Listing 7.1 (intersection of line and plane). Data required: a base vector 
(B(1), B(2), B(3)) and direction vector (D(1), D(2), D(3)) for the line, a 
normal (N(1), N(2), N(3)) and constant K for the plane. Try (1, 2, 3), (0, 2, 

1), (1, 0, 1) and 2 respectively. 
II   Listing 7.2 (intersection of two lines). Data required: a base and direction 

vectors for the two lines, (B(1), B(2), B(3) ) and (D(1), D(2), D(3)), and 
(C(1), C(2), C(3)) and (E(1), E(2), E(3)). Try (1, 2, 3), (1, 1,   1), and (  1, 
1, 3), (1, 0, 1). 

III   Listing 7.3 ('  main program'  , ‘vecprod’ and ‘dotprod'   ). Data required: two 
vectors (L(1), L(2), L(3)) and (M(1), M(2), M(3)). Try (1, 2, 3), (1, 1 ,   1). 

IV   Listings 7.4 ('  inv'  ) and 7.5 (intersection of three planes). Data required: 
normal (N(1, 1), N(1, 2), N(1, 3)) and constant K(1) for the three planes, 1 

I    3 . Try (1, 2, 3), 0, (1, 1,   1), 1, (1, 0, 1), 2. 
V   Listings 7.4 ('  inv'  ) and 7.6 (intersection of two planes). Data required: 

normal (N(1, 1), N(1, 2), N(1, 3)) and constant K(1) for the two planes, 1 
I    2 . Try (1, 2, 3), 0, (1, 1,    1), 1. 

VI   Listing 7.7 (orientation of two-dimensional  triangle). Data required: the 
vertices (X(1), Y(1)), 1    I    3 . Try (1, 2), (2, 3) and (  1, 1). 
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8 Matrix Representation of 
Transformations on Three-Dimensional 
Space 

 
 
 

In chapter 4 we saw the need for transforming objects in two-dimensional  space. 
When we draw three-dimensional  pictures there will be many times when we 
need to make the equivalent linear transformations  on three-dimensional  space. 
As in the lower dimension, there are three basic types of transformation: 
translation, scaling and rotation. We will represent transformations  as square 
matrices (now they will be 4 x 4). A general point in space relative to a fixed 
coordinate triad, the row vector (x, y, z), must be considered as a four-rowed 
column vector: 

 
x 

y 

z 

1 
 

All the operations on matrices (addition, scalar multiple, transpose, 
premultiplication  of a column vector and matrix product) that we saw in chapter 
4 are easily extended to cope with 4 x 4 matrices and column vectors by simply 
changing the upper bound of the index ranges from 3 to 4. In this way we can 
generate a procedure ‘mult3’ (see listing 8.1) for multiplying two 4 x 4 matrices 
together. It is exactly equivalent to procedure ‘mult2’ in the two-dimensional  case, 
and for the very same reasons. The procedure multiplies matrix A by matrix R to 
give matrix B, which is then copied into R. We also need the procedure 
‘idR3’ (see listing 8.1) which sets R to the identity matrix. 

Consider the case of a general linear transformation on points in three- 
dimensional space. A point (x, y, z) - ‘before’ - is transformed into (x’,y’, z’) - 
‘after’ - according to three linear equations: 

 
x’ = A11 × x + A12 × y + A13 × z + A14 

y’ = A21 × x + A22 × y + A23 × z + A24 

z’ = A31 × x + A32 × y + A33 × z + A34 

and as usual we add the extra equation: 
 

1 = A41 × x + A42 × y + A43 × z + A44 
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x' A11 A12 A13 A14 x 

y' A21 A22 A23 A24 y 

 

 
 
 
 

which if it is to be true for all x, y and z means that A41 = A42 = A43 = 0 and that 
A44 = 1 

Then the equations may be written as a matrix equation where a column 
vector representing the ‘after’ point is the product of a matrix and the ‘before’ 
column vector: 

( ) ( ) ( ) =  × 
z'  A31     A32     A33     A34  z 

1  A41     A42     A43     A44  1 

So if we store the transformation as a matrix, we can transform every required 
point by considering it as a column vector and premultiplying it by a 
transformation matrix. As before, transformations  may be combined simply by 
obeying the sequence of transformations  in order. If their equivalent matrices are 
A, B, C, . . . , L, M, N, then the matrix equivalent to the combination is N × M × L 
× . . . × C × B × A. Remember the order. Since we are premultiplying  a column 
vector, then the first transformation appears on the right of the matrix product 
and the last on the left. 

As with the two-dimensional  case, we note that the ‘bottom row’ of all 
transformation matrices is always (0, 0, 0, 1), and it is of no real use in 
calculations. It is added only to form square matrices which are necessary for the 
formal definition of matrix multiplication. We may adjust this definition, and that 
of the multiplication of a matrix and a column vector, so that instead we use only 
the top three rows of the 4 X 4 matrices (in chapter 4 we used the top two rows 
of 3 x 3 matrices in listings 4.2a, 4.3a, 4.4a and 4.5a). 

 
Listing 8.1 
9100 REM mult3 
9110 DEF PROCmult3 
9120 LOCAL I%,J%,K% 
9130 FOR I%=1 TO 3 
9140 FOR J%=1 TO 4 
9150 B(I%,J%)=A(I%,1)*R(1,J%)+A(I%,2)*R(2,J%)+A(I%,3)*R(3,J%) 
9160 NEXT J% 
9170 B(I%,4)=B(I%,4)+A(I%,4) 
9180 NEXTI% 
9190 FOR I%=1 TO 3 
9200 FOR J%=1 TO 4 
9210 R(I%,J%)=B(I%,J%) 
9220 NEXT J% 
9230 NEXT I% 
9240 ENDPROC 

 
9300 REM idR3 
9310 DEF PROCidR3 
9320 R(1,1)=1 : R(1,2)=0 : R(1,3)=0 : R(1,4)=0 
9330 R(2,1)=0 : R(2,2)=1 : R(2,3)=0 : R(2,4)=0 
9340 R(3,1)=0 : R(3,2)=0 : R(3,3)=1 : R(3,4)=0 
9350 ENDPROC 
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Translation 
 

Every point to be transformed is moved by a vector (TX, TY, TZ) say. This 
produces the following equations which relate to the ‘before’ and ‘after’ 
coordinates: 

 
x’ = 1 × x + 0 × y + 0 × z + TX 

y’ = 0 × x + 1 × y + 0 × z + TY 

z’ = 0 × x + 0 × y + 1 × z + TZ 

so that the matrix describing the translation is 
 

1  0  0   TX 
 

0  1  0   TY 
 

0  0  1   TZ 
 

0  0  0    1 
The procedure ‘tran3’ for producing such a matrix A, given the parameters TX, 
TY and TZ, is given in listing 8.2. 

 
Listing 8.2 

 
9000 REM tran3 
9010 DEF PROCtran3(TX,TY,TZ) 
9020 A(1,1)=1 : A(1,2)=0 : A(1,3)=0 : A(1,4)=TX 
9030 A(2,1)=0 : A(2,2)=1 : A(2,3)=0 : A(2,4)=TY 
9040 A(3,1)=0 : A(3,2)=0 : A(3,3)=1 : A(3,4)=TZ 
9050 ENDPROC 

 
Scaling 

 
The x-coordinate of every point to be transformed is scaled by a factor SX, the y- 
coordinate by SY and the z-coordinate by SZ, thus 

 
x’ = SX × x +  0   × y +  0   × z + 0 

y’ =   0   × x + SY × y +  0   × z + 0 

z’ =   0   × x +  0   × y + SZ × z + 0 

giving the matrix 
 

SX  0  0  0 
 

0  SY  0  0 
 

0  0  SZ  0 
 

0  0  0  1 
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Usually the scaling values are positive, but if any of the values are negative then 
this leads to a reflection as well as (possibly) scaling. For example, if SX = SZ = 
1 then points are reflected in the y/z plane through the origin. A procedure 
‘scale3’ to produce such a scaling matrix A given SX, SY and SZ is shown in 
listing 8.3 

 
Listing 8.3 

 
8900 REM scale3 
8910 DEF PROCscale3(SX,SY,SZ) 
8920 A(1,1)=SX : A(1,2)=0  : A(1,3)=0 : A(1,4)=0 
8930 A(2,1)=0  : A(2,2)=SY : A(2,3)=0 : A(2,4)=0 
8940 A(3,1)=0  : A(3,2)=0  : A(3,3)=SZ : A(3,4)=0 
8950 ENDPROC 

 
 

Rotation about a Coordinate Axis 
 

In order to consider the rotation about a general axis p + mq by a given angle it is 
first necessary to simplify the problem by considering rotation about one of the 
coordinate axes. 

 
 

y   x   z 
y'  x'   z' 

 
x' 

x 

z-axis into page 

z' 

 
 
y-axis into page 

y' 

 
y 

x-axis into page 

 
(a)  (b)  (c) 

 
Figure 8.1 

 
 
 

(a) Rotation by angle    about the x-axis 
Referring to figure 8.1c, the axis of rotation is perpendicular to the page (the 
positive x-axis being into the page), and since we are using left-handed axes the 
figure shows the point (x’, y’, z’) that results from the transformations  of an 
arbitrary point (x, y, z). We see that the rotation actually reduces to a two- 
dimensional rotation in the y/z plane that passes through the point; that is, after 
the rotation the x-coordinate remains unchanged. By using the ideas explained in 
chapter 4 we get the equations 
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cos sin 0 0 

sin cos 0 0 

0 0 1 0 

0 0 0 0 

 

( ) 

( ) 

 
 
 
 

x’ = x 
 

y’ = cos    × y    sin    × z 

z’ = sin    × y + cos    × z 

and thus the matrix 
 

1  0  0  0 
 
 

0  sin  cos  0 

0  cos  sin q    0 
 

0  0  0  1 
 

(b) Rotation by an angle    about the y-axis 
Referring to figure 8.1b, we now have the positive y-axis into the page, and 
because of the left-handedness  of the axes the positive z-axis is horizontal; to the 
right of the origin and the positive x-axis is above the origin. This leads us to the 
equations 

 
x’ = sin    × z + cos    × x 

y’ = y 

z’ = cos    × z    sin    × x 
 

which gives the matrix 
 

cos  0  sin  0 

0  1     0  0 

sin  0  cos  0 

0  0  0  1 
 

(c) Rotation by an angle    about the z-axis 
Referring to figure 8.1a we get the equations 

 
x’ = cos    × x    sin    × y 

y’ = sin    × x + cos    × y 

z’ = z 

and the matrix 

( ) 
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A subprogram ‘rot3’ to produce such a matrix A, given the angle THETA and 
the axis number AXIS (AXIS = 1 for the x-axis, AXIS = 2 for the y-axis and 
AXIS = 3 for the z-axis is given in listing 8.4. 

 
Listing 8.4 

 
8600 REM rot3 
8610 DEF PROCrot3(THETA,AXIS) 
8620 LOCAL AX1,AX2,CT,ST 
8630 AX1=(AXIS MOD 3)+1 
8640 AX2=(AX1 MOD 3)+1 
8650 CT=COS(THETA)  : ST=SIN(THETA) 
8660 A(AXIS,AXIS)=1 : A(AXIS,AX1)=0 : A(AXIS,AX2)=0 
8670 A(AX1,AXIS)=0  : A(AX1,AX1)=CT : A(AX1,AX2)=-ST 
8680 A(AX2,AXIS)=0  : A(AX2,AX1)=ST : A(AX2,AX2)=CT 
8690 A(1,4)=0 : A(2,4)=0 : A(3,4)=0 
8700 ENDPROC 

 
 

Inverse Transformations 
 

Before we can consider the general rotation transformation,  it is necessary to look 
at inverse transformations. An inverse transformation returns the points 
transformed by a given transformation back to their original position. If a 
transformation is represented by a matrix A, then the inverse transformation is 
given by matrix A 1, the inverse of A. There is no need to explicitly calculate the 
inverse of a matrix by using such techniques as the Adjoin method (listing 7.4): 
we can use listings 8.2, 8.3 and 8.4 with parameters that are derived from the 
parameters of the original transformation: 

 
(1)   A translation by (TX, TY, TZ) is inverted with a translation by (  TX,   TY, 

TZ). 
(2)   A scaling by SX, SY and SZ is inverted with a scaling by 1/SX, 1/SY and 1/ 

SZ. 
(3)   A rotation by an angle    about a given axis is inverted with a rotation by an 

angle  about the same axis. 
(4)   If the transformation matrix is the product of a number of translation, scaling 

and rotation matrices A × B × C × . . . × L × M × N, then the inverse 
transformation is 

N 1 × M 1 × L 1 × . . . × C 1 × B 1 × A 1 
 
 

Rotation of Points by an Angle    about a General Axis p +   q 
 

Assume p    (PX, PY, PZ) and q    (QX, QY, QZ). We break down the task into a 
number of subtasks: 
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1 0 0 PX 1 0 0 PX 

0 1 0 PY 0 1 0 PY 

0 0 1 PZ 0 0 1 PZ 

0 0 0 1 0 0 0 1 

 

QX 
 

QY 
0 

QY 0 0 QX QY 0 0 

QX 0 0  G 1 1    QY QX 0 0 
0 v 0 v  0 0 v 0 

0 0 0 v 0 0 0 v 

 

QZ 0  v 0 QZ 0 v 0 

0 w  0 0 1  0 w 0 0 
v 0  QZ 0 v  v 0 QZ 0 

0 0  0 1 0 0 0 1 

 

— ( 

 
 
 

(a) We translate all of space so that the axis of rotation goes through the origin. 
This is achieved by adding a vector   p to every point in space with a matrix F 
say, which is generated by a call to ‘tran3’ with parameters    PX,   PY and   PZ. 
The inverse matrix F 1 will be needed later and is found by a call to ‘tran3’ with 
parameters PX, PY and PZ. After this transformation the axis of rotation is the 
line 0 +   q that passes through the origin. 

( ) ( ) F=  F 1 = 
 

 
 

(b) We then rotate space about the z-axis by an angle   a, where (ALPHA =)    = 
tan 1 (QY/QX), given by the matrix G. The matrix may be generated by a call to 
‘rot3’, with parameters angle    ALPHA and axis 3, and the inverse matrix G 1 by 
a call to ‘rot3’ with ALPHA and 3. At this stage the axis of rotation is a line lying 
in the x/z plane that passes through the point (v, 0, QZ). 

 
 

G =  1 
v ) =  —( ) 

where v is the positive number given by v2 = QX2 + QY2. 
(c) We now rotate space about the y-axis by an angle  , where (BETA =)    = 
tan 1 (v/QZ), given by the matrix H which is obtained by the call ‘rot3’ with 
parameters angle    BETA and axis 2, and the inverse matrix H  1 by a ‘rot3’ call 
with parameters BETA and 2 

1  ( ) ( ) H =  —  G  1 = — 
w 

 
 
 

where w is the positive number given by w2 = v2 + QZ2 = QX2 + QY2 + QZ2. So 
the point (v, 0, QZ) is transformed to (0, 0, w), hence the axis of rotation is along 
the z  axis. 
(d) We can now rotate space by an angle    (GAMMA) about the axis of rotation 
by using matrix W which is generated by ‘rot3’ (with angle GAMMA and axis 
3): 
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cos sin 0 0 

sin cos 0 0 

0 0 1 0 

0 0 0 1 

 

1 0 0 1  1 0 0 1 

0 1 0 0  0 1 1 1 
 
0 

 
0 

 
1 

 
1 

F 1 =  
0 

 
0 

 
1 

 
1 

0 0 0 1  0 0 0 1 

 

 
 
 
 

W =( ) 
(e) We need to return the axis of rotation to its original position so we multiply 
by H 1 , G 1 and finally F 1. 

 
Thus the final matrix P that rotates space by the angle    about the axis p +   q 

is P = F 1 × G 1 × H 1 × W × H × G × F. Naturally some of these matrices may 
reduce to the identity matrix in some special cases and can be ignored. For 
example if the axis of rotation goes through the origin then F and F 1 are 
identical to the identity matrix and can be ignored. 

So it is possible to write a special procedure ‘genrot’ (listing 8.5) which 
achieves this rotation and returns the required matrix P given GAMMA, (PX, PY, 
PZ) and (QX, QY, QZ). 

 
Listing 8.5 

 
5000 REM genrot / rotate space about a general axis 
5010 DEF PROCgenrot(PX,PY,PZ,QX,QY,QZ,GAMMA) 
5020 LOCAL ALPHA,BETA 
5030 PROCtran3(-PX,-PY,-PZ) : PROCmult3 
5040 ALPHA=FNangle(QX,QY) 
5050 PROCrot3(-ALPHA,3) : PROCmult3 
5060 BETA=FNangle(QZ,SQR(QX*QX+QY*QY)) 
5070 PROCrot3(-BETA,2) : PROCmult3 
5080 PROCrot3(GAMMA,3) : PROCmult3 
5090 PROCrot3(BETA,2) : PROCmult3 
5100 PROCrot3(ALPHA,3) : PROCmult3 
5110 PROCtran3(PX,PY,PZ) : PROCmult3 
5120 ENDPROC 

 
 

Example 8.1 
What happens to the points (0, 0, 0), (1 , 0, 0), (0, 1, 0), (0, 0, 1) and (1, 1, 1) if 
space is rotated by   /4 radians about an axis (1, 0, 1) +   (3, 4, 5). 

Using the above theory we note that 

F =  ( ) ( ) 
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0 1 0   1 0 1 0  
2 0 0  

H 1 1 
=  — 0 2 0 0  

0 1 0  2 1 0 0 0  
0 0 2   0 0 0  2 

  
 
 

1 

 
1  1  0    0 

1  1  0    0 
 
 
W = — 

2 

 
 

0 

 
 

0 

 
 

2 

 
 

0 

     

 
41 + 9  2 12  13  2 15 + 35  2 26 +  6  2 

12 + 37  2 34 +   16  2 20 +  5  2 26 +  6  2 

15 

0 

5  2 20 + 35  2 

0 

25 + 25  2 

0 

10 + 30  2 

0 

 

— 

— ( ) 

 

( ) ( )
 

3  4  0    0  3  4  0     0 
 

G =  1  4  3  0    0 
 

1  4  3  0     0 
G =  — 

5  0  0  5    0  5  0  0  5     0 
 

0  0  0    5  0  0  0     5 
 

(1 ) ( ) 1  0 
H =  — 

2  1 
 

0 

( ) 
 
 
 
 
 
 
 
and 

 
 
 
 

1 
P =  — 

50  2 
 
 

where P = F 1 × G 1 × H 1 × W × H × G × F is the matrix representation of the 
required transformation.  Premultiplying  the column vectors equivalent to (0, 0, 
0), (1, 0, 0), (0, 1, 0), (0, 0, 1 ) and (1, 1, 1) by P and changing the resulting 
column vectors back into row form and taking out a factor 1/50  2 gives the 
coordinates (  26 + 6  2, 32    42  2,   10 + 30  2), (15 + 15  2, 20    5  2,   25 + 
25  2), (  38    7  2, 66    26  2,   30 + 65  2), (  41 + 41  2, 12    37  2 15 + 55  2) 
and (  12 + 37  2, 34 + 16  2,   20 + 85  2) respectively. Naturally, translating and 
rotating space should leave relative positions unchanged; in particular the angles 
between direction vectors should be unchanged (the same cannot be said about the 
scaling transformation which in general does alter relative positions). In the 
original system the three lines from (0, 0, 0) to (1, 0, 0), (0, 1 , 0) and (0, 0, 1), 
respectively, are mutually perpendicular (that is, the dot product of pairs of these 
directions should be zero). The dot product of the directions in the transformed 
system should also be zero: the three directional vectors (with 1/50  2 vectored 
out) are (41 + 9  2,   12 + 37  2,   15    5  2), (  12    13  2, 34 + 16  2,   20 + 
35  2) and (  15 + 35  2,   20 + 5  2, 25 + 25  2), and the dot product of any pair is 
zero. 
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Similarly the dot product of the direction vector from the origin to (1, 1, 1) in 
the original system, taken with any of the original directions above, gives the 
same value (= 1). This is also time in the transformed system: the fourth direction 
is (14 + 31  2, 2 + 58  2,   10 + 55  2), and when we take the dot product with 
each of the three direction vectors above we get the value 5000, which when we 
take into account the factor (1/50  2)2 gives the value 1. 

A program that reads in the axis of rotation (PX, PY, PZ) +   (QX, QY, QZ) 
and the angle GAMMA, and rotates any point (XX, YY, ZZ) about this axis by 
an angle GAMMA is given in listing 8.6. 

 
Listing 8.6 

 
100 REM Rotation about given axis 
110 DIM A(4,4),B(4,4),R(4,4) 
119 REM read in data on rotation 
120 CLS : PRINT TAB(0,3),"Rotation about given axis",SPC(10) 
130 INPUT"Base vector of axis ",PX,PY,PZ 
140 INPUT"Direction vector of axis ",QX,QY,QZ 
150 INPUT"Angle of rotation ",GAMMA 
160 CLS 
170 PRINT TAB(0,3);"Base vector of axis " 
180 PRINT TAB(0,4);"(";PX;",";PY;",";PZ;")" 
190 PRINT TAB(0,6);"Direction vector of axis " 
200 PRINT TAB(0,7);"(";QX;",";QY;",";QZ;")" 
210 PRINT TAB(0,9);"Angle of rotation " 
220 PRINT TAB(0,10);GAMMA 
229 REM calculate rotation matrix R 
230 PROCidR3 : PROCgenrot(PX,PY,PZ,QX,QY,QZ,GAMMA) 
239 REM input point (XX,YY,ZZ) 
240 FOR I%=13 TO 21 : PRINT TAB(0,I%);SPC(40) : NEXT I% 
250 PRINT TAB(0,12);"Coordinates of point" 
260 INPUT XX,YY,ZZ 
270 PRINT TAB(0,13);"(";XX;",";YY;",";ZZ;")" 
279 REM (XX,YY,ZZ) becomes (RX,RY,RZ) 
280 RX=R(1,1)*XX+R(1,2)*YY+R(1,3)*ZZ+R(1,4) 
290 RY=R(2,1)*XX+R(2,2)*YY+R(2,3)*ZZ+R(2,4) 
300 RZ=R(3,1)*XX+R(3,2)*YY+R(3,3)*ZZ+R(3,4) 
310 PRINT TAB(0,15);"become" 
320 PRINT TAB(0,17);"(";RX;",";RY;",";RZ;")" 
330 PRINT TAB(0,21);"press any key to continue" 
340 IF NOT INKEY(0) THEN PRINT TAB(0,20);SPC(40) : GOTO 240 ELSE 
340 

 
 

Exercise 8.1 
Experiment with these ideas. You can always make a check on your final 
transformation matrix by considering simple values as above, and you can use 
the previous listings to check your answer. It is essential that you are confident in 
the use of matrices, and the best way to get this confidence is to experiment. You 
will make lots of arithmetic errors initially, but you will soon come to think of 
transformations  in terms of their matrix representation, and this will greatly ease 
the study of drawing three-dimensional  objects. 
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Exercise 8.2 
You will have noticed that the procedure ‘rot3’ is usually called with THETA 
generated by ‘angle’ which uses values AX and AY as input parameters. ‘rot3’ 
calculates the cosine and sine of angle THETA - but we know these are AX/ 

(AX2 + AY2) and AY/  (AX2 + AY2) respectively. Write another rotation 
procedure ‘rotxy’ that calculates the rotation matrix direction from AX and AY 
without resorting to ‘angle'  . 

 
Exercise 8.3 
In chapter 4 we noted that some writers use row rather than column vectors, and 
postmultiply rather than premultiply. We decided against this interpretation so 
that the matrix of a transformation would correspond directly with the 
coefficients of the transformation equations. In this other interpretation it is the 
transpose of the matrix that is identical to the coefficients. It is useful to be aware 
of this other method, so use it to rewrite all the programs given in this chapter 
(and the remainder of this book). Remember though, it is not important which 
method you finally decide to use as long as you are consistent. We have used the 
column vector notation because we have found it causes less confusion in the 
early stages of learning the subject! 

 
 
 

Complete Programs 
 

I     All the listings in this chapter, 8.1 ('  mult3’ and ‘idR3'  ), 8.2 ('  tran3'  ), 8.3 
('  scale3'  ), 8.4 ('  rot3'  ), 8.5 ('  genrot'  ), 8.6 ('  main program'  ) and listing 3.3 
('  angle'  ). Required data: base vector (PX, PY, PZ) and direction vector 
(QX, QY, QZ) of the axis of rotation and the angle GAMMA. Then any 
number of three-dimensional  coordinates (XX, YY, ZZ). Try (0, 0, 0), (1 
,1, 1) and   /4, and points (1, 0,1), (1 ,1, 1), (1, 2, 3). 
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9 Orthographic Projections 
 
 
 
 

We may now address the problem of drawing views of three-dimensional  objects on 
our (necessarily) two-dimensional  graphics screen. The simple method we describe 
here is a direct generalisation of the method introduced in chapter 4 for two-
dimensional  objects. Again it involves the use of (up to) three positions. To illustrate 
these ideas we first give a brief outline, and then expand on this by using pictorial and 
numerical examples. We start by defining an arbitrary but fixed triad of axes in space 
which we call the ABSOLUTE system. Then, as in the two-dimensional  case, we 
consider the three positions: (1) the SETUP position, (2) the ACTUAL position and 
(3) the OBSERVED position. 

 
(1) The SETUP Position 

 
Most scenes will be composed of simple objects (such as cube(s)    see example 
9.1) which are set at a particular position and orientation in space. It is very inefficient 
to calculate by hand the complicated coordinates of every vertex of these objects and 
input them into the program. Instead we look at each object in turn and initially define 
it in an elementary way relative to the ABSOLUTE triad, usually setting it about the 
origin. The information required will be that of vertices (x-coordinate, y-coordinate 
and z-coordinate), and perhaps lines (which join pairs of vertices) or (later when we 
consider hidden surface algorithms) facets, which are polygonal planar areas bounded 
by the above-mentioned  lines. This elementary definition of the object is called its 
SETUP position. We could also have other information such as the colour of the 
object. 

 
(2) The ACTUAL Position 

 
We may then use the matrix techniques of the last chapter to generate a matrix that 
will move the object from its SETUP position to its required ACTUAL position 
relative to the ABSOLUTE axes. We shall call this the SETUP to ACTUAL matrix 
P. 
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(3) The OBSERVED Position 
 

Viewing an object in three-dimensional  space naturally involves an observer (the 
eye    and note only one eye!) placed at a position (EX, EY, EZ) relative to the 
ABSOLUTE axes looking in a fixed direction: this direction of view can be 
uniquely determined by any other point on the line of sight (DX, DY, DZ), say. 
The head can also be tilted, but more of this later. What the eye sees when it 
looks at a three-dimensional  object is a projection of the vertices, lines and facets 
of the object on to a (two-dimensional)  view plane which is normal to the line of 
sight. In order to calculate such projections we must standardise our approach. We 
use matrix methods to transform all the points in space so that the eye is placed at 
the origin, and the line of sight is along the positive z-axis. This is the 
OBSERVED position, and the matrix that transforms the ACTUAL to 
OBSERVED position is called Q throughout this book. The method for 
calculating Q will be dealt with in detail later, but for the time being we shall 
assume that the eye is already at the origin and is looking along the z-axis: so in 
this simple case Q is the identity matrix. 

When all the points in space have been moved into this OBSERVED position 
we note that the view plane is now parallel to the x/y plane through the origin. 
Having moved the eye into the correct position, we are now ready to project the 
object on to the view plane. But note, as yet we have neither defined the position 
of the view plane (we have only its normal), nor have we described the type of 
projection of three-dimensional  space on to the plane. These two requirements are 
closely related. In this book we shall consider three possible projections     in 
a later chapter we shall deal with the perspective and stereoscopic projection, but 
first we introduce the simplest projection     the orthographic. 

 
The orthographic Projection 

 
Nothing could be simpler. In the orthographic projection we can set the view 
plane to be any plane with normal vector along the line of sight. When 
transformed into the OBSERVED position, the view plane will be any plane that 
is parallel to the x/y plane given by the equation z = 0. For simplicity we take the 
x/y plane through the origin. The vertices of the object are projected on to the 
view plane by the simple expedient of setting their z-coordinates to zero. Thus 
any two different points in the OBSERVED position, (x, y, z) and (x, y, z’) say 
(where z    z’), are projected on to the same point (x, y, 0) on the view plane. Then 
we identify the x/y values on the plane with points in the graphics screen 
coordinate system (usually centred on the screen) by using the methods of 
chapter 2. Once the vertices have been projected on to the view plane and then on 
to the screen, we can construct the projection of lines and facets. These are 
related to the projected vertices in exactly the same way as the original lines and 
facets are related to the original vertices. 
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Before considering in detail the general case where the eye and direction of 
view are arbitrarily positioned, we shall consider an elementary example to 
demonstrate the orthographic projection. 

 
Example 9.1 
Use the above ideas to draw an orthographic projection of a cube. Figures such 
as those in figure 9.1 are called wire diagrams or skeletons (for obvious reasons). 

In the SETUP position the cube may be thought to consist of eight vertices (1, 
1, 1), (1, 1,   1), (1,   1,   1), (1,   1, 1),(  1, 1, 1), (  1, 1,   1),(  1,   1,   1) and (  1, 

1 , 1): vertices are labelled numerically 1 to 8. The twelve lines that form the 
wire cube join vertices 1 to 2, 2 to 3, 3 to 4, 4 to 1; 5 to 6, 6 to 7, 7 to 8, 8 to 1; 1 
to 5, 2 to 6, 3 to 7 and 4 to 8. 

Figure 9.1a shows the simplest possible example of an orthographic 
projection of the cube, where even the SETUP to ACTUAL matrix is the identity 
matrix, that is the cube stays in its SETUP position. We get a square: pairs of 
parallel lines from the front and back of the cube project into the same line on the 
screen. We put a ‘+’ in these diagrams to show the position of the z-axis in the 
OBSERVED position (into the screen). 

Figure 9.1b shows the same cube drawn after the following three 
transformations  place it in its ACTUAL position: 

 
(a) Rotate the cube by an angle     =   0.927295218 radian about the z-axis 
matrix A. This example is contrived so that cos    = 3/5 and sin    =   4/5, so 
ensuring that the rotation matrices consist of uncomplicated elements. 
(b) Translate it by the vector (  1, 0, 0)    matrix B. 
(c) Rotate it by an angle  about the y-axis    matrix C. 

 
The SETUP to ACTUAL matrix is thus P = C × B × A, where 

( ) ( )  ( )
 

3/5  4/5   0   0  1   0  0   1  3/5  0  4/5   0 
 

4/5 3/5   0   0  0   1  0   0  0   1   0    0 
A =  B =  C= 

0  0    1   0  0   0  1   0  4/5 0  3/5   0 

0  0    0   1  0   0  0   1  0   0   0    1 
and P is given by the matrix 

( ) 1 
P =   — 

25 
 
 

So the above eight vertex coordinate triples in the SETUP position are 
transformed into the following eight ACTUAL coordinate triples: (26/25,   5/25, 
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7/25), (  14/25,   5/25,   23/25), (  38/25,   35/25, 9/25), (2/25,   35/25, 39/25), (8/ 
25, 35/25, 31/25), (  32/25, 35/25, 1/25), (  56/25, 5/25, 33/25), (  16/25, 5/25, 
63/25). 

For example (1, 1, 1) is transformed into (26/25,   5/25, 7/25) because 

( ) ( ) ( )
 

9    12   20    15  1  26 
 

1  -20    15  0  0  1  1  -5 
—  ×  = — 
25  -12   -16   15    20  1  25  7 

 
0  0  0    25  1  25 

 
Since the ACTUAL to OBSERVED matrix Q is the identity matrix, the projected 
coordinates on the view plane are thus (26/25,   5/25), (  14/25,   5/25), (  38/25, 

35/25), (2/25,   35/25), (8/25, 35/25), (  32/25, 35/25), (  56/25, 5/25), (  16/25, 
5/25). We can place these points on the screen and join them with lines in the 
same order as they were defined in the SETUP cube. 

 
 
 
 
 
 
 
 
 
 

(a) 
 
 

(b) 
 
 
 
 
 
 
 
 
 
 
 

(c)  (d) 
 

Figure 9.1 
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Construction of the ACTUAL to OBSERVED Matrix Q 
 

We assume that the eye is at (EX, EY, EZ) relative to the ABSOLUTE axes, 
looking towards the point (DX, DY, DZ). The OBSERVED position is achieved 
in the following sequence of steps. 

 
(1) A matrix D translates all the points in space by a vector (  DX,   DY,   DZ) so 
that now the eye is at (EX    DX, EY    DY, EZ    DZ) = (FX, FY, FZ) say, 
looking towards the origin: 

( ) D = 
 
 
 

(2) A matrix E changes (FX, FY, FZ) into (r, 0, FZ) by rotating space by an angle 
, where     = tan 1 (FY/FX), about the z-axis. Here r2 = FX2 + FY2 and r > 0: 

(FX    FY  0    0 ) 1  FY  FX  0    0 
E =  — 

r  0  0  r  0 
 

0  0  0  r 

(3) A matrix F transforms (r, 0, FZ) into (0, 0,   s) by rotating space by an angle 
about the y-axis    where    = tan 1 (r/FZ). Here s2 = r2 + FZ2 = FX2 + FY2 

FZ2 and s > 0: 
 

FZ  0  r  0 

1  0  s  0  0 
F =  — 

s  r  0  FZ    0 

0  0  0  s 
 

(4) The transformation thus far places the eye at (0, 0,   s) on the negative x-axis 
looking towards the origin and at the same distance from it (s) as (EX, EY, EZ) 
was from (DX, DY, DZ). We now generate a matrix G which moves the eye to 
the origin: 

G =  ( ) 
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0 0 t 0 

0 0 0 t 

 
p q  p   0  0 p  0 

q  1 p    q    0  0 q  0 
 

( ) 

 
 
 
 

(5) If in example 9.1 we now premultiply P = C × B × A by our first 
approximation to the ACTUAL to OBSERVED matrix Q (= G × F × E × D) to 
find the SETUP to OBSERVED matrix R = Q × P = G × F × E × D × C × B × A, 
we draw figure 9.1c by orthographic projection. This view is not really 
satisfactory because the matrix Q places the cube at an arbitrary orientation 
within the view plane. It is much better to standardise our view, and one of the 
most popular ways is to maintain the vertical, that is a line that was vertical (that 
is, parallel to the y-axis) in its ACTUAL position remains vertical after 
transformation by Q into its OBSERVED position. Take the vertical line from 
(DX, DY, DZ) to (DX, DY + 1, DZ). Because of this peculiar construction, we 
note that intermediate matrix K (F × E × D) transforms this line into one that 
joins (0, 0, 0) to (K(1, 2), K(2, 2), K(3, 2)) = (p, q, r), say. So if we further rotate 
about the z-axis by an angle    = tan 1 (K(1, 2)/K(2, 2)) = tan 1 (p/q) = tan 1 ( 
FY × FZ/(s × FX) ) using a matrix H, before multiplying by G, then the vertical 
is maintained: 

 
 

1 
H = — 

t 
 
 

where t2 = p2 + q2 and thus 

H × ( )=    — ( ) ×   ( ) ( ) r  t  0    0  t  0  r  r 
 

1  0    0    0  t  1  1 
 

Thus the complete transformation (figure 9.id) is achieved by the matrix R = Q × 
P = G × H × F × E × D × C × B × A, and the projection of the line joining points 
(DX, DY, DZ) to (DX, DY + 1, DZ) is the line joining (0, 0) to (0, t) on the 
screen; that is, the vertical    matrix G does not affect the x/y values. Note that 
this technique works in all cases except where (EX, EY, EZ) is vertically above 
(DX, DY, DZ) to start with, and naturally in this case maintaining the vertical 
makes no sense. The procedure ‘look3’ (listing 9.1), given (EX, EY, EZ) and 
(DX, DY, DZ), generates the ACTUAL to OBSERVED matrix in the steps shown 
above, and at each step premultiplies the matrix R: so at the end of the process R 
will hold its original matrix value premultiplied by Q. If we wish to store Q 
explicitly then we need first to set R to the identity matrix (using ‘idR3’), then 
call ‘look3’, and finally copy array R into array Q. Procedure ‘1ook3’ can be 
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radically reduced if we assume that the eye always looks at the origin (that is, 
DX = DY = DZ = 0). Furthermore with the orthographic projection the 
OBSERVED position of the eye need not be at the origin, it merely needs to be 
on the z-axis: again the procedure can be cut down. We give the general case, 
which will be essential for later perspective projections 

 
 

Listing 9.1 
 

8200 REM look3 / maintain vertical 
8210 DEF PROClook3 
8220 LOCAL FX,FY,FZ,THETA 
8230 CLS : INPUT"(EX,EY,EZ)",EX,EY,EZ 
8240 INPUT"(DX,DY,DZ)",DX,DY,DZ 
8250 PROCtran3(-DX,-DY,-DZ) : PROCmult3 
8260 FX=EX-DX : FY=EY-DY : FZ=EZ-DZ 
8270 THETA=FNangle(FX,FY) 
8280 PROCrot3(-THETA,3) : PROCmult3 
8290 DIST=SQR(FX*FX+FY*FY) 
8300 THETA=FNangle(FZ,DIST) 
8310 PROCrot3(PI-THETA,2) : PROCmult3 
8320 DIST=SQR(DIST*DIST+FZ*FZ) 
8330 THETA=FNangle(DIST*FX,-FY*FZ) 
8340 PROCrot3(THETA,3) : PROCmult3 
8350 PROCtran3(0,0,DIST) : PROCmult3 
8360 ENDPROC 

 
If required, we can extend this program to deal with the situation where the head 
is tilted through an angle    from the vertical. This is achieved by further rotating 
space by  about the z-axis. Thus matrix H should then rotate about the z-axis by 
an angle   . 

The construction of the ACTUAL to OBSERVED matrix is obviously 
independent of everything other than the position of the eye, line of sight and the 
tilt of the head. So if we wish to view a series of objects from the same position, 
we can store Q and use it repeatedly for placing each object. 

 
How to Define an Object 

 
It is now time to deal with the problem of representing objects to the computer. 
There is no definite solution, it really depends on what is being drawn and how it 
is projected. In this section we described various ways of setting up a data-base 
to hold the information that is necessary for drawing any given scene, but make 
no comment on their usefulness. This is considered in the remainder of the book 
where We give examples to illustrate the value of particular methods in different 
situations. We shall be using arrays to hold large sets of data, and so naturally the 
amount of space given to arrays will depend on the amount of information that is 
required for a scene: be sure that when you declare these arrays there is enough 
space for all the information     if in doubt, overestimate your store requirements. 
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Vertices 
We will always need to define vertices and other special reference points in a 
scene, and these we store as x-coordinates, y-coordinates and z-coordinates in 
arrays X, Y and Z respectively, assuming that if the total number is not known 
explicitly then this value is calculated as NOV. So there must be space for not 
less than NOV values in each of the three arrays. These vertices may be in the 
SETUP, the ACTUAL or the OBSERVED position, it depends on the context of 
the problem. There will also be situations (perspective in particular) when we 
need to store the x/y coordinates of the projections of these NOV vertices    in 
arrays XD and YD. Naturally this is unnecessary in the case of an orthographic 
projection of points in the OBSERVED position since we can use the values 
already stored in the X and Y arrays. The choice of data-base really depends on 
the scene and type of projection. 

 
Lines 
We can store information on NOL (say) line segments in the two-dimensional 
integer array LIN. The Ith line is defined by the integer indices (between 1 and 
NOV) of the two points at each end of the line    we store the indices in LIN(1, 1) 
and LIN(2, 1). The true coordinate values of the two points at each end of the 
line segment can be found from the X, Y and Z arrays. We normally assume that 
these lines are coloured implicitly by the program, usually black. 

 
Facets 
A facet is a convex polygonal area on the surface of a three-dimensional  object, 
and can be defined in a number of ways. Most facets will be triangular or 
quadrilateral, rarely greater than six-sided, so we usually assume than no facet 
has greater than six sides in order to minimise waste of store. The NOF facets 
can be defined in terms of the indices of the vertices at their corners in array 
FACET: FACET(I, J) is the index of the Ith vertex on the Jth facet. Naturally if the 
facet is not hexagonal then some of the values are garbage so we need to store 
array SIZE, the number of vertices/edges on each facet. We can implicitly colour 
each facet or store it as an integer array COL, and we may implicitly colour the 
lines that form the edge of the facet. Another method is to store the facet in terms 
of the indices of the lines in the object in array FACET, which would thus refer to 
array LIN: FACET(I, J) would now be the index of the Ith line on the edge of the 
Jth facet. There are many other methods for representing these, and other 
elements of a three-dimensional  object: you choose the one most suitable to your 
particular situation. 

 
Construction Procedures and the ‘Building Block’ Method 

 
For any required object we define a construction procedure that needs as 
parameters a matrix R to move vertices into position and any other 
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information about the size of the object (if the object is to be stored in the SETUP 
position then naturally no matrix is needed). The procedure can then define the 
vertices, lines, facets or any other elements of the object, and use the matrix R to 
move the vertices of the object into the required position. Depending on the 
context of the program the procedure can then either draw the object, or extend a 
data-base that contains this information. We shall give examples of both methods. 

We can construct a scene that contains a number of similar objects (so the data 
will be in either the ACTUAL or the OBSERVED position). There is no need to 
produce a new construction procedure for each occurrence of the object, all we 
do each time is calculate a new SETUP to ACTUAL matrix P, and enter it (for 
the ACTUAL position) or Q × P (for the OBSERVED position) into the same 
procedure. Naturally we shall require one new procedure for each different type 
of object. 

The complete scene is achieved by the execution of a main program (listing 
9.2), which INPUTs the MODE of the picture (usually modes 1 or 4), prepares 
the graphics screen by using input values of HORIZ and VERT, and finally calls 
a procedure ‘scene3’ which organises the objects in space and then draws them. 
The main program below will be used in all the three-dimensional  graphics 
programs that follow, so do not alter it without very good reason. 

 
 

Listing 9.2 
 

100 REM MAIN PROGRAM 
110 INPUT"Which mode "MOWD : MODE MOWD 
120 INPUT"HORIZ,VERT",HORIZ,VERT 
130 PROCstart(3,0) 
140 PROCsetorigin(HORIZ/2,VERT/2) 
150 PROCscene3 
160 STOP 

 
‘scene3’ declares all the arrays that are required for storing information about 

a scene, together with the matrices A, B, R and (perhaps) Q for moving objects 
into position. If required the values of NOV and NOL (or NOF) are initialised, 
and these will be updated in later construction procedures. For each individual 
object (a ‘block’), ‘scene3’ must calculate a matrix P that moves this block into 
the ACTUAL position, and then call the construction procedure by using the 
correct matrix R (perhaps SETUP to ACTUAL or SETUP to OBSERVED). All 
the blocks finally construct the finished scene. Sometimes the drawing of the 
projection is done inside the construction procedure, or it can be elsewhere in 
other procedures that are specifically designed for special forms of drawing (as in 
hidden line and hidden surface pictures): it depends on what is being drawn and 
what is required of the view. As usual, because of the restriction of not passing 
array parameters into procedures, we do not normally explicitly generate P and 
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Q: we usually rely on updating matrix R. If we require the ACTUAL to 
OBSERVED matrix then this procedure calls ‘look3'  . Should we need to store Q 
then we must first call ‘idR3’ which sets matrix R to the identity     remember all 
matrix operations are done via matrices A and R, using matrix B to hold 
intermediate values. 

Our first example of this method is listing 9.3, which is the ‘scene3’ procedure 
that is needed to construct a picture of a single cube as shown in figure 9.1d. The 
scene can be viewed from any position with the vertical maintained. We also 
have a construction procedure ‘cube’ (listing 9.4) which generates the data for a 
cube with sides of length 2. It places the vertices, eight sets of coordinate triples, 
in arrays X, Y and Z. There is no need to store the lines of the cube explicitly, we 
get the information from a DATA statement and draw the lines straight away. The 
data for figure 9.1d are HORIZ = 8, VERT = 6, (EX, EY, EZ) = (  2, 2, 2) and 
(DX, DY, DZ) = (  1, 0, 0). 

 
Listing 9.3 

 
6000 REM scene 3 / cube (example 9.1) 
6010 DEF PROCscene3 
6020 DIM X(8),Y(8),Z(8) 
6030 DIM A(4,4),B(4,4),R(4,4) 
6040 PROCidR3 
6050 PROCrot3(-0.92729522,3) : PROCmult3 
6060 PROCtran3(-1,0,0) : PROCmult3 
6070 PROCrot3(0.92729522,2) : PROCmult3 
6080 PROClook3 
6090 PROCcube 
6100 ENDPROC 

 
Listing 9.4 

 
6500 REM cube / data not stored, lines drawn 
6510 DEF PROCcube 
6520 LOCALI%,XX,YY,ZZ,L1,L2 
6530 DATA 1,1,1, 1,1,-1, 1,-1,-1, 1,-1,1, -1,1,1, -1,1,-1, -1,- 
1,-1, -1,-1,1 
6540 DATA 1,2, 2,3, 3,4, 4,1, 5,6, 6,7, 7,8, 8,5, 1,5, 2,6, 3,7, 
4,8 
6550 RESTORE 
6559 REM READ vertex data, transform with matrix R 
6560 FOR I%=1 TO 8 
6570 READ XX,YY,ZZ 
6580 X(I%)=R(1,1)*XX+R(1,2)*YY+R(1,3)*ZZ+R(1,4) 
6590 Y(I%)=R(2,1)*XX+R(2,2)*YY+R(2,3)*ZZ+R(2,4) 
6600 Z(I%)=R(3,1)*XX+R(3,2)*YY+R(3,3)*ZZ+R(3,4) 
6610 NEXT I% 
6619 REM draw lines 
6620 FOR I%=1 TO 12 
6630 READ L1,L2 
6640 PROCmoveto(X(L1),Y(L1)) 
6650 PROClineto(X(L2),Y(L2)) 
6660 NEXT I% 
6670 ENDPROC 
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We could have more than one cube in the scene. For example, should we 
rewrite ‘scene3’ as in listing 9.5, keeping all the other procedures the same, we 
would get figure 9.2. Note that the X, Y and Z values of the previous cube are 
overwritten in the second call to ‘cube'  . Also, because we have the same 
ACTUAL to OBSERVED matrix for both cubes (they have different SETUP to 
ACTUAL matrices) we need to store Q so that it can also be used for the second 
cube. Remember Q must premultiply the array P that moves the second cube into 
the ACTUAL position. The data for figure 9.2 are HORIZ = 8, VERT = 6, (EX, 
EY, EZ) = (3, 2, 1) and (DX, DY, DZ) = (0, 0, 0). 

 
Listing 9.5 

 
6000 REM scene 3 / two cubes not stored 
6010 DEF PROCscene3 
6020 LOCAL I%,J% 
6030 DIM X(8),Y(8),Z(8) 
6040 DIM A(4,4),B(4,4),R(4,4),Q(4,4) 
6049 REM calculate and store Q, draw first cube 
6050 PROCidR3 : PROClook3 : PROCmult3 : PROCcube 
6060 FOR I%=1 TO 4 : FOR J%=1 TO 4 
6070 Q(I%,J%)=R(I%,J%) 
6080 NEXT J% : NEXT I% 
6089 REM put cube 2 in ACTUAL position 
6090 PROCidR3 
6100 PROCtran3(3,1.5,2) : PROCmult3 
6109 REM then in OBSERVED position 
6110 FOR I%=1 TO 4 : FOR J%=1 TO 4 
6120 A(I%,J%)=Q(I%,J%) 
6130 NEXT J% : NEXT I% 
6139 REM draw second cube 
6140 PROCmult3 : PROCcube 
6150 ENDPROC 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 9.2 
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Exercise 9.1 
Extend procedure ‘cube’ so that information about the size of a rectangular block 
is input, so enabling the procedure to construct a block of length LH, breadth BH 
and height HT: multiply the x-values of the SETUP cube by LH/2, the y-values 
by HT/2 and the z-values by BH/2. 

 
Again it should be noted that the modular approach we have adopted may not 

be the most efficient method of drawing three-dimensional  pictures. We chose 
this descriptive method in order to break down the complex situation into 
manageable pieces. Once the reader has mastered these concepts he should 
cannibalise our programs for the sake of efficiency. However, to show the value 
of this modular approach we give another example, which illustrates just how 
quickly programs can be altered to draw new scenes and situations. As the scenes 
get more complicated you may run out of store in modes 1 or 0. You should 
either run your programs in mode 4 (if you need only two-colour output) or load 
the complete program into store after having set PAGE = &1100, and it is also 
advisable to delete all REMarks and unused procedures (such as ‘triangle’ or 
‘scale’). 

 
Example 9.2 
We wish to view a fixed scene (for example, the one shown in figure 9.2) from a 
variety of observation points. 

In this case it is better to store the vertex coordinates of the scene in the 
ACTUAL position, rather than the OBSERVED position, and store the line 
information in array LIN. The ‘scene3’ procedure (listing 9.6) must first set NOV 
and NOL to zero and then place the objects in their ACTUAL position by using 
matrix R = P. The construction procedure ‘cube’ (listing 9.7) must therefore be 
altered to update the data-base (but note that the same procedure could be used to 
store vertices in their OBSERVED position: it needs only a different R = Q × P). 
Then for each different view point and direction the ‘scene3’ procedure must 
clear the screen, set R to the identity matrix and call ‘look3’, and then call a 
special new ‘drawit’ procedure (listing 9.8) which uses the matrix R (which holds 
the values of Q, the ACTUAL to OBSERVED matrix) to put the points in the 
OBSERVED position and orthographically  project them into arrays XD and YD 
(we cannot use X and Y because this would corrupt our ACTUAL data-base). 
Procedure ‘drawit’ which was labelled in ‘scene3’ can then use the information in 
array LIN to draw the picture on the screen. 

 
If the observer is travelling in a straight line and always looking in the same 

direction we need not even calculate Q each time, but simply initially manipulate 
space so that the observer is looking along the z-axis; then we can use the 
‘setorigin’ procedure to move the observer instead! After you have gained 
expertise in drawing three-dimensional  projections, you should choose your 
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Listing 9.6 
 

6000 REM scene3 / 2 cubes stored. 
6010 DEF PROCscene3 
6020 DIM X(16),Y(16),Z(16),XD(16),YD(16) 
6030 DIM LIN(2,24),A(4,4),B(4,4),R(4,4) 
6039 REM" 
6040 NOV=0 : NOL=0 
6050 PROCidR3 : PROCcube 
6060 PROCtran3(3,1.5,2) : PROCmult3 
6070 PROCcube 
6079 REM" 
6080 PROCidR3 : PROClook3 
6090 PROCdrawit 
6100 GOTO 6080 
6110 ENDPROC 

 
Listing 9.7 

 
6500 REM cube / add to data base 
6510 DEF PROCcube 
6520 LOCAL I%,XX,YY,ZZ,L1,L2 
6530 DATA 1,2, 2,3, 3,4, 4,1, 5,6, 6,7, 7,8, 8,5, 

1,5, 2,6, 3,7, 4,8 
6540 DATA 1,1,1, 1,1,-1, 1,-1,-1, 1,-1,1, 

-1,1,1, -1,1,-1, -1,-1,-1, -1,-1,1 
6550 RESTORE 
6559 REM store line information 
6560 FOR I%=1 TO 12 
6570 READ L1,L2 : NOL=NOL+1 
6580 LIN(1,NOL)=L1+NOV : LIN(2,NOL)=L2+NOV 
6590 NEXT I% 
6599 REM store vertex information put in position by matrix R 
6600 FOR I%=1 TO 8 
6610 READ XX,YY,ZZ : NOV=NOV+1 
6620 X(NOV)=R(1,1)*XX+R(1,2)*YY+R(1,3)*ZZ+R(1,4) 
6630 Y(NOV)=R(2,1)*XX+R(2,2)*YY+R(2,3)*ZZ+R(2,4) 
6640 Z(NOV)=R(3,1)*XX+R(3,2)*YY+R(3,3)*ZZ+R(3,4) 
6650 NEXT I% 
6660 ENDPROC 

 
Listing 9.8 

 
7000 REM drawit 
7010 DEF PROCdrawit 
7020 LOCAL I%,L1,L2 : CLG 
7029 REM put in OBSERVED position 
7030 FOR I%=1 TO NOV 
7040 XD(I%)=R(1,1)*X(I%)+R(1,2)*Y(I%)+R(1,3)*Z(I%)+R(1,4) 
7050 YD(I%)=R(2,1)*X(I%)+R(2,2)*Y(I%)+R(2,3)*Z(I%)+R(2,4) 
7060 NEXT I% 
7069 REM draw lines of object 
7070 FOR I%=1 TO NOL 
7080 L1=LIN(1,I%) : L2=LIN(2,I%) 
7090 PROCmoveto(XD(L1),YD(L1)) 
7100 PROClineto(XD(L2),YD(L2)) 
7110 NEXT I% 
7120 ENDPROC 
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construction and viewing method with care. You will rarely need to go through 
the complete method given in this chapter, there will always be short-cuts. 

 
Exercise 9.2 
Produce construction procedures for a tetrahedron, pyramid etc. For example 

 
(a) Tetrahedron: vertices(1, 1, 1), (1,   1,   1), (  1, 1,   1) and (  1,   1, 1); lines 1 
to 2, 1 to 3, 1 to 4, 2 to 3, 2 to 4 and 3 to 4. 
(b) Pyramid with square of side 1 and height HT: vertices (0, HT, 0), (1, 0, 1), (1 , 
0,   1), (  1, 0   1) and (  1, 0, 1); lines 1 to 2, 1 to 3, 1 to 4,1 to 5, 2 to 3, 3 to 4, 4 
to 5 and 5 to 1 . 

 
 

Exercise 9.3 
Set up a line drawing of any planar object in the x/y plane (for example, the 
outline of an alphabetic character or string of characters) and view them in 
various orientations in three-dimensional  space. You can place such planar 
objects on the side of a cube. All you need do is extend the ‘cube’ procedure 
above to include extra vertices and lines to define the symbols. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 9.3 
 

Thus far we have restricted our pictures to those of the simple cube. This is so 
that the methods we give are not obscured by the complexity of defining objects. 
Our programs will work for any object provided that it fits within the limitations 
of store (and time) that are available on the BBC micro. For complex objects we 
merely extend the size of our arrays, although some objects will have properties 
that enable us to minimise store requirements. Consider the jet shown in figure 
9.3    it possesses two-fold symmetry, which can be used to our advantage. We 
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assume that the plane of symmetry is the y/z plane, and so for every point (x, y, z) 
on the jet there is also a corresponding point (  x, y, z). To draw figure 9.3 we use 
all the graphics and 4 × 4 matrix routines, listing 9.1 and 9.2, together with 
listing 9.9, ‘scene3’ and construction procedure ‘jet’ which generates all the 
vertices of the aeroplane that have positive x-coordinates, and thus stores 
information only about one-half of the jet. To construct the complete aeroplane 
we also need a ‘drawit’ procedure (also in listing 9.9) which draws one side of 
the jet and then, by reversing the signs of all the x-values, draws the other. 

It is simple to construct these figures, just plan your object in various sections 
on a piece of graph paper, number the important vertices and note which pairs of 
vertices are joined by lines. The coordinate values can be read directly from the 
grid on the paper. The data for figure 9.3 are HORIZ = 160, VERT = 120, (EX, 
EY, EZ) = (1, 2, 3) and (DX, DY, DZ) = (0, 0, 0). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 9.4 
 

Bodies of Revolution 
 

This far in our construction of objects we have relied on DATA to input all the 
information about lines and vertices. We now consider a type of object where 
only a small amount of information is required for a quite complex object    this 
is a body of revolution, an example of which is shown in figure 9.4. 

The method is simply to create a defining sequence of NUMV lines in the x/y 
plane through the origin; this is called the definition set. We then revolve 
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Listing 9.9 
 
6000 REM scene3 / jet 
6010 DEF PROCscene3 
6020 DIM X(37),Y(37),Z(37),XD(37),YD(37) 
6030 DIM LIN(2,46),A(4,4),B(4,4),R(4,4) 
6040 PROCidR3 : PROClook3 
6050 PROCjet : PROCdrawit 
6060 ENDPROC 

 
6500 REM jet 
6510 DEF PROCjet 
6520 LOCAL I% 
6530 DATA 0,0,80,  0,0,64,  0,8,32, 4,8,32, 8,4,32, 8,0,32, 

4,-4,32,  0,8,-32, 4,8,-32, 8,4,-32, 8,0,-32, 4,-4,-32, 
0,-4,-32,  8,0,24,  48,0,-32,  8,2,-32, 0,8,0, 2,8,-32, 
0,32,-32,  28,-4,-24,  30,-2,-24, 32,-2,-24, 34,-4,-24 

6540 DATA 32,-6,-24,  30,-6,-24, 28,-4,8, 30,-2,8, 32,-2,8, 
34,-4,8,  32,-6,8,  30,-6,8,  31,0,-24, 31,-2,-24, 
31,-2,-12,  31,0,-12,  0,6,40, 3,6,40 

6550 DATA 1,2,  2,3,  2,4,  2,5, 2,6, 2,7, 3,4, 4,9, 5,10, 
6,11, 7,12,  8,9,  9,10,  10,11, 11,12, 12,13, 14,15, 
15,10,  15,16,  14,16,  17,18, 17,19, 18,19 

6560 DATA 20,21,  21,22,  22,23, 23,24, 24,25, 25,20, 26,27, 27,28, 
28,29,  29,30,  30,31,  31,26, 20,26, 21,27, 22,28, 23,29, 
24,30,  25,31,  32,33,  33,34, 34,35, 35,32, 36,37 

6570 RESTORE : NOV=37 : NOL=46 
6579 REM SETUP vertices and lines 
6580 FOR I%=1 TO NOV : READ X(I%),Y(I%),Z(I%) : NEXT I% 
6590 FOR I%=1 TO NOL : READ LIN(1,I%),LIN(2,I%) : NEXT I% 
6600 ENDPROC 

 
7000 REMdrawit / two halves of jet 
7010 DEF PROCdrawit 
7020 LOCAL I%,J%,S%,XX,YY,ZZ,L1,L2 
7030 S%=1 
7039 REM loop through two halves 
7040 FOR J%=1 TO 2 
7049 REM vertices in OBSERVED position 
7050 FOR I%=1 TO NOV 
7060 XX=S%*X(I%) : YY=Y(I%) : ZZ=Z(I%) 
7070 XD(I%)=R(1,1)*XX+R(1,2)*YY+R(1,3)*ZZ+R(1,4) 
7080 YD(I%)=R(2,1)*XX+R(2,2)*YY+R(2,3)*ZZ+R(2,4) 
7090 NEXT I% 
7099 REM draw lines 
7100 FOR I%=1 TO NOL 
7110 L1=LIN(1,I%) : L2=LIN(2,I%) 
7120 PROCmoveto(XD(L1),YD(L1)) 
7130 PROClineto(XD(L2),YD(L2)) 
7140 NEXT I% 
7150 S%=-1 
7160 NEXT J% 
7170 ENDPROC 

 
 

this set about the vertical (y-axis) NUMH    further times to create new vertical 
sets. The NUMV lines in the definition set are formed by joining the NUMV + 1 
vertices (XD(1), YD(1), 0) (where 1    I    NUMV + 1) in order. From this we 
generate NUMH different vertical sets: the Jth vertical set is the definition set 



Orthographic Projections 177  
 
 
 

rotated through an angle PHI + 2  (J    1)/NUMH about the vertical y-axis, for 
some input value PHI(f). As well as the set of NUMH xx NUMV vertical lines 
we also introduce horizontal lines. We consider a single point (XD(I), YD(I), 0) 
at the end of a line segment in the definition set: as we rotate about the vertical 
axis it moves into NUMH positions (provided that the point is not on the axis of 
revolution): 

 
(XD(I) × cos(   +   ), YD(I), XD(I) × sin (   +   ))  where 

= 2  (J    1)/NUMH with I    J    NUMH 
 

These NUMH points are joined in order, and the NUMHth  position is joined back 
to the first, to give the Ith horizontal set. So there are (NUMH    n) × NUMV 
horizontal lines, where n is the number of vertices on the axis of rotation. Listing 
9.10 is a construction procedure ‘revbod’, which draws the body of revolution 
when given NUMV, NUMH, PHI, the original set of vertices in XD and YD and 
the positional matrix R. Listing 9.11 is the ‘scene3’ procedure which creates the 
scene of a spheroid in figure 9.4 by placing eight points from a semicircle into 
the definition set: HORIZ = 3.2, VERT = 2.4, PHI =   /25, NUMH = 10, NUMV 
= 8, viewed from (1, 2, 3) looking at (0, 0, 0). 

 
Listing 9.10 

 
6500 REM revbod / body of revolution 
6510 DEF PROCrevbod 
6520 LOCAL I%,J%,THETA,TD,N1,C,S,XX,YY,ZZ 
6530 THETA=PHI : TD=PI*2/NUMH 
6540 N1=NUMV+1 : C=COS(PHI) : S=SIN(PHI) 
6550 FOR I%=1 TO N1 
6560 XX=XD(I%)*C : YY=YD(I%) : ZZ=XD(I%)*S 
6570 X(I%)=R(1,1)*XX+R(1,2)*YY+R(1,3)*ZZ+R(1,4) 
6580 Y(I%)=R(2,1)*XX+R(2,2)*YY+R(2,3)*ZZ+R(2,4) 
6590 NEXT I% 
6599 REM loop thru second vertical set 
6600 FOR J%=1 TO NUMH 
6610 THETA=THETA+TD : C=COS(THETA) : S=SIN(THETA) 
6620 FOR I%=1 TO N1 
6630 XX=XD(I%)*C : YY=YD(I%) : ZZ=XD(I%)*S 
6640 X(I%+N1)=R(1,1)*XX+R(1,2)*YY+R(1,3)*ZZ+R(1,4) 
6650 Y(I%+N1)=R(2,1)*XX+R(2,2)*YY+R(2,3)*ZZ+R(2,4) 
6660 NEXT I% 
6669 REM join vertical lines 
6670 PROCmoveto(X(1),Y(1)) 
6680 FOR I%=2 TO N1 
6690 PROClineto(X(I%),Y(I%)) 
6700 NEXT I% 
6709 REM join horizontal lines 
6710 FOR I%=1 TO N1 
6720 PROCmoveto(X(I%),Y(I%)) 
6730 PROClineto(X(I%+N1),Y(I%+N1)) 
6739 REM second set becomes first set 
6740 X(I%)=X(I%+N1) : Y(I%)=Y(I%+N1) 
6750 NEXT I% : NEXT J% 
6760 ENDPROC 
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Listing 9.11 
 

6000 REM scene3 / spheroid 
6010 DEF PROCscene3 
6020 LOCAL I%,THETA,TD 
6030 DIM X(32),Y(32),XD(16),YD(16) 
6040 DIM A(4,4),B(4,4),R(4,4) 
6050 INPUT"NUMBER OF HORIZONTAL LINES",NUMH 
6060 INPUT"NUMBER OF VERTICAL LINES",NUMV 
6070 INPUT"INITIAL ROTATION",PHI 
6080 THETA=PI/2 : TD=PI/NUMV 
6089 REM definition set is semicircle 
6090 FOR I%=1 TO NUMV+1 
6100 XD(I%)=COS(THETA) : YD(I%)=SIN(THETA) 
6110 THETA=THETA+TD 
6120 NEXT I% 
6130 PROCidR3 : PROClook3 
6140 PROCrevbod 
6150 ENDPROC 

 
Exercise 9.4 
Experiment with this technique     any line sequence will do. Try an ellipsoid: this 
is essentially the same as the spheroid except that the definition set is produced 
from a semi-ellipse rather than a semicircle. There is no need to produce only 
convex bodies: lines can cut one another or cross to and fro over the y-axis, and 
x-values can move up and down. 

This idea can be extended into a body of rotation. Now as the set of lines 
moves around the central axis, they-values of the points do not stay fixed. They 
can move in a regular manner, that is they can drop by the same amount with 
each rotation through 2  /NUMH. Now, of course, the lines may make more than 
one complete rotation about the axis    see figure 9.5. Write a program to 
implement a body of rotation. 

 
Figure 9.5 
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Animation of Line Drawings 
 

We can animate simple line drawings like those created in this chapter by using 
the method of redefining the logical-actual colour relationships. The technique is 
to produce n (for some even integer n) separate pictures of an object in different 
positions. We have a white background (logical colour binary 11) and a black 
foreground (logical 00). The object will be drawn in logical colours 0l or 10; at 
any time one logical colour will be set to actual white and the other to actual 
black. By ANDing a picture on to the screen in white an invisible picture will be 
drawn, which can be made visible later by redefining the logical colour to be 
actual black. ANDing a white line over a black pixel will leave the black pixel on 
the screen as required. ORing the same picture on to the screen in the opposite 
logical colour to which it was originally drawn will delete the picture from the 
screen memory (whether it be visible or invisible). This deletion will not leave 
holes in the visible lines from the other views still on the screen. This gives us a 
simple method: 

 

(1) With the (i    1)th picture visible draw the ith view so that it is invisible. 
(2) Make the ith picture visible and the (i    1)th invisible by redefining the 
logical-actual relationship. 
(3) Delete the (i    1)th view when it is invisible. 

 
Here i varies from 1 to n (the number of views). If the views are such that the (n 
+ 1)th view (if there was one) is the same as the first then we have an infinite 
movie. 

 
Listing 9.3 
Listing 9.12 gives an implementation  of this method for drawing a rotating cube. 
We change the ‘look3’ routine so that each time it is called the observer moves to 
a different position relative to the object. The ‘scene3’ routine sets up a SPOOL 
file called ROTCUB on backing store to hold all the graphics commands (the 
program is too slow to draw the figures in real-time animation). It also uses the 
‘drawit’ routine which draws a ‘cube’ setup by the procedure from listing 9.7, 
and the ‘lib1’ and ‘lib3’ routines (excluding ‘look3’ naturally). By typing in the 
instructions below you load ROTCUB file back into store and then execute the 
commands in sequence over and over again to get a non-stop movie: 

 
*OPT 1, 2: PAGE = &1900 

 
*LOAD ROTCUB 1900 

 
The size of the file will be displayed on the screen: in this case &C6C 

MODE 1: GCOL 0, 131: CLG 

REPEAT: FOR I% = 0 to &C6B: VDU I%?&1900: NEXT I%: UNT1L FALSE 
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Listing 9.12 
 

6000 REM scene3 
6010 DEF PROCscene3 
6020 DIM X(8),Y(8),Z(8),XD(8),YD(8),LIN(2,12) 
6030 DIM A(4,4),B(4,4),R(4,4) 
6040 NOV=0 : NOL=0 : COLOR=2 : OTHER=1 
6050 PROCidR3 : PROCcube 
6060 *SPOOL"ROTCUB" 
6070 FOR A=0.05 TO PI/2 STEP PI/20 
6080 GCOL2,COLOR : AL=A 
6090 VDU19,COLOR,7,0,0,0,19,OTHER,0,0,0,0 
6100 PROCidR3 : PROClook3 : PROCdrawit 
6110 VDU19,COLOR,0,0,0,0,19,OTHER,7,0,0,0 
6120 AL=A-PI/20 
6130 PROCidR3 : PROClook3 
6140 GCOL1,COLOR : PROCdrawit 
6150 OTHER=COLOR : COLOR=3-COLOR 
6160 NEXT A 
6170 *SPOOL 
6180 ENDPROC 

 
7000 REM drawit 
7010 DEF PROCdrawit 
7020 LOCAL I% 
7030 FOR I%=1 TO NOV 
7040 XD(I%)=R(1,1)*X(I%)+R(1,2)*Y(I%)+R(1,3)*Z(I%)+R(1,4) 
7050 YD(I%)=R(2,1)*X(I%)+R(2,2)*Y(I%)+R(2,3)*Z(I%)+R(2,4) 
7060 NEXT I% 
7070 FOR I%=1 TO NOL 
7080 L1=LIN(1,I%) : L2=LIN(2,I%) 
7090 PROCmoveto(XD(L1),YD(L1)) 
7100 PROClineto(XD(L2),YD(L2)) 
7110 NEXT I% 
7120 ENDPROC 

 
8200 REM look3 
8210 DEF PROClook3 
8219 REM adjusted look 3 routine. Observer moves in a circle 

around the origin making an angle AL with the +ve 
x-axis looking at the origin. 

8220 EY=2 : EX=SQR(10)*COS(AL) : EZ=SQR(10)*SIN(AL) 
8230 DX=0 : DY=0 : DZ=0 
8240 PROCtran3(DX,DY,DZ) : PROCmult3 
8250 FX=EX-DX : FY=EY-DY : FZ=EZ-DZ 
8260 THETA=FNangle(FX,FY) 
8270 PROCrot3(-THETA,3) : PROCmult3 
8280 DIST=SQR(FX*FX+FY*FY) 
8290 THETA=FNangle(FZ,DIST) 
8300 PROCrot3(PI-THETA,2) : PROCmult3 
8310 THETA=FNangle(R(2,2),R(1,2)) 
8320 PROCrot3(THETA,3) : PROCmult3 
8330 DIST=SQR(DIST*DIST+FZ*FZ) 
8340 PROCtran3(0,0,DIST) : PROCmult3 
8350 ENDPROC 
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Complete Programs 
 

From now on we shall refer to listings 3.3 (‘angle’), 8.1 (‘mult3’ and ‘idR3’), 8.2 
(‘tran3’), 8.3 (’scale3’), 8.4 (‘rot3’), 9.1 (‘1ook3’) and 9.2 (‘main program’) as 
‘lib3'  . Also from now on it is best to load programs with PAGE = &1100. 

 
I  ‘lib1’, ‘lib3’ and listings 9.3 (‘scene3’) and 9.4 (‘cube’). Data required: 

mode, HORIZ, VERT, (EX, EY, EZ) and (DX, DY, DZ). Try 4, 6, 4, (1, 
2, 3), (  1, 0, 1). Also use modes 0 and 1. 

II  ‘lib1’, ‘lib3’ and listings 9.5 (‘scene3’) and 9.4 (‘cube’). Data required: 
mode, HORIZ, VERT, (EX, EY, EZ) and (DX, DY, DZ). Try 4, 8, 6, (1, 
2, 3), (  1, 0, 1). Make systematic changes to one of these input values 
and keep all the other parameters fixed. 

III  ‘lib1’, ‘lib3’ and listings 9.6 (‘scene3’), 9.7 (‘cube’) and 9.8 (‘drawit’). 
Data required: mode, HORIZ, VERT, and then repeated input of(EX, 
EY, EZ) and (DX, DY, DZ). Try 4, 8, 6, then (1, 2, 3), (  1, 0, 1); (3, 2, 
1), (0, 0, 1). Again make systematic changes to one of the input 
parameters. 

IV  ‘lib1’, ‘1ib3’ and listing 9.9 (‘scene3’, ‘jet’ and ‘drawit’). Data required: 
mode, HORIZ, VERT, and then (EX, EY, EZ) and (DX, DY, DZ). Try 4, 
200, 150, then (1, 2, 31), (  1, 0, 30) or (3, 2, 20), (0, 0, 21).Again make 
systematic changes to one of the input parameters. 

V  ‘lib1’, ‘lib3’ and listings 9.10 (‘scene3’) and 9.11 (‘revbod’). Data 
required: mode, HORIZ, VERT, NUMH, NUMV, PHI, (EX, EY, EZ) and 
(DX, DY, DZ). Try 1, 3.2, 2.4, 10, 10, 1, (1, 2, 3), (0, 0, 0); (3, 2, 1), (0, 
0, 0). 

VI  ‘lib1’, ‘lib3’ (minus ‘1ook3’), listings 9.7 (‘cube’) and 9.12 (‘scene3’, 
‘drawit’ and ‘look3’). Data required: mode, HORIZ, VERT. Try 1, 6, 4. 
This will create a file ROTCUB on backing store. Then type 

 
*OPT 1, 2: PAGE = &1900 

 
*LOAD ROTCUB 1900 

 
MODE 1: GCOL 0, 131: CLG 

 
REPEAT: FOR I% = 0 TO &C6B: VDU I%?&1900: NEXT I%: UNT1L FALSE 
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10 Simple Hidden Line and Hidden 
Surface Algorithms 

 
 
 
 

Having drawn a cube and other wire objects we soon become irritated by the lack 
of solidity in the figures. We would like to consider solid objects, in which case 
the facets at the front of the object will obviously restrict the view of the facets 
(and boundary lines) at the back. In order to draw pictures of such objects we have 
to introduce a hidden surface algorithm; or a hidden line algorithm if we wish to 
draw all, but only, the visible lines on the object. There are many, many such 
algorithms     some elementary for specially restricted situations, others very 
sophisticated for viewing general complicated scenes. The time and store 
limitations of microcomputers  bar us from implementing the very complex 
algorithms. Nevertheless, by limiting the types and number of objects in the 
scenes it is possible to get most acceptable pictures. In chapter 12 we discuss a 
relatively complex algorithm, but here we consider two special types of scene 
we use the properties implicit in these special configurations to minimise the 
work needed to discover which surfaces and lines are hidden. Later in this 
chapter we shall give a simple method for drawing mathematically  defined three- 
dimensional surfaces, but to start we consider an algorithm for drawing a single 
solid convex body in three-dimensional  space. 

For our work on hidden line and surface algorithms we choose to define a 
scene by storing the NOV vertices of objects in the scene (in the OBSERVED 
position) in arrays X, Y and Z as usual. However we shall now use facet rather 
than line information. These data may be implicit in the program or the NOF 
facets are explicitly stored in an array FACET. The integer code for the colour of 
the facet will usually be implicit, but if necessary we can store it in an array COL. 
Should we store the facet data then we also need the array SIZE for the number of 
edges on each polygonal facet: and to save space we insist that no polygonal facet 
has more than six edges. Should we need more edges, then the facet must be 
broken down into a set of smaller polygons. In order to make the hidden surface 
algorithm easier we impose a restriction on the order of vertices within the array 
FACET. The vertices must be stored (or are understood to be) in the order in 
which they occur around the edge of the facet, and when viewed from the outside 
of an object they must be in an anticlockwise orientation. Naturally from the 
inside the vertices taken in this same order would appear clockwise. We shall also 
assume that all lines are the junction of two facets. Individual lines not related to 
facets must be added as trivial two-sided facets. 
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The Orientation of a Three-dimensional Triangle 
 

Once we have planned our object in terms of vertices and facets, how do we 
check that the facets are actually anticlockwise?  Simply write a program! The 
orientation of any convex polygon can be calculated from any three of its 
vertices taken in order, and so we need consider only an ordered triangle of 
vertices from the facet. In chapter 7 we saw a method for calculating the 
orientation of a two-dimensional  triangle. Our problem is solved if we can reduce 
the three-dimensional  situation down into two dimensions. 

For simplicity we shall assume that all objects are SETUP about and contain 
the origin. We also insist that the infinite planes that contain the facets on the 
surface of an object do not pass through the origin. Then we rotate space so that 
one of the vertices of the triangle in question lies on the negative z-axis (compare 
with procedure ‘look3', listing 9.1). Since we assume that the origin is inside the 
object and the eye is outside, all we need do is project the transformed triangle 
back on to the x/y plane (that is, ignore the z-coordinates) and treat it like a two- 
dimensional triangle (in fact one of the three vertices will be (0, 0)). Listing 10.1 
is our solution of the problem. 

 
Exercise 10.1 
Rewrite the wire-figure procedures of the last chapter by assuming that the data 
are given as vertices and anticlockwise polygonal facets, and not as lines. Check 
your facet data with the above program. The line information is still there of 
course, implicit in the facet data    they are the edges of the facet considered as 
pairs of vertices. Within this information each line occurs twice, once on each of 
two neighbouring facets. We do not want to waste time drawing lines twice 
because of the anticlockwise manner of constructing the figures we note that if a 
line joins vertex I to vertex J on one facet then the equivalent line on the 
neighbouring facet joins vertex J to I. So for wire figures stored as facets we shall 
draw lines from vertex I to vertex J if and only if I < J. 

 
A Hidden Surface Algorithm for a single closed convex body 

 
A finite convex body is one in which any line segment that joins two points 
inside the body lies totally within the body    a direct extension of the definition 
in two-dimensional  space. It is automatically closed, and thus it is impossible to 
get inside the body without crossing through its surface. We orthographically 
project all the vertices of the object on to the view plane, while noting that a 
projection of a convex polygon with n sides in three-dimensional  space is an n- 
sided convex polygon (or degenerates to a line) in the view plane. By taking the 
projected vertices of any facet in the same order as the original, we find that 
either the new two-dimensional  polygon is an anticlockwise orientation, in which 
case we are looking at the outside of the facet, or the new vertices are clockwise 
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Listing 10.1 
 

100 REM Orientation of 3-D triangle 
110 DIM X(3),Y(3),Z(3) 
120 DIM A(4,4),B(4,4),R(4,4) 
129 REM input and print vertex data 
130 CLS : PRINT TAB(0,1) "Orientation of 3-D triangle" 
140 PRINT TAB(0,3) "The triangle has vertices" 
150 ROW=2 
160 FOR I%=1 TO 3 
170 ROW=ROW+3 
180 PRINT TAB(0,17)"                                        " 
190 PRINT TAB(0,16) "Type coordinates of vertex ";I% 
200 INPUT X(I%),Y(I%),Z(I%) 
210 PRINT TAB(0,ROW) "Vertex "; I% 
220 PRINT TAB(0,ROW+1);"(";X(I%);",";Y(I%);",";Z(I%);")" 
230 NEXT I% 
240 PRINT TAB(0,14) "is "; 
249 REM matrix R places first vertex on negative z-axis 
250 PROCidR3 : THETA=-FNangle(X(1),Y(1)) 
260 PROCrot3(THETA,3) : PROCmult3 
270 THETA=PI-FNangle(Z(1),SQR(X(1)*X(1)+Y(1)*Y(1))) 
280 PROCrot3(THETA,2) : PROCmult3 
289 REM position 3 vertices with R 
290 FOR I%=1 TO 3 
300 XX=X(I%) : YY=Y(I%) : ZZ=Z(I%) 
310 X(I%)=R(1,1)*XX+R(1,2)*YY+R(1,3)*ZZ+R(1,4) 
320 Y(I%)=R(2,1)*XX+R(2,2)*YY+R(2,3)*ZZ+R(2,4) 
330 NEXT I% 
339 REM (DX1,DY1,0) and (DX2,DY2,0) ordered directional vectors 
340 DX1=X(2)-X(1) : DY1=Y(2)-Y(1) 
350 DX2=X(3)-X(2) : DY2=Y(3)-Y(2) 
359 REM find z-value of dot product negative = clockwise, 

positive = anticlockwise 
360 IF DX1*DY2-DX2*DY1 >0 THEN PRINT"ANTI-"; 
370 PRINT "CLOCKWISE" 
380 PRINT TAB(0,16)"if the eye and origin are on opposite sides 
of the facet" 
390 PRINT TAB(0,21) : STOP 

 
and we are looking at the underside. Since the object is closed we are able to see 
only the outside of facets, the view of their under-side being blocked by the bulk 
of the object. Therefore we need draw only the anticlockwise polygonal facets 
a very simple algorithm, which can be implemented in either construction or 
‘drawit’ procedures. 

For example, an adjusted construction procedure ‘cube’ for eliminating the 
hidden surfaces from an orthographic picture of a cube is given as listing 10.2. 
Here we do not store the facets, but instead READ the information from DATA 
and draw the visible facets immediately. The facet data, including colour, are 
implied in the program listing. This program was used to produce figure 10.1 , a 
hidden surface version of figure 9.1d. We take the procedures that were used in 
the last chapter to draw figure 9.1d, except of course for the construction 
procedure which sets up the data as vertices and facets, and draws the object 
(listing 10.2 replaces listing 9.4 in the program for drawing figure 9.1d). 
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Naturally we use the same data that were used for figure 9.1d. Note that if we 
colour in the facets with the same logical colour as the background then we get a 
hidden line as well as a hidden surface algorithm. 

 
Listing 10.2 

 
6500 REM cube / not stored, no hidden surfaces 
6510 DEF PROCcube 
6520 LOCAL I%,XX,YY,ZZ,F1,F2,F3,F4,DX1,DY1,DX2,DY2 
6530 DATA 1,1,1, 1,1,-1, 1,-1,-1, 1,-1,1, 

-1,1,1, -1,1,-1, -1,-1,-1, -1,-1,1 
6540 DATA 1,2,3,4, 5,8,7,6, 1,5,6,2, 2,6,7,3, 3,7,8,4, 4,8,5,1 
6550 RESTORE 
6559 REM READ and position vertices 
6560 FOR I%=1 TO 8 
6570 READ XX,YY,ZZ 
6580 X(I%)=R(1,1)*XX+R(1,2)*YY+R(1,3)*ZZ+R(1,4) 
6590 Y(I%)=R(2,1)*XX+R(2,2)*YY+R(2,3)*ZZ+R(2,4) 
6600 Z(I%)=R(3,1)*XX+R(3,2)*YY+R(3,3)*ZZ+R(3,4) 
6610 NEXT I% 
6620 FOR I%=1 TO 6 
6629 REM READ facet data 
6630 READ F1,F2,F3,F4 
6639 REM check orientation 
6640 DX1=X(F2)-X(F1) : DY1=Y(F2)-Y(F1) 
6650 DX2=X(F3)-X(F2) : DY2=Y(F3)-Y(F2) 
6660 IF DX1*DY2-DX2*DY1 < 0 THEN 6750 
6669 REM if anticlockwise draw facet 
6670 PROCtriangle(X(F2),Y(F2),X(F1),Y(F1),X(F3),Y(F3),1,-2) 
6680 PROCtriangle(X(F4),Y(F4),X(F1),Y(F1),X(F3),Y(F3),1,-2) 
6690 GCOL 0,0 
6699 REM draw edge lines of facet 
6700 PROCmoveto(X(F1),Y(F1)) 
6710 PROClineto(X(F2),Y(F2)) 
6720 PROClineto(X(F3),Y(F3)) 
6730 PROClineto(X(F4),Y(F4)) 
6740 PROClineto(X(F1),Y(F1)) 
6750 NEXT I% 
6760 ENDPROC 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 10.1 
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If we had stored the colours of the facets in the array COL then naturally we 
would call the ‘triangle’ procedure for the I%th facet with colour parameter 
COL(I%) or we can explicitly fill in the polygon in the program. 

We now give a hidden surface construction procedure for an icosahedron 
(listing 10.3). Change line 6020 to hold 12 vertices. 

 
Listing 10.3 

 
6500 REM icosahedron 
6510 DEF PROCicosahedron 
6520 LOCAL I%,D,XX,YY,ZZ,F1,F2,F3,DX1,DY1,DX2,DY2 
6530 D=(1+SQR(5))/2 
6540 DATA 0,1,D, D,0,1, 1,D,0, 0,-1,D, D,0,-1, -1,D,0, 0,1,-D, - 
D,0,1, 1,-D,0, 0,-1,-D, -D,0,-1, -1,-D,0 
6550 DATA 1,3,2, 1,2,4, 1,4,8, 1,8,6, 1,6,3, 2,3,5, 2,9,4, 
4,12,8, 8,11,6, 3,6,7, 2,5,9, 4,9,12, 8,12,11, 6,11,7, 3,7,5, 
5,10,9, 9,10,12, 12,10,11, 11,10,7, 7,10,5 
6560 RESTORE 
6570 FOR I%=1 TO 12 
6580 READ XX,YY,ZZ 
6590 X(I%)=R(1,1)*XX+R(1,2)*YY+R(1,3)*ZZ+R(1,4) 
6600 Y(I%)=R(2,1)*XX+R(2,2)*YY+R(2,3)*ZZ+R(2,4) 
6610 Z(I%)=R(3,1)*XX+R(3,2)*YY+R(3,3)*ZZ+R(3,4) 
6620 NEXT I% 
6630 FOR I%=1 TO 20 
6640 READ F1,F2,F3 
6650 DX1=X(F2)-X(F1) : DY1=Y(F2)-Y(F1) 
6660 DX2=X(F3)-X(F2) : DY2=Y(F3)-Y(F2) 
6670 IF DX1*DY2-DX2*DY1 < 0 THEN 6740 
6680 PROCtriangle(X(F2),Y(F2),X(F1),Y(F1),X(F3),Y(F3),1,-2) 
6690 GCOL 0,0 
6700 PROCmoveto(X(F1),Y(F1)) 
6710 PROClineto(X(F2),Y(F2)) 
6720 PROClineto(X(F3),Y(F3)) 
6730 PROClineto(X(F1),Y(F1)) 
6740 NEXT I% 
6750 ENDPROC 

 
 

Exercise 10.2 
Change listing 10.2 so that it can draw a rectangular block of length LH, breadth 
BH and height HT, where LH, BH and HT are input parameters to the procedure. 
Then draw a hidden line picture of it. Draw hidden line pictures of tetrahedra, 
pyramids, octahedra etc. Add extra parameters to distort these figures so that they 
are no longer regular, but are still convex. 

 
Exercise 10.3 
Rather than have a one-colour cube with black edges drawn in on a white 
background, give it three colours (red, yellow and black) where opposite faces 
have the same colour and the edges are not drawn. The information on the colour 
of a facet should be stored in DATA alongside the vertices, so the program would 
contain 

 
READ F1, F2, F3, F4, COLOR 
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When it comes to colouring in a facet you must call the ‘triangle’ procedure with 
colour parameter COLOUR. 

Also draw an icosahedron in two colours (red and yellow) with edges in black. 
 

Instead of drawing a hidden surface picture of a cube with facets drawn in one 
colour we can put patterns on the visible sides. Listing 10.4 can be used in 
conjunction with ‘lib1’ and ‘lib3’ to draw a flag, in a similar way to that of the 
two-dimensional  example 4.1, on the side of a cube (see figure 10.2). 

 
 

Listing 10.4 
 

6000 REM scene3 
6010 DEF PROCscene3 
6020 DIM X(8),Y(8),Z(8) 
6030 DIM FACE(4),XD(12),YD(12) 
6040 DIM A(4,4),B(4,4),R(4,4) 
6050 PROCidR3 : PROClook3 
6060 PROCcube 
6070 ENDPROC 

 
6500 REM cube / with flags 
6510 DEF PROCcube 
6520 LOCAL I%,DX1,DY1,DX2,DY2 
6530 DATA 1,1,1, 1,1,-1, 1,-1,-1, 1,-1,1, 

-1,1,1, -1,1,-1, -1,-1,-1, -1,-1,1 
6540 DATA 1,2,3,4,  5,8,7,6,  1,5,6,2, 2,6,7,3, 3,7,8,4, 
4,8,5,1 
6550 RESTORE 
6559 REM vertices 
6560 FOR I%=1 TO 8 
6570 READ XX,YY,ZZ 
6580 X(I%)=R(1,1)*XX+R(1,2)*YY+R(1,3)*ZZ+R(1,4) 
6590 Y(I%)=R(2,1)*XX+R(2,2)*YY+R(2,3)*ZZ+R(2,4) 
6600 Z(I%)=R(3,1)*XX+R(3,2)*YY+R(3,3)*ZZ+R(3,4) 
6610 NEXT I% 
6619 REM facets 
6620 FOR I%=1 TO 6 
6630 READ F1,F2,F3,F4 
6640 DX1=X(F2)-X(F1) : DY1=Y(F2)-Y(F1) 
6650 DX2=X(F3)-X(F2) : DY2=Y(F3)-Y(F2) 
6660 IF DX1*DY2-DX2*DY1 < 0 THEN 6680 
6669 REM draw flags on visible facets 
6670 PROCflag 
6680 NEXT I% 
6690 ENDPROC 

 
7000 REM flag / on face of cube 
7010 DEF PROCflag 
7020 LOCAL I%,J%,K% : K%=4 
7030 FACE(1)=F1 : FACE(2)=F2 : FACE(3)=F3 : FACE(4)=F4 
7039 REM place corners of cube face in (XD(i),YD(i)) where 
i=1,2,3,4 
7040 FOR I%=1 TO 4 
7050 XD(I%)=X(FACE(I%)) : YD(I%)=Y(FACE(I%)) 
7060 NEXT I% 
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7070 REM place vertices of diagonal stripes in (XD(i),YD(i)) 
where i=5,6,7,8,9,10,11,12 

7080 FOR I%=1 TO 4 
7090 J%=(I% MOD 4)+1 
7100 K%=K%+1 
7110 XD(K%)=0.9*X(FACE(I%))+0.1*X(FACE(J%)) 
7120 YD(K%)=0.9*Y(FACE(I%))+0.1*Y(FACE(J%)) 
7130 K%=K%+1 
7140 XD(K%)=0.1*X(FACE(I%))+0.9*X(FACE(J%)) 
7150 YD(K%)=0.1*Y(FACE(I%))+0.9*Y(FACE(J%)) 
7160 NEXT I% 
7169 REM draw red background 
7170 PROCquad(1,2,3,4) 
7179 REM draw yellow diagonals 
7180 PROChex(1,5,8,3,9,12) 
7190 PROChex(2,7,10,4,11,6) 
7199 REM draw edge of cube face 
7200 GCOL 0,0 
7210 MOVE FNX(X(F1)),FNY(Y(F1)) 
7220 DRAW FNX(X(F2)),FNY(Y(F2)) 
7230 DRAW FNX(X(F3)),FNY(Y(F3)) 
7240 DRAW FNX(X(F4)),FNY(Y(F4)) 
7250 DRAW FNX(X(F1)),FNY(Y(F1)) 
7260 ENDPROC 

 
7300 REM quadrilateral 
7310 DEF PROCquad(V1,V2,V3,V4) 
7320 GCOL 0,1 
7330 MOVE FNX(XD(V2)), FNY(YD(V2)) 
7340 MOVE FNX(XD(V1)), FNY(YD(V1)) 
7350 PLOT 85,FNX(XD(V3)), FNY(YD(V3)) 
7360 PLOT 85,FNX(XD(V4)), FNY(YD(V4)) 
7370 ENDPROC 

 
7400 REM hexagon 
7410 DEF PROChex(V1,V2,V3,V4,V5,V6) 
7420 GCOL 0,2 
7430 MOVE FNX(XD(V1)), FNY(YD(V1)) 
7440 MOVE FNX(XD(V2)), FNY(YD(V2)) 
7450 PLOT 85,FNX(XD(V6)), FNY(YD(V6)) 
7460 PLOT 85,FNX(XD(V3)), FNY(YD(V3)) 
7470 PLOT 85,FNX(XD(V5)), FNY(YD(V5)) 
7480 PLOT 85,FNX(XD(V4)), FNY(YD(V4)) 
7490 ENDPROC 

 
 
 
 
 
 
 
 
 
 

Figure 10.2 
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Exercise 10.4 
Draw a hidden surface picture of a red die with black spots, and with edges 
drawn also in black. Remember that the values on opposite faces of a die sum to 
seven. 

 
Bodies of revolution 

 
We can use this anticlockwise versus clockwise method to produce hidden 
surface pictures of the bodies of revolution that were defined in chapter 9. As we 
go through the NUMH revolutions we generate NUMV facets with each move. 
Provided that these quadrilateral (or perhaps degenerate triangular) facets are 
carefully constructed in an anticlockwise orientation then we may use the same 
algorithm. Listing 10.5 is such a ‘revbod’ procedure which produces figure 10.3, a 
hidden surface version of figure 9.4 (and uses the same input data). Again, 
because of the modular design of our programs, all the procedures needed to draw 
figure 10.3, except ‘revbod’, are the same as those given in chapter 9. Now, 
however, we must deal solely with convex bodies of revolution. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 10.3 
 

As the procedure rotates the definition set of lines about the vertical axis, it stores 
the vertices of two consecutive vertical sets of lines. These form the vertical 
edges of one slice of facets. The vertices on these facets are immediately 
transformed by R (the SETUP to OBSERVED matrix) and stored in arrays X and 
Y. In such a configuration of pairs of vertical lines the first set of vertices 
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Listing 10.5 
 

6500 REM revbod / hidden surface 
6510 DEF PROCrevbod 
6520 LOCAL I%,J%,THETA,TD,N1,C,S,XX,YY,ZZ,F1,F2,F3,F4 
6530 THETA=PHI : TD=PI*2/NUMH 
6539 REM loop through consecutive pairs of fixed-Z lines 
6540 N1=NUMV+1 : C=COS(PHI) : S=SIN(PHI) 
6549 REM first vertical set 
6550 FOR I%=1 TO N1 
6559 REM move along polygons formed between these two lines 
6560 XX=XD(I%)*C : YY=YD(I%) : ZZ=XD(I%)*S 
6570 X(I%)=R(1,1)*XX+R(1,2)*YY+R(1,3)*ZZ+R(1,4) 
6580 Y(I%)=R(2,1)*XX+R(2,2)*YY+R(2,3)*ZZ+R(2,4) 
6590 NEXT I% 
6599 REM loop thru second vertical set 
6600 FOR J%=1 TO NUMH 
6610 THETA=THETA+TD : C=COS(THETA) : S=SIN(THETA) 
6620 FOR I%=1 TO N1 
6630 XX=XD(I%)*C : YY=YD(I%) : ZZ=XD(I%)*S 
6640 X(I%+N1)=R(1,1)*XX+R(1,2)*YY+R(1,3)*ZZ+R(1,4) 
6650 Y(I%+N1)=R(2,1)*XX+R(2,2)*YY+R(2,3)*ZZ+R(2,4) 
6660 NEXT I% 
6669 REM facet formed by F1,F2,F3 and ( F4 )is SETUP anticlockwise 
6670 FOR I%=1 TO NUMV 
6680 F1=I% : F2=I%+1 
6690 IF I%=NUMV THEN F3=F2+NUMV ELSE F3=F2+N1 
6700 DX1=X(F2)-X(F1) : DY1=Y(F2)-Y(F1) 
6710 DX2=X(F3)-X(F2) : DY2=Y(F3)-Y(F2) 
6719 REM if OBSERVED anticlockwise then then facet visible 
6720 IF DX1*DY2-DX2*DY1 < 0 THEN 6810 
6729 REM points on fixed-Z = ZV line are put in OBSERVED position 
6730 F3=F2+N1 : F4=F3-1 
6740 PROCtriangle(X(F1),Y(F1),X(F2),Y(F2),X(F3),Y(F3),1,-1) 
6750 PROCtriangle(X(F1),Y(F1),X(F4),Y(F4),X(F3),Y(F3),1,-1) 
6760 GCOL0,0 : PROCmoveto(X(F1),Y(F1)) 
6770 PROClineto(X(F2),Y(F2)) 
6780 PROClineto(X(F3),Y(F3)) 
6790 PROClineto(X(F4),Y(F4)) 
6800 PROClineto(X(F1),Y(F1)) 
6810 NEXT I% 
6820 FOR I%=1 TO N1 
6830 X(I%)=X(I%+N1) : Y(I%)=Y(I%+N1) 
6840 NEXT I% : NEXT J% 
6850 ENDPROC 

 
have indices from 1 to NUMV + 1 (= N1), and the second from N1+ 1 to 2 * N1. 
The Ith facet is bounded by four lines, two vertical which join vertex I to I + 1, 
and I + N1 to I + N1 + 1 , and two horizontal which join I to I + N1, and I + 1 to 
I + N1 + 1 . Adjustments must be made if one of the original vertices is on the 
axis of rotation, in which case the quadrilateral degenerates to a triangle. The 
order of vertices in each facet is carefully chosen so that it is in anticlockwise 
orientation when viewed from outside the object. This allows us to use our 
simple algorithm to draw the object with the hidden surfaces suppressed. This 
technique was also used to draw figure 1.1 in the introduction. 
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Exercise 10.5 
Experiment with this technique. Any initial set of lines will do provided that it 
starts and ends on the vertical axis and the polygon thus formed in the x/y plane 
is convex. 

 
The BACK to FRONT Method 
The call for pictures of convex solids is limited, so we shall now look at another 
simple algorithm that can be used with non-convex figures. You will have 
noticed that when colouring a new area by using option GCOL 0, all the colours 
previously placed in that section of the screen are obliterated. This furnishes us 
with a very simple hidden surface algorithm, namely we draw the areas furthest 
from the eye first and the nearest last. Exactly what we mean by furthest/nearest 
is not that straightforward.  It is not just a matter of comparing z-coordinates in a 
scene. Imagine a small book and a large tab]e. There are some vertices on the 
table that have larger z-coordinates than those on the book, and some that are 
smaller. We do not know if the book is on the table or under it. However there are 
certain situations (for example, as described in the next section, and the stack of 
cubes of figure 11.5) where this phrase has a very simple meaning and the 
algorithm is easy to implement. See chapter 12 for a general solution. 

 
Drawing a Special Three-dimensional Surface 
We consider the construction of a restricted type of three-dimensional  surface in 
which the y-coordinate of each point on the surface is given by a single valued 
function ‘f’ of the x-coordinate and z-coordinate of that point. ‘f’ will be included 
as a procedure in the program    one such example is given in listing 10.6, the 
function y = 4 × SIN(XZ)/XZ where XZ =   (x2 + z2), which is shown in figure 
10.4. The data required were mode = 1 , HORIZ = 32, VERT = 24, NX = NZ = 
16, XMIN = ZMIN = -10, XMAX = ZMAX = 10, (EX, EY, EZ) = (3, 2, 1), (DX, 
DY, DZ) = (0, 0, 0). 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 10.4 
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Listing 10.6 
 

6000 REM scene3 / math. surface 
6010 DEF PROCscene3 
6020 DIM A(4,4),B(4,4),R(4,4) 
6030 CLS 
6039 REM INPUT grid data 
6040 INPUT"NX,XMIN,XMAX ",NX,XMIN,XMAX 
6050 INPUT"NZ,ZMIN,ZMAX ",NZ,ZMIN,ZMAX 
6060 XD=(XMAX-XMIN)/NX : ZD=(ZMAX-ZMIN)/NZ : ZV=ZMIN : NX1=NX+1 
6070 DIM X(2,NX1),Y(2,NX1),Z(2,NX1) 
6079 REM view from (EX,EY,EZ) to (0,0,0) : EX and EZ > 0 
6080 PROCidR3 : PROClook3 
6089 REM draw the surface 
6090 PROCsurface 
6100 ENDPROC 

 
6500 REM surface 
6510 DEF PROCsurface 
6520 LOCAL I%,J%,K% 
6530 PROCsetpt(1) 
6539 REM loop thru consecutive pairs of fixed-Z lines 
6540 FOR I%=1 TO NZ 
6550 ZV=ZV+ZD : PROCsetpt(2) : K%=1 
6559 REM move along polygons formed between these two lines 
6560 FOR J%=2 TO NX1 
6570 PROCpoly(I%,J%,K%) : K%=J% 
6580 NEXT J% 
6590 FOR J%=1 TO NX1 
6600 X(1,J%)=X(2,J%) : Y(1,J%)=Y(2,J%) : Z(1,J%)=Z(2,J%) 
6610 NEXT J% 
6620 NEXT I% 
6630 ENDPROC 

 
6700 REM setpt 
6710 DEF PROCsetpt(M%) 
6720 LOCAL I%,XV,YV 
6729 REM points on fixed-Z = ZV line are put in OBSERVED position 
6730 XV=XMIN 
6740 FOR I%=1 TO NX1 
6750 YV=FNf(XV,ZV) 
6760 X(M%,I%)=R(1,1)*XV+R(1,2)*YV+R(1,3)*ZV+R(1,4) 
6770 Y(M%,I%)=R(2,1)*XV+R(2,2)*YV+R(2,3)*ZV+R(2,4) 
6780 Z(M%,I%)=R(3,1)*XV+R(3,2)*YV+R(3,3)*ZV+R(3,4) 
6790 XV=XV+XD 
6800 NEXT I% 
6810 ENDPROC 

 
6900 REM FNf / function to be drawn 
6910 DEF FNf(XV,ZV) 
6920 LOCAL R 
6930 R=SQR(XV*XV+ZV*ZV) 
6940 IF R<0.00001 THEN=4.0 ELSE =4*SIN(R)/R 
7000 REM zvecprod / z-value of vector product 
7010 DEF FNzvecprod(I%,J%,K%,L%,M%,N%) 
7020 LOCAL DX1,DY1,DX2,DY2 
7029 REM check orientation of triangle ((X(I%,J%),Y((I%,J%)) to 

((X(K%,L%),Y((K%,L%)) to ((X(M%,M%),Y((M%,M%)) 
7030 DX1=X(K%,L%)-X(I%,J%) : DY1=Y(K%,L%)-Y(I%,J%) 
7040 DX2=X(M%,N%)-X(K%,L%) : DY2=Y(M%,N%)-Y(K%,L%) 
7050 =DX1*DY2-DX2*DY1 
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7100 REM poly 
7110 DEF PROCpoly(I%,J%,K%) 
7120 LOCAL L%,ZP1,ZP2,A1,B1,A2,B2,A3,B3,A4,B4,A5,B5, 

C11,C12,C21,C22,D1,D2,DET,RMU 
7130 ZP1=FNzvecprod(1,K%,1,J%,2,J%) 
7140 ZP2=FNzvecprod(2,J%,2,K%,1,K%) 
7149 REM grid rectangle transforms to quadrilateral or 2 triangles 
7150 IF SGN(ZP1) <> SGN(ZP2) THEN 7250 
7159 REM draw quadrilateral 
7160 PROCtriangle(X(1,K%),Y(1,K%),X(1,J%),Y(1,J%),X(2,J%),Y(2,J%),1,-1) 
7170 PROCtriangle(X(2,J%),Y(2,J%),X(2,K%),Y(2,K%),X(1,K%),Y(1,K%),1,-1) 
7180 GCOL 0,0 
7189 REM draw outline 
7190 PROCmoveto(X(2,J%),Y(2,J%)) 
7200 PROClineto(X(1,J%),Y(1,J%)) 
7210 PROClineto(X(1,K%),Y(1,K%)) 
7220 PROClineto(X(2,K%),Y(2,K%)) 
7230 PROClineto(X(2,J%),Y(2,J%)) 
7240 ENDPROC 
7249 REM find intersection (A5,B5) of lines from (A1,B1) to (A2,B2) 

and from (A3,B3) to (A4,B4) 
7250 A1=X(1,K%) : B1=Y(1,K%) : A2=X(1,J%) : B2=Y(1,J%) 
7260 A3=X(2,J%) : B3=Y(2,J%) : A4=X(2,K%) : B4=Y(2,K%) 
7270 FOR L%=1 TO 2 
7280 C11=A2-A1 : C12=A3-A4 : C21=B2-B1 : C22=B3-B4 
7290 D1=A3-A1 : D2=B3-B1 : DET=C11*C22-C21*C12 
7300 IF ABS(DET)<0.0000001 THEN 7360 
7310 RMU=(D1*C22-D2*C12)/DET : IF RMU<0 OR RMU>1 THEN 7360 
7320 A5=A1+RMU*C11 : B5=B1+RMU*C21 
7329 REM draw the two triangles (A1,B1) to (A4,B4) to (A5,B5) 

(A2,B2) to (A3,B3) to (A5,B5) 
7330 PROCtriangle(A1,B1,A4,B4,A5,B5,1,-1) 
7340 PROCtriangle(A2,B2,A3,B3,A5,B5,1,-1) 
7350 GOTO 7180 
7359 REM no intersection so swap (A2,B2) with (A4,B4) 
7360 AA=A2 : A2=A4 : A4=AA 
7370 AA=B2 : B2=B4 : B4=AA 
7380 NEXT L% 
7390 ENDPROC 

 
Since it is impossible to draw every point on the surface we have to 

approximate by considering a subset of these surface points. We choose those 
points ith x/z coordinates on a grid, in other words, when orthographically viewed 
directly from above (thus ignoring the y-values), the points form a rectangular 
grid. This grid is composed of NX by NZ rectangles in the x/z plane. The x-
coordinates of the vertices are equi-spaced and vary between XMIN and 
XMAX (XMIN < XMAX) and the equi-spaced z-values vary between ZMIN and 
zMAX (ZMIN < ZMAX). There are thus (NX + 1) × (NZ + 1) vertices (X, Z) in 
the grid which can be identified by the pair of integers (i, j): 

 
X = XMIN + i × XV where 0    i    NX and XV = (XMAX    XMIN)/NX 

Z = ZMIN + j × ZV where 0    j    NZ and ZV = (ZMAX    ZMIN)/NZ 

The equivalent point on the surface is (X, Y, Z) where Y = f(X, Z). Every one of 
the (NX + 1) × (NZ + 1) points generated in this way is joined to its four 
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immediate neighbours along the grid (that is, those with equal x-values or equal 
z-values), unless it lies on the edge, in which case it is joined to three or, in the 
case of corners, to two neighbours. 

The approximation to the surface that is formed in this way may undulate so 
not all the facets need be visible from a given view point    in fact some may 
even be partially visible. We devise a very simple method to eliminate the hidden 
surfaces by working from the back of the surface to the front. To simplify the 
algorithm we assume that the eye is always in the positive quadrant, that is, EX > 
0 and EZ > 0, and that the eye is always looking at the origin (DX = DY = DZ = 
0). If the function is non-symmetrical  and we wish to view it from another 
quadrant then we simply change the sign of x and/or z in the function. We can 
then transform the surface into the OBSERVED position. 

We start by looping through the set of NX facets that are generated from the 
consecutive fixed-x grid lines x = XMIN + i × XV and x = XMIN + (i + 1) × XV 
from the back (i = 0) to the front (i = NX    1) (naturally the term back to front is 
used in the sense of the final OBSERVED position). Within each set we loop 
through the individual facets that are generated by the intersection of the fixed-x 
lines with the fixed-z grid lines starting at z = ZMUN and z = ZMIN + ZV, and 
working through to z = ZMAX    ZV and z = ZMAX. Wc may label the four grid 
points created in this way (1, K) and (1, K + 1 )    on the fixed x-line with smaller 
x-value    and (2, K) and (2, K + 1 )    on the fixed-x line with larger value (K + 1 
is called J in the program , and in the explanation below). ‘f’ is used to form four 
points on the surface from these grid points, which when transformed on to the 
view plane form either a quadrilateral or two triangles. We distinguish between the 
two possibilities by finding the orientation of the two triangles that are 
formed by the grid points (1, K), (1, J) and (2, J), and (2, J), (2, K) and (1 , K). If 
they have the same orientation (both clockwise or both anticlockwise) then we 
have a quadrilateral, otherwise two triangles. The extra vertex of the two triangles 
is found from either the intersection of the lines joining (1 , K) to (1, J) and (2 , J) 
to (2, K), or from (1 , K) to (2, K) and (1 , J) to (2, J): other combinations are 
topologically impossible. After having found the quadrilateral or two triangles 
they are coloured in and their edges also drawn (procedure 
‘poly’), and the back to front construction (because EX and EZ are positive) 
means that we get a correct hidden surface picture. 

 
Exercise 10.6 
Change the functions ‘f’ used by this program. For example use f = 4SIN( t) 
where t =   (x2 + z2). 

 
Exercise 10.7 
Extend the above program so that it draws the top-side of the surface in a 
different colour to the under-side. 
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Complete Programs 
 

I     ‘lib3’ and listing 10.1 . Data required: the vertex coordinates of a triangle 
(X(1), Y(1), Z(1)), where 1    I    3. Try (1, 0, 1), (1, 1, 0) and (0, 1, 1); 
also the same vertices in a different order (1, 1, 0), (1, 0, 1) and (0, 1, 1). 

II     ‘lib1’, ‘lib3’ and listings 9.3 (‘scene3’) and 10.2 (‘cube’). Data required: 
mode, HORIZ, VERT, (EX, EY, EZ), (DX, DY, DZ). Try 1, 8, 6, (1, 2, 3), 
(0, 0, -1). 

III     '  lib1’, ‘lib3’ and listing 10.3 (‘icosa'  hedron) and listing 9.3 (‘scene3’ but 
change ‘cube’ to ‘icosa’). Data required: mode, HORIZ, VERT, (EX, EY, 
EZ) and (DX, DY, DZ). Try the same data as used in II. Change line 6020 
to hold 12 vertices. 

IV     '  lib1’, ‘lib3’ and listing 10.4 (‘cube’, ‘flag’ etc.). Data required: mode, 
HORIZ, VERT, (EX, EY, EZ) and (DX, DY, DZ). Try the same data as 
used in II. 

V     '  lib1 ‘, "lib3’ and listings 9.10 (‘scene3’) and 10.5 (‘revbod’). Data 
required: mode, HORIZ, VERT, NUMH, NUMV, PHI, (EX, EY, EZ), 
(DX, DY, DZ). Try 1, 3.2, 2.4, 10, 10, 1 , (1, 2, 3), (0, 0, 0). 

VI     ‘lib1’, ‘lib3’ and listing 10.6 (‘scene3’, ‘surface’, ‘setpt’, ‘f’, ‘zvecprod’ and 
‘poly’). Data required: mode, HORIZ, VERT, NX, XMIN, XMAX, NZ, 
ZMIN, ZMAX, (EX, EY, EZ), (DX, DY, DZ). Try 1, 28, 21, 16, -8, 8, 
16, -8, 8, (1, 2, 3) and (0, 0, 0). Use the VDU 19 command to change the 
colour of the surface; for example VDU 19, 1, 3, 0, 0, 0. If you find that 
there is not enough store even after changing PAGE, then you can run the 
program in mode 4, or strip off all the REMs from the program and rerun 
in mode 1. Just type AUTO 9, 10 and hold the RETURN key down and 
this will do the trick. 
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11 Perspective and Stereoscopic 
Projections 

 
 
 
 

Perspective 
 

We have seen that the orthographic projection has the property that parallel lines 
in three-dimensional  space are projected into parallel lines on the view plane. 
Although very useful, such views do look odd! Our brains are used to the 
perspective phenomenon of three-dimensional  space, and so they attempt to 
interpret orthographic figures as if they were perspective views. For example, the 
cubes of figures 9.1 and 10.1 look distorted. 

So it is essential to produce a projection that displays perspective phenomena, 
that is, parallel lines should meet on the horizon    an object should appear smaller 
as it moves away from the observer. The drawing-board methods devised by 
artists over the centuries are of no value to us. Three-dimensional coordinate 
geometry and the concept of ACTUAL to OBSERVED positions, however, 
furnish us with a relatively straightforward  technique. 
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A 
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B 
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B'' 
 
 
 
 

Figure 11.1 
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What is perspective vision? 
To produce a perspective view we introduce a very simple definition of what we 
mean by vision. We imagine that every visible point in space is sending out a ray 
which enters the eye. Naturally the eye cannot see all of space, it is limited to the 
cone of rays that fall on the retina, the so-called cone of vision, which is outlined 
by the dashed lines of figure 11.1. The axis of this cone is called straight-ahead 
ray. We imagine that space has been transformed into the OBSERVED position 
with the eye at the origin and the straight-ahead ray identified with the positive z- 
axis. 

We place the view plane (which we call the perspective plane in this special 
case) perpendicular to the axis of the cone of vision at a distance d from the eye. 
In order to form the perspective projection we mark the points of intersection of 
each ray with this plane. Since there are an infinity of such rays this appears to be 
an impossible task. Actually the problem is not that great because we need 
consider only the rays that emanate from the important points in the scene, that is 
the vertices at the ends of line segments or the corners of polygon; facets. The 
final view is formed by relating the projected points on the perspective plane in 
exactly the same way as they are related in three-dimensional  space and then by 
identifying the view plane with the graphics screen. 

Figure 11.1 shows a cube that is observed by an eye and projected on to two 
planes: the whole scene is also drawn in perspective! Two example rays are 
shown: the first from the eye to A, one of the near corners of the cube (relative to 
the eye), and the second to B, one of the far corners of the cube. The perspective 
projections of these points on to the near plane are A’ and B’, and on to the far 
plane A'’ and B''. Note that the projections will have the same shape and 
orientation, but they will be of different sizes. 

 
Calculation of the perspective projection of a point 
We let the perspective plane be a distance d from the eye (variable PPD in later 
programs). Consider a point P    (x, y, z) in space that sends a ray into the eye. 
We must calculate the point where this line cuts the view plane (the z = d plane) 

suppose it is the point P’    (x’ ,y’, d). Let us first consider the value of y’ by 
referring to figure 11.2 . By similar triangles we see that y'/d = y/z, that is y’ = y × 
d/z. Similarly x’ = x × d/z. Hence P’    (x × d/z, y × d/z, d). Since the view plane is 
identified with the x/y coordinate system of the graphics screen we can ignore the 
z = d coordinate. 

 
Example 11.1 
Calculate the perspective projection of a cube that has eight vertices (0, 0, 4) + 
(±1, ±1, ±1) on the perspective plane z = 4, where the eye is origin and the 
straight-ahead ray is the positive z-axis. 

The space is defined so that the scene is in the OBSERVED position. We can 
calculate the projections of the eight vertices by using the above method. For 
example (1, 1, 3) is projected to (1 × 4/3, 1 × 4/3, 4) = (4/3, 4/3, 4)  (4/3, 4/3) 
on the screen. So we get the eight projections: 
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(1, 1, 3) (4/3, 4/3) (1, 1, 3) (4/3,   4/3) 

(  1, 1, 3) (  4/3, 4/3) (  1, 1, 3) (  4/3,  4/3) 

(1, 1, 5) (4/5, 4/5) (1, 1, 5) (4/5,   4/5) 

(  1, 1, 5) (  4/5, 4/5) (  1, 1, 5) (  4/5,   4/5) 

and the resulting diagram is shown in figure 11.3a 
 
 
 
 
 

x-axis x-axis 
 
 
 
 

(a) (b) 
 

Figure 11.3 
 

Properties of the perspective transformation 
(1) The perspective transformation of a straight line (  3, say) is a straight line (  2 
say). This is obvious because the origin (the eye) and the line   3 form a plane ( 
say) in three-dimensional  space and all the rays emanating from points on   3, lie 
in this plane. (If the line enters the eye,  degenerates into a line.) Naturally 
cuts the perspective plane in a line   2 (or degenerates to a point) and so the 
perspective projection of a point on the original line   3 now lies on the new line 

2. It is important to realise that a line does not become curved on perspective 
projection. 
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(2) The perspective transformation of a facet (a closed sequence of coplanar line 
segments) is a facet in the perspective plane. If the facet is an area bounded by n 
coplanar line segments then the transformation of this facet is naturally an area in 
the z = d plane that is bounded by the transforms of the n line segments. Again 
note that no curves are introduced in this projection: if they were, then the task of 
producing perspective pictures would be far more complicated. 
(3) The projection of a convex facet is also convex. Suppose that facet F3 is 
projected on to facet F2. Since the projection of a closed facet is also closed and 
lines go into lines, then points inside F3 are projected into points inside F2. 
Suppose F2 is not convex. Then there exist two points p1 and p2 inside F2 such 
that the line joining them goes outside this facet. Hence there is at least one point 
p on the line outside F2. If p1 and p2 are projections of points q1 and q2 from F3 
then p is the projection of some point q on the line joining q1 and q2. Since F3 is 
convex then q must be inside F3 and thus p must be inside F2      a contradiction 
and our proposition is thus proved. 
(4) All infinitely long parallel lines appear to meet at one point, their so-called 
vanishing point. If we take a general line (with base vector p) from a set of 
parallel lines with direction vector h 

 
p +   h    xp, yp, zp) +   (xh, yh, zh) 

where zh > 0, then the perspective transform of a general point on this line is 
 

(xp +   xh) × d  (yp +   yh) × d 
——————,  —————— 

(zp +   zh)  (zp +   zh) 

which can be rewritten as 
 

(xh + xp/  ) × d  (yn + yp/  ) × d 
——————,  —————— 

(zh + zp/  )  (zn + zp/m) 

As We move along the line towards large z-coordinates, that is as             then the 
line moves towards its vanishing point, which is therefore given by (d × xh/zh, d × 
yh/zh). This vanishing point is independent of p, the base point of the line, and 
hence all lines parallel to the direction h have the same vanishing point. Of 
course the case zh < 0 is ignored because the line would disappear outside the 
cone of vision as  . 
(5) The vanishing points of all lines in parallel planes are collinear. Suppose that 
the set of parallel planes has a common normal direction n    (xn, yn, zn). If a 
general line in one of these planes has direction h    (xh, yh, zh) then h is 
perpendicular to n (all lines in these planes are perpendicular to the normal to the 
plane n). Thus n    h = 0, which in coordinate form is 

 
xn × xh + yn × yh + zn × zh = 0 

Dividing by zh gives 

xn × xh/zh + yn × yh/zh + zn = 0 
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and so the vanishing point (d × xh/zh, d × yh/zh) lies on the straight line 

xn × x + yn × + d × zn = 0 

and the statement is proved. 
 

Example 11.2 
Find the vanishing points of the edges of the cube in example 11.1, and of the 
diagonals of its top and bottom planes. 

We divide the twelve edges of the cube into three sets of four edges; each set 
is parallel to the x-axis, y-axis and z-axis respectively and so has directional 
vectors (1, 0, 0), (0, 1, 0) and (0, 0, 1). The first two sets have zero z-values, and 
so their extended edges disappear outside the cone of vision and are ignored, 
whereas the third direction has the vanishing point (4 × 0/1, 4 × 0/1)    (0, 0) on 
the view plane. On the top and bottom faces the diagonals have directions (1, 0, 
1), the major diagonal, and (  1, 0, 1), the minor diagonal. The major diagonal on 
the top plane is (  1, 1, 3) +    (1, 0, 1) and so the vanishing point is (4 ×   1/1, 4 × 
0/1 )    (4, 0). The minor diagonal on the top plane is (1, 1, 3) +   (  1, 0, 1) and has 
the vanishing point (4 ×   1/1, 4 × 0/1)    (  4, 0). By similar calculations we find 
that the vanishing points of the major and minor diagonals on the lower face are 
also (4, 0) and (  4, 0) respectively. The relevant edges are extended to their 
vanishing points in figure 11.3b. Note that all the lines mentioned lie in the two 
parallel planes (the top and bottom faces of the cube) and so the vanishing points 
should be collinear: they are because (4, 0), (0, 0) and (  4, 0) all lie on the x-axis. 
By a similar calculation we would find that the vanishing points of the diagonals 
of the side faces lie on a vertical line through the origin. 

 
Exercise 11.1 
Draw a perspective view of a tetrahedron with vertices (1, 1, 5), (1,   1, 3), (  1, 1, 
3) and (  1,   1, 5). Find the vanishing points (inside the cone of vision) of lines 
that join pairs of mid-points of the edges of the tetrahedron. 

 
Programming the perspective transformation 
The main program for drawing a perspective view of any scene is the same as 
that for the orthographic view, namely listing 9.2. Again the overall scene is 
created by a call to a procedure ‘scene3’, which is similar to those discussed in 
chapter 9. We shall often need to calculate explicitly the ACTUAL to 
OBSERVED matrix, so that the eye is in the OBSERVED position at the origin 
and looking along the positive z-axis. This is achieved by procedure ‘look3’ 
given in chapter 9 (listing 9.1). Calls are made to construction procedures, each 
having a matrix R as parameter. Finally the figure must be drawn, inside the 
construction procedures or in a ‘drawit’ procedure. 

Note that the only difference between the program that draws a perspective 
view and that of the orthographic view of chapter 9 is in the calculation of the 
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coordinates of the projected image on the view plane. Unlike the orthographic in 
the perspective projection the coordinates on the view plane cannot be identified 
with the x-value and the y-value of the point in the OBSERVED position. We 
need to store the perspective transformation of the vertices in the arrays XD and 
YD: the Ith vertex (X(1), Y(1), Z(1)) in the OBSERVED position is projected to 
(XD(I), YD(I)). The values in arrays XD and YD are given by 

(XD(I) = X(I)*PPD/Z(I)  and YD(I) = Y(I)*PPD/Z(I)  for I= 1, 2, . . . , NOV 

The value of PPD is set to 3*VERT in ‘scene3’    the reason for this is given in 
the next section. The calculation of XD and YD can be made in the construction 
procedure, or in the ‘scene3’ or ‘drawit’ procedures: it simply depends on the 
scene that is being considered. 

 
Example 11.3 
We draw a fixed scene (the two cubes that are described in example 9.2) in 
perspective from a variety of observation points, setting HORIZ = 4 and VERT = 
3. Rerun the program with HORIZ = 8 and VERT = 6 (is there any difference?). 
The necessary ‘scene3’ procedure will be almost the same as listing 9.6 except 
that it calculates PPD. It has the one addition: 

 
6040 NOV = 0: NOL = 0: PPD = 3*VERT 

 
it places the group of cubes in their ACTUAL position by using the ‘cube’ 
procedure of listing 9.7, and then loops through a number of different 
OBSERVED positions. For each time through the loop we call ‘look3’ which 
requires (EX, EY, EZ) and (DX, DY, DZ) to calculate the ACTUAL to 
OBSERVED matrix. Then the perspective ‘drawit’ procedure (listing 11.1) is 
called. This uses the matrix to transform the vertices from their (stored) 
ACTUAL position to the OBSERVED position, and places the projected vertex 
coordinates in arrays XD and YD, according to the above equations. The 
procedure can then finally draw the edges of the cubes in perspective. 

Figure 11.4 was drawn by using (EX, EY, EZ)    (15, 10, 5) and (DX, DY, DZ) 
(0, 0, 0). Compare this with the orthographic view of the same scene given in 

figure 9.2. 
 

Exercise 11.2 
Draw various perspective views of a wire tetrahedron and a pyramid. 

 
The choice of perspective plane 
The only value required for the perspective transformation that we have not yet 
discussed is that of PPD, the distance of the perspective plane from the eye. We 
can see from figure 11.1 that different values of PPD produce pictures of 
different sizes. Which one do we choose? Is there a correct value? 

If we consider the practical situation, we note that the observer is sitting 
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Listing 11.1 
 

7000 REM drawit / perspective cube not stored 
7010 DEF PROCdrawit 
7020 LOCAL I%,XX,YY,ZZ,L1,L2 : CLG 
7030 FOR I%=1 TO NOV 
7039 REM move ACTUAL points to their OBSERVED position (XX,YY,ZZ) 

 
7040 XX=R(1,1)*X(I%)+R(1,2)*Y(I%)+R(1,3)*Z(I%)+R(1,4) 
7050 YY=R(2,1)*X(I%)+R(2,2)*Y(I%)+R(2,3)*Z(I%)+R(2,4) 
7060 ZZ=R(3,1)*X(I%)+R(3,2)*Y(I%)+R(3,3)*Z(I%)+R(3,4) 
7069 REM store perspective projections in arrays XD and YD 
7070 XD(I%)=XX*PPD/ZZ 
7080 YD(I%)=YY*PPD/ZZ 
7090 NEXT I% 
7099 REM draw the lines 
7100 FOR I%=1 TO NOL 
7110 L1=LIN(1,I%) : L2=LIN(2,I%) 
7120 PROCmoveto(XD(L1),YD(L1)) 
7130 PROClineto(XD(L2),YD(L2)) 
7140 NEXT I% 
7150 ENDPROC 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 11.4 
 
 

in front of a television screen and that the perspective view plane is identified 
with the plane of the television screen. Normally the observer is sitting at a 
distance that is about three times the height of the screen from the terminal. In 
the scale of our mapping from the real-world to the graphics area of pixels, this is 
a distance 3*VERT (the value we used above). If we choose PPD to be greater 
than this value it is as though we are creating a close-up, and if PPD is less than 
3*VERT we get the smaller image of a long shot. You will have noticed that 
perspective pictures are independent of the screen size, that is the absolute values 
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of HORIZ and VERT are irrelevant, only their relative values matter, therefore in 
perspective pictures we shall always take HORIZ = 4 and VERT = 3: you can 
change the main program accordingly. 

 
Example 11.4 
We now draw a perspective hidden surface view of a stack of cubes (listing 11.2). 
Note how the vertical edges appear jagged. This is always the case in true 
perspective views because of the concept of vanishing points: compare this with 
the cubes drawn by listing 1.15, where we cheat! Figure 11.5 was drawn with 
mode 1 , HORIZ = 4, VERT = 3, (EX, EY, EZ) = (20, 10, 40) and (DX, DY, DZ) 
= (4, 1, 0). To demonstrate that the picture is independent of the screen size try 
the same picture with HORIZ = 40 and VERT = 30. Then try HORIZ = VERT = 
1: now there is a difference. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 11.5 
 

Clipping 
Theoretically, objects may be positioned throughout space, even behind the eye, 
although we consider only points with positive z-coordinates in the OBSERVED 
position. Even so, some of these points go outside the cone of vision and become 
invisible. In fact, part of the cone of vision is outside the screen area (we can 
after all see the outside of the graphics area). We are left with a subset of the 
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Listing 11.2 
 

6000 REM scene3 / stacking 27 cubes hidden surfaces 
6010 DEF PROCscene3 
6020 LOCAL I%,J%,XV%,YV%,ZV% 
6030 DIM X(8),Y(8),Z(8),XD(8),YD(8) 
6040 DIM A(4,4),B(4,4),R(4,4),Q(4,4) 
6050 CLS : CLG : PPD=3*VERT 
6059 REM Q : ACTUAL to OBSERVED matrix 
6060 PROCidR3 : PROClook3 
6070 FOR I%=1 TO 4 : FOR J%=1 TO 4 
6080 Q(I%,J%)=R(I%,J%) 
6090 NEXT J% : NEXT I% 
6099 REM loop thru different placings of the cubes 
6100 FOR ZV%=-16 TO -4 STEP 6 
6110 FOR YV%=-6 TO 6 STEP 6 
6120 FOR XV%=-6 TO 6 STEP 6 
6129 REM move cube to ACTUAL position 
6130 PROCidR3 : PROCtran3(XV%,YV%,ZV%) : PROCmult3 
6139 REM then to OBSERVED position 
6140 FOR I%=1 TO 4 : FOR J%=1 TO 4 
6150 A(I%,J%)=Q(I%,J%) 
6160 NEXT J% : NEXT I% 
6169 REM draw visible faces of cube 
6170 PROCmult3 : PROCcube 
6180 NEXT XV% : NEXT YV% : NEXT ZV% 
6190 ENDPROC 
6500 REM cube / perspective hidden surfaces 
6510 DEF PROCcube 
6520 LOCAL I%,XX,YY,ZZ,F1,F2,F3,F4,DX1,DY1,DX2,DY2 
6530 DATA 1,1,1, 1,1,-1, 1,-1,-1, 1,-1,1, 

-1,1,1, -1,1,-1, -1,-1,-1, -1,-1,1 
6540 DATA 1,2,3,4,  5,8,7,6,  1,5,6,2, 2,6,7,3, 3,7,8,4, 4,8,5,1 
6550 RESTORE 
6559 REM position vertices 
6560 FOR I%=1 TO 8 
6570 READ XX,YY,ZZ 
6580 X(I%)=R(1,1)*XX+R(1,2)*YY+R(1,3)*ZZ+R(1,4) 
6590 Y(I%)=R(2,1)*XX+R(2,2)*YY+R(2,3)*ZZ+R(2,4) 
6600 Z(I%)=R(3,1)*XX+R(3,2)*YY+R(3,3)*ZZ+R(3,4) 
6609 REM put perspective projection of Vertices in arrays XD and YD 
6610 XD(I%)=X(I%)*PPD/Z(I%) 
6620 YD(I%)=Y(I%)*PPD/Z(I%) 
6630 NEXT I% 
6639 REM loop thru facets 
6640 FOR I%=1 TO 6 
6650 READ F1,F2,F3,F4 
6660 DX1=XD(F2)-XD(F1) : DY1=YD(F2)-YD(F1) 
6670 DX2=XD(F3)-XD(F2) : DY2=YD(F3)-YD(F2) 
6679 REM if visible draw facets 
6680 IF DX1*DY2-DX2*DY1 < 0 THEN 6770 
6690 PROCtriangle(XD(F2),YD(F2),XD(F1),YD(F1),XD(F3),YD(F3),1,-2) 
6700 PROCtriangle(XD(F4),YD(F4),XD(F1),YD(F1),XD(F3),YD(F3),1,-2) 
6710 GCOL 0,0 
6720 PROCmoveto(XD(F1),YD(F1)) 
6730 PROClineto(XD(F2),YD(F2)) 
6740 PROClineto(XD(F3),YD(F3)) 
6750 PROClineto(XD(F4),YD(F4)) 
6760 PROClineto(XD(F1),YD(F1)) 
6770 NEXT I% 
6780 ENDPROC 
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cone of vision    the pyramid of vision. Thus all points outside this pyramid, that is 
those whose perspective transformation take them off the screen, must be ignored. 
This is conveniently done for us on the BBC Model B; however you should note 
that this is not necessarily true on other computers. In fact we further limit scenes 
so that all vertices in the OBSERVED position will have positive z- values, that is 
all objects must lie in front of the eye (although not necessarily inside the cone of 
vision). This will avoid a peculiar property of our perspective projection, namely 
points that lie behind the eye appear on the screen. If you run the above program 
(the stack of cubes) and vary the values (EX, EY, EZ), for example (0.9, 0, 0), 
while all the other values stay the same, then the eye may be in among the cubes 
and the picture will go haywire or even fail. Also see project XVII in chapter 16. 

 
Example 11.3 
Experiment with perspective views of all types of wire figures, such as bodies of 
revolution or regular solids. Consider cases where an object is drawn inside the 
construction routine, that is the values of XD and YD must now be calculated 
here and not in the ‘drawit’ routine. Change the program that drew the jet of 
figure 9.3 so that you get a perspective view, and note that the further the eye is 
from the plane the smaller it appears    a phenomenon that does not occur with 
the orthographic projection. 

 
Exercise 11.4 
Write a hidden line algorithm for a single convex body by using the ideas of 
listing 11.2. 

 
Exercise 11.5 
Write a program that draws a perspective view of a mathematical surface that is 
similar to the one given in chapter 10. The method will be exactly equivalent to 
listing 10.6, with the exception that you must work with the XD/YD values 
rather than the X/Y arrays. 

These hidden surface and line algorithms are perfectly adequate for specially 
defined single objects. We extend these ideas in chapter 12 where we consider 
the more general case of a number of objects that are scattered arbitrarily about 
space. But first we look at stereoscopic projections which enable us to get true 
three-dimensional  images from the BBC micro. 

 
 

Stereoscopic Views 
 

Perspective views are all very well but unfortunately (or fortunately!) we have 
two eyes. Each eye should have its own perspective, which will differ slightly 
from that of the other eye. This is the means by which we appreciate the three- 
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dimensional quality of our world. We use this concept to produce a stereoscopic 
view of space, namely we produce a perspective view for each eye. This leads to a 
problem. We cannot simply draw two such projections because the left eye will 
see not only the view created for it, but also that made for the right eye, and vice 
versa. To stop this confusion we must ensure that each eye sees its own view, but 
only its view. This is achieved by using a pair of stereoscopic spectacles: a pair 
of transparent plastic sheets, one red (left eye) and one cyan or light blue (right 
eye). In this way the left eye cannot see red lines because they appear to be the 
same colour as the white background (that is, both are tinted red) but cyan lines 
appear black. Similarly for the right eye which cannot see cyan lines, but red 
lines look black. So the computer must make two line drawings of a scene: one in 
cyan for the left eye, and one in red for the right eye. The brain will merge the 
two black images into one and the cyan and red background into white, to give a 
three-dimensional  effect. 

So we wish to devise a method of producing the stereoscopic projection of a 
general point P    (x, y, z), that is two points PL    (x1, y1) for the left eye and PR 
(x2, y2) for the right eye, in the coordinate system of the perspective view plane 
(see figure 11.6). We sensibly choose the same view plane for both eyes. We shall 
assume that the origin is between the eyes, that space is in the OBSERVED 
position, and that the direction of view for each eye (the straight-ahead ray) is 
parallel to the z-axis. The eyes have coordinates (  e, 0, 0), left, and (e, 0, 0), 
right: in the program that follows, e is given by variable ED, which is normally 
about 0.2*VERT. Again the perspective view plane is a distance d (variable PPD) 
from the origin. In order to find PL we move space by (e, 0, 0) so that P becomes 
(x + e, y, z) and the perspective transform of this point for the left eye is ((x + e) × 
d/z   e, y × d/z) which when we return space to its original position becomes ((x + 
e) × d/z    e, y × d/z). Similarly, the right    ye transformation produces PR    ((x 
e) × d/z + e, y × d/z). Listing 11.3 is a ‘drawit’ routine which draws a stereoscopic 
view of a wire object with NGV vertices and NOL lines stored in the usual way. 
Figure 11.7 shows a grey-scale picture of such a stereoscopic view of the two 
cubes of figure 9.2 by using ‘lib1’, ‘1ib3’ and listings 9.6 (line 6040 adjusted for 
PPD) and 9.7. It has mode 1, HORIZ = 16, VERT = 12, (EX, EY, EZ) = (10, 20, 
30) and (DX, DY, DZ) = (0, 0, 0). 

For the best stereoscopic views it is best to make the view plane cut the object 
being viewed, that is make   (EX2 + EY2 + EZ2) = PPD (= 3*VERT). Therefore in 
the case of stereoscopic views we cannot keep HORIZ and VERT fixed, since for 
the best projections VERT (and hence HORIZ) depends on (EX, EY, EZ). 

 
 

Exercise 11.6 
Draw stereoscopic views of all the objects drawn previously, including the jet 
and bodies of revolution. 
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Listing 11.3 
 

7000 REM drawit / stereoscopic 
7010 DEF PROCdrawit 
7020 LOCAL I%,L1,L2 : CLG 
7028 REM use stereoscopic glasses with red over left eye 

and cyan over right eye 
7029REM our background is white so the image for right eye must 

be drawn in colour 1 (red) and for left eye in colour 2 
redefined to be cyan, in order that lines are seen as 

black 
7030 VDU19,2,6,0,0,0 
7039 REM first left eye then right 
7040 ED=VERT*0.2 : GCOL 2,2 
7050 FOR J%=1 TO 2 
7060 FOR I%=1 TO NOV 
7069 REM vertices in OBSERVED position 
7070 XX=R(1,1)*X(I%)+R(1,2)*Y(I%)+R(1,3)*Z(I%)+R(1,4) 
7080 YY=R(2,1)*X(I%)+R(2,2)*Y(I%)+R(2,3)*Z(I%)+R(2,4) 
7090 ZZ=R(3,1)*X(I%)+R(3,2)*Y(I%)+R(3,3)*Z(I%)+R(3,4) 
7099 REM stereoscopic projection 
7100 XD(I%)=PPD*(XX+ED)/ZZ-ED 
7110 YD(I%)=PPD*YY/ZZ 
7120 NEXT I% 
7129 REM draw object 
7130 FOR I%=1 TO NOL 
7140 L1=LIN(1,I%) : L2=LIN(2,I%) 
7150 PROCmoveto(XD(L1),YD(L1)) 
7160 PROClineto(XD(L2),YD(L2)) 
7170 NEXT I% 
7179 REM now use right eye 
7180 ED=-ED : GCOL 2,1 
7190 NEXT J% 
7200 ENDPROC 
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Figure 11.7 
 

Exercise 11.7 
Produce stereoscopic hidden line pictures of convex bodies. Now you must not 
colour in the facets, just draw the visible edges of the object, once in cyan for the 
left eye, and once in red for the right eye. 

 
 
 

Complete Programs 
 

I  ‘lib1’, ‘lib3’ and listings 9.6 (‘scene3’), 9.7 (‘cube’) and 11.1 (‘drawit’). 
The ‘scene3’ routine must be adjusted for perspective thus: 

 
6040 NOV=0: NGL=0: PPD=3*VERT 

 
Data required: mode, HORIZ, VERT, and repeated values for (EX, EY, 
EZ) and (DX, DY, DZ). Try 1, 4, 3 (5, 15, 10) and (0, 0, 0); (1, 2, 20) 
and (0, 0, 1). 

II  ‘lib1’, ‘lib3’ and listings 11.2 (‘scene3’ etc. for the stack of cubes). Data 
required: mode, HORIZ, VERT, (EX, EY, EZ) and (DX, DY, DZ). Try 1, 
4, 3, (20, 30, 40) and (0, 0,   6). 

III  ‘lib1’, ‘lib3’ and listings 9.6 (‘scene3’), 9.7 (‘cube’) and 11.3 (‘drawit'  : 
stereoscopic). Adjust line 6040 as in above. Data required: mode, 
HORIZ, VERT, (EX, EY, EZ) and (DX, DY, DZ). Try 1, 16, 12, (10, 20, 
30) and (0, 0, 0). 
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12 A General-Purpose Hidden Surface and 
Hidden Line Algorithm 

 
 
 
 

There are many different types of hidden line and/or surface algorithm. One 
variety has a rectangular array that represents the totality of pixels on the screen. 
We imagine rays of light that leave the eye through each of the pixel on the 
screen. These rays naturally pass through objects in our scene and we can note 
the coordinates of these points of intersection. The array will hold the ‘z- 
coordinate’ (initially infinity) of the nearest point of intersection. So we build up 
a picture by adding new objects, finding where the rays cut the object, and 
changing the array values (and the pixel colour on the screen) wherever the latest 
point of intersection is nearer the eye than the corresponding value stored in the 
array. This technique (ray tracing) is very useful if we wish to 
shade-in areas in subtly differing tones of a given colour. It does, however, have 
enormous storage requirements and needs a very powerful computer, well 
beyond the capacity of microcomputers.  Because we must work with only four 
colours and have limited storage we give another general algorithm which works 
on the ‘back to front’ principle mentioned earlier. 

As in previous chapters, we assume that objects are set up by the ‘scene3’ 
procedure; however we now insist that the NOV vertices in the scene are stored 
in the X, Y, and Z arrays. Their perspective projections on to the view plane are 
stored in arrays XD and YD. The NOF convex facets are stored as a list of vertex 
indices (a maximum of six) in array FACET, and the number of edges in any 
facet is placed in array SIZE. Non-convex facets can be constructed out of 
convex facets. 

we assume that all objects are closed. They need not be convex but each must 
be closed and its surface must be composed of convex facets which are stored in 
anticlockwise orientation. Thus it is impossible to see the under-side of any facet; 
that is, when projected on to the view plane we see only facets that maintain their 
anticlockwise orientation. Strictly speaking, this means that we cannot draw planar 
objects. If these are required for a particular scene then we avoid the problem by 
storing each facet of a planar object twice    once clockwise and once 
anticlockwise     so whatever the position of the eye, on perspective projection we 
shall see one and only one occurrence of the facet. This restriction was imposed to 
speed up the hidden surface algorithm. This is very necessary because we are now 
approaching the limits of the processing power of the BBC micro. 
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Nevertheless, we think it is important to study general hidden line/surface 
algorithms for educational reasons. It is essential for anyone with more than a 
passing interest in computer graphics to understand the problems implicit in 
drawing views of three-dimensional  objects with the hidden lines/surfaces 
suppressed. The procedure given in listings 12.1 and 12.2 is such a hidden 
surface algorithm, which can be transferred to larger machines where it will run 
with ease. If you get the opportunity to use more powerful computers it will be 
very instructive to run our programs on them. 

In order to produce a hidden surface picture of a scene that is stored in the 
OBSERVED position, each facet on the objects in the scene must be compared 
with every other facet in order to discover whether their projections overlap on 
the view plane. Because of the above restrictions we need compare only the 
visible facets, that is those that when projected keep their anticlockwise 
orientation. If they do overlap we then need to find which facet lies in front and 
which behind. Once this information is compiled we can work from the back of 
the scene to the front to get a correct hidden surface picture. We do have another 
limitation: we assume that it is impossible for a facet to be simultaneously  in 
front of and behind another facet (that is facets do not intersect one another 
except at their edges) and we cannot have situations where facet A is in front of 
(>) facet B > facet C etc. > facet A. 

Our algorithm for discovering whether two facets (I% and J% from our 
database) do overlap when projected on to the view plane is given in procedure 
‘overlap’ in listing 12.1 . The method depends on the concept of inside and 
outside developed in chapter 3 . We place the x-coordinate and y-coordinate of 
the vertices of facet I% in arrays XF(1, . .) and YF(1, . .) respectively. We then 
take one line from facet J% and cut off all parts of the facet that lie on the 
negative side of the line: the resulting polygon is placed in arrays XF(2, . . ) and 
YF(2, . .). We then take the next line and compare it with these values and store 
the resulting polygon in XF(1  . . ) and YF(1, . . ) etc. After all the lines from 
facet J% have been used then we are left with the polygon that is common to 
both projected facets. If at any time this polygon becomes empty we know that 
the projected facets do not overlap and so we leave the procedure setting GVER 
= 0. 

If the facets do overlap then OVER = 1 and we draw a line from the eye to 
intersect a point inside the common polygon on the view plane and find the 
intersections with facets I% and J%: the point we choose is the median of the first 
three points on the polygon. Comparing the z-coordinates of the respective 
intersections enables us to discover which of I% and J% is in FRONT and which 
is at the BACK. 

 
Listing 12.1 

 
7300 REM overlap 
7310 DEF PROCoverlap(I%,J%) 
7319 REM check if views of facets I% and J% overlap 
7320 P1=1 : SI=SIZE(I%) : SJ=SIZE(J%) 
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7329 REM place projected vertices of facet I% 
in arrays XF(1,..) and YF(1,..) 

7330 FOR K%=1 TO SI 
7340 FI=FACET(K%,I%) 
7350 XF(P1,K%)=XD(FI) : YF(P1,K%)=YD(FI) 
7360 NEXT K% 
7369 REM use each line of the J%th facet to slice off part of 

polygon stored in XF,YF. Line joins (X1,Y1) to (X2,Y2) 
7370 VJ1=FACET(SJ,J%) : X1=XD(VJ1) : Y1=YD(VJ1) 
7380 FOR K%=1 TO SJ 
7390 VJ2=FACET(K%,J%) : X2=XD(VJ2) : Y2=YD(VJ2) 
7399 REM line is CA.y+CB.x+CC=0 
7400 CA=X2-X1 : CB=Y1-Y2 : CC=-X1*CB-Y1*CA 
7409 REM go round SI vertices in XF, YF. If positive relative to 

line, then add to new XF,YF. If negative ignore. If an 
intersection then add this to new XF,YF arrays. 

7410 P2=3-P1 : XI1=XF(P1,SI) : YI1=YF(P1,SI) 
7420 V1=CA*YI1+CB*XI1+CC : A1=ABS(V1) : PCN=0 

: IF A1<EPS THEN S1=0 ELSE S1=SGN(V1) 
7430 FOR M%=1 TO SI 
7440 XI2=XF(P1,M%) : YI2=YF(P1,M%) 
7450 V2=CA*YI2+CB*XI2+CC : A2=ABS(V2) 

: IF A2<EPS THEN S2=0 ELSE S2=SGN(V2) 
7460 IF S1>=0 THEN PCN=PCN+1 : XF(P2,PCN)=XI1 : YF(P2,PCN)=YI1 

: IF S1=0 THEN 7500 
7470 IF S1=S2 OR S2=0 THEN 7500 
7479 REM calculate intersection 
7480 MU=A1 : UM=A2 : DENOM=A1+A2 
7490 PCN=PCN+1 : XF(P2,PCN)=(UM*XI1+MU*XI2)/DENOM 

: YF(P2,PCN)=(UM*YI1+MU*YI2)/DENOM 
7500 V1=V2 : S1=S2 : A1=A2 : XI1=XI2 : YI1=YI2 
7510 NEXT M% 
7519 REM facets do not overlap: OVER=0 
7520 IF PCN<3 THEN OVER=0 : ENDPROC 
7530 SI=PCN : P1=P2 : X1=X2 : Y1=Y2 
7540 NEXT K% 
7549 REM find (XMID,YMID) common to both projected facets 
7550 XMID=(XF(P1,1)+XF(P1,2)+XF(P1,3))/3 

: YMID=(YF(P1,1)+YF(P1,2)+YF(P1,3))/3 
7559 REM MU1 is the distance from the eye of equivalent point 

on the 3D plane containing facet I% 
7560 V1=FACET(1,I%) : V2=FACET(2,I%) : V3=FACET(3,I%) 
7570 DX1=X(V1)-X(V2) : DX3=X(V3)-X(V2) 
7580 DY1=Y(V1)-Y(V2) : DY3=Y(V3)-Y(V2) 
7590 DZ1=Z(V1)-Z(V2) : DZ3=Z(V3)-Z(V2) 
7600 A=DY1*DZ3-DY3*DZ1 : B=DZ1*DX3-DZ3*DX1 : C=DX1*DY3-DX3*DY1 
7610 D=A*X(V1)+B*Y(V1)+C*Z(V1) 
7620 MU1=D/(A*XMID+B*YMID+C*PPD) 
7629 REM MU2 is the distance from the eye of equivalent point 

on 3D plane containing facet J% 
7630 V1=FACET(1,J%) : V2=FACET(2,J%) : V3=FACET(3,J%) 
7640 DX1=X(V1)-X(V2) : DX3=X(V3)-X(V2) 
7650 DY1=Y(V1)-Y(V2) : DY3=Y(V3)-Y(V2) 
7660 DZ1=Z(V1)-Z(V2) : DZ3=Z(V3)-Z(V2) 
7670 A=DY1*DZ3-DY3*DZ1 : B=DZ1*DX3-DZ3*DX1 : C=DX1*DY3-DX3*DY1 
7680 D=A*X(V1)+B*Y(V1)+C*Z(V1) 
7690 MU2=D/(A*XMID+B*YMID+C*PPD) 
7699 REM if MU1>MU2 then FRONT=J% else FRONT=I% : OVER set to 1 
7700 OVER=1 : IF MU1 > MU2 THEN FRONT=J% : BACK=I% 

ELSE FRONT=I% : BACK=J% 
7710 ENDPROC 
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The next step is to work out how to use this information to produce the final 
picture. This is achieved in listing 12.2, which contains the routines ‘hidden’, 
‘topsort’, ‘push’ and ‘pop'  . The method is to compare each visible facet with 
every other and to produce a network of information about the relative positions 
of the facets (in front or behind). For each visible facet (I% say) the idea is to set 
up a linked list (LIS(I%)) that contains the indices of all facets that lie in front of 
it, and the array G(I%) will contain the number of facets that facet I% obscures. 
Array G is also used initially to denote if the facet is clockwise and invisible 
(G(I%) =   1), or anticlockwise and visible (G(I%) = 0). 

We then create a stack on to which we initially ‘push’ any facet that does not 
obscure any other (that is, whose G value is zero). Then one at a time we ‘pop’ a 
facet off the stack and draw it on the screen. Once the facet is drawn, we go 
down the linked list for that facet and decrement the G counts for each facet in 
the list. If the G count for any facet becomes zero then the number of that facet is 
pushed on to the stack. Eventually this method, called topological sorting (the 
‘topsort’ procedure), gives the correct order in which facets may be drawn to give 
the true back to front hidden surface view. 

The linked lists and the stack are implemented by using a method known as a 
HEAP. HEAP% is an array of integers whose values are divided into two parts, the 
information section and a pointer. Because we are using relatively small integers, 
both information and pointer can be stored in one array location: multiply the 
information by 10 000 and add in the pointer. Initially the heap contains zero 
information and each location points to the next in the array. There is a variable 
called FREE which denotes the next available location in the heap. Whenever store 
is required for a linked list or a stack (which is itself a linked list) the FREE 
location in HEAP is made available, and the value of FREE changed. 
A garbage collector is built into this system so that whenever a location is no 
longer needed it is reallocated to the FREE list. The stack can only become 
empty when all the facets have been drawn because of our restriction that facets 
cannot be simultaneously  in front of and behind one another. See Knuth (1973), 
or Horowitz and Sahni (1976) for a formal description of linked lists, stacks and 
topological sorting. 

Because we cannot be sure of the size of the HEAP and of the XF and YF 
arrays, these must be input into the program. As a rough guide the lists rarely 
exceed 20, and the heap size is best set at about twice the number of facets. If 
you underestimate these array requirements then the program will fail. You can 
always run it again with larger values! The execution of such routines are 
necessarily slow when you consider the number of comparisons that have to be 
made, so we print out information about the facet being compared, the present 
value of FREE and the time taken in seconds. You will also find that, used in 
conjunction with our library of graphics and matrix procedures as well as large 
data-bases, the program has to be loaded into store with PAGE set to &1100. 
Even so there will not be enough room if the full MODE 1 screen is used. So 
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Listing 12.2 
7000 REM hidden surface / general 
7010 DEF PROChidden 
7020 LOCAL I%,J%,K%,M% 
7030 INPUT"Size of HEAP "HSIZ 
7040 INPUT"Size of facet list "FLIST 
7049 REM setup data structure arrays 
7050 DIM G(NOF),LIS(NOF),HEAP%(HSIZ),XF(2,FLIST),YF(2,FLIST) 
7060 EPS=0.000001 : FREE=1 : NVIS=0 : TSTO=TIME 
7069 REM initialise the HEAP 
7070 FOR I%=1 TO HSIZ 
7080 HEAP%(I%)=I%+1 
7090 NEXT I% 
7099 REM orientate projected facet : G(I(%)=-1 clockwise 

G(I(%)=0 anticlockwise 
7100 FOR I%=1 TO NOF 
7110 I1=FACET(1,I%) : X1=XD(I1) : Y1=YD(I1) 
7120 I2=FACET(2,I%) : X2=XD(I2) : Y2=YD(I2) 
7130 I3=FACET(3,I%) : X3=XD(I3) : Y3=YD(I3) 
7140 DX1=X2-X1 : DY1=Y2-Y1 
7150 DX2=X3-X2 : DY2=Y3-Y2 
7160 IF DX1*DY2-DX2*DY1 > 0 

THEN G(I%)=0 : NVIS=NVIS+1 : LIS(I%)=0 ELSE G(I%)=-1 
7170 NEXT I% 
7179 REM compare visible facets G(I%) now holds number of 

facets behind facet I% 
7180 FOR I%=1 TO NOF-1 
7190 IF G(I%)=-1 THEN 7250 
7200 FOR J%=I%+1 TO NOF 
7210 IF G(J%)=-1 THEN 7240 
7219 REM if facets overlap i.e. facet FRONT in front of facet BACK 

then increment G(FRONT) and add FRONT to linked list for 
BACK. Adjust the HEAP 

7220 PROCoverlap(I%,J%) 
7230 IF OVER=1 THEN G(FRONT)=G(FRONT)+1 : NFREE=HEAP%(FREE) 

: HEAP%(FREE)=FRONT*10000+LIS(BACK) : LIS(BACK)=FREE : FREE=NFREE 
7240 NEXT J% 
7250 PRINT"FACET=";I%;"  FREE=";FREE;" TIME=";(TIME-TSTO)/100;" SECONDS" 

: NEXT I% 
7259REM draw the background and then topologically sort 

the network of linked lists. 
7260 *SPOOL"PICCY" 
7270 GCOL0,131 : CLG : PROCbackground : PROCtopsort 
7280 *SPOOL 
7290 ENDPROC 

 
7800 REM topological sorting procedure 
7810 DEF PROCtopsort 
7819 REM create STACK. Push on it all facets that do lie in 

front of other facets 
7820 LOCAL I%,J% : STACK=0 
7830 FOR I%=1 TO NOF 
7840 IF G(I%)=0 THEN PROCpush(I%) 
7850 NEXT I% 
7860 FOR I%=1 TO NVIS 
7869 REM pop facet(=J%) from STACK 
7870 J%=FNpop : IF J%=0 THEN PRINT"facet network has a cycle" : STOP 
7879 REM draw the facet 
7880 GCOL0,COL(J%) : F1=1 : FS=SIZE(J%) 
7890 F=FACET(F1,J%) : MOVE FNX(XD(F)),FNY(YD(F)) 
7900 F=FACET(FS,J%) : MOVE FNX(XD(F)),FNY(YD(F)) 
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7910 F1=F1+1 : FS=FS-1 
7920 F=FACET(F1,J%) : PLOT85,FNX(XD(F)),FNY(YD(F)) : IF F1=FS THEN 
7940 
7930 F=FACET(FS,J%) : PLOT85,FNX(XD(F)),FNY(YD(F)) : IF FS-1=F1 THEN 
7940 ELSE 7910 
7939 REM draw the edges of the facet 
7940 F=FACET(SIZE(J%),J%) : MOVE FNX(XD(F)),FNY(YD(F)) : GCOL 0,0 
7950 FOR K%=1 TO SIZE(J%) : F=FACET(K%,J%) 

: DRAW FNX(XD(F)),FNY(YD(F)) : NEXT K% 
7960 PT=LIS(J%) 
7970 REPEAT : F2=HEAP%(PT) DIV 10000 : NEX=HEAP%(PT) MOD 10000 
7980 G(F2)=G(F2)-1 : IF G(F2)=0 THEN PROCpush(F2) 
7990 PT=NEX : UNTIL PT=0 
8000 NEXT I% 
8010 ENDPROC 

 
8100 REM push I% onto STACK 
8110 DEF PROCpush(I%) 
8120 NF=FREE : FREE=HEAP%(FREE) 
8130 HEAP%(NF)=I%*10000+STACK : STACK=NF 
8140 ENDPROC 

 
8150 REM pop value off STACK 
8160 DEF FNpop 
8170 NF=STACK : NUMB=HEAP%(NF) DIV 10000 : STACK=HEAP%(NF) MOD 10000 
8180 HEAP%(NF)=FREE : FREE=NF 
8190 =NUMB 

 
what we do is to run the program in MODE 7 and SPOOL the picture on to 
backing store. When the program is complete we type 

 
NEW 

MODE 1 

*EXEC PICCY 
 

and it will be drawn on the screen. Note that we also include a call to a 
‘background’ procedure. You can include a complex ‘background’ like that in 
listing 12.3, or a trivial procedure that simply clears the screen. We can turn a 
hidden surface procedure into a hidden line procedure by having a plain 
background and by drawing each facet in the same (background) colour. 

 
Example 12.1 
We can now draw a hidden line, perspective view of the scene that we first saw 
in figure 9.2: one of the two cubes shown in figure 12.1. Note that the 
background is similar to one of the pictures produced in chapter 1 . The scene has 
HORIZ = 4, VERT = 3 and is viewed from (10, 5, 20) to (0, 0, 0). 

The complete program uses ‘lib1’, ‘lib3’, ‘overlap’ (listing 12.1) and ‘hidden’ 
etc. (listing 12.2) together with the ‘scene3’, ‘cube’ and ‘background’ procedures 
given in listing 12.3. This last version of ‘cube’ means that we have considered 
all the array methods of constructing an object, that is, stored/not stored and 
lines/facets. We have deliberately used the cube over and over again in our 
diagram because it is such a simple object and because it is easy to understand its 
various constructions; therefore it does not complicate our discussion of the 
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Listing 12.3 
 

4000 REM background 
4010 DEF PROCbackground 
4020 VDU23,1,0;0;0;0; : VDU 19,0,4,0,0,0 
4030 PROCcircle(640,750,1000,0,1) : PROCcircle(640,750,150,2,2) 
4040 PROCcircle(740,650,70,3,3) : PROCcircle(865,680,100,3,3) 

: PROCcircle(950,660,80,3,3) 
4050 MOVE 740,580 : MOVE 740,720 : PLOT 85,950,580 
4060 ENDPROC 

 
4100 REM circle 
4110 DEF PROCcircle(X,Y,R,C1,C2) 
4120 MOVE X,Y 
4130 F=1 : GCOL 0,C1 
4140 FOR I=0 TO 2*PI STEP PI/50 : MOVE X,Y : PLOT 
81,R*COS(I),R*SIN(I) 
4150 F=1-F : IF F THEN GCOL0,C1 ELSE GCOL0,C2 
4160 NEXT I 
4170 ENDPROC 

 
6000 REM scene3 / figure 12.1 
6010 DEF PROCscene3 
6020 LOCAL I%,J% 
6030 DIM 
X(16),Y(16),Z(16),XD(16),YD(16),FACET(4,12),SIZE(12),COL(12) 
6040 DIM A(4,4),B(4,4),R(4,4),Q(4,4) 
6050 NOV=0 : NOF=0 : PPD=3*VERT 
6060 PROCidR3 : PROClook3 : PROCcube 
6070 FOR I%=1 TO 4 : FOR J%=1 TO 4 
6080 Q(I%,J%)=R(I%,J%) : NEXT J% : NEXT I% 
6090 PROCidR3 : PROCtran3(3,1.5,2) 
6100 PROCmult3 
6110 FOR I%=1 TO 4 : FOR J%=1 TO 4 
6120 A(I%,J%)=Q(I%,J%) : NEXT J% : NEXT I% 
6130 PROCmult3 : PROCcube 
6140 PROChidden 
6150 ENDPROC 

 
6500 REM cube / perspective, stored 
6510 DEF PROCcube 
6520 LOCAL I% 
6530 DATA 1,2,3,4, 5,8,7,6, 1,5,6,2, 2,6,7,3, 3,7,8,4, 4,8,5,1 
6540DATA 1,1,1, 1,1,-1, 1,-1,-1, 1,-1,1, 

-1,1,1, -1,1,-1, -1,-1,-1, -1,-1,1 
6550 RESTORE 6530 
6560 FOR I%=1 TO 6 
6570 READ F1,F2,F3,F4 : NOF=NOF+1 
6580 FACET(1,NOF)=F1+NOV : FACET(2,NOF)=F2+NOV 
6590 FACET(3,NOF)=F3+NOV : FACET(4,NOF)=F4+NOV 
6600 SIZE(NOF)=4 : COL(NOF)=3 
6610 NEXT I% 
6620 FOR I%=1 TO 8 
6630 READ XX,YY,ZZ : NOV=NOV+1 
6640 X(NOV)=R(1,1)*XX+R(1,2)*YY+R(1,3)*ZZ+R(1,4) 
6650 Y(NOV)=R(2,1)*XX+R(2,2)*YY+R(2,3)*ZZ+R(2,4) 
6660 Z(NOV)=R(3,1)*XX+R(3,2)*YY+R(3,3)*ZZ+R(3,4) 
6670 XD(NOV)=PPD*X(NOV)/Z(NOV) 
6680 YD(NOV)=PPD*Y(NOV)/Z(NOV) 
6690 NEXT I% 
6700 ENDPROC 
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Figure 12.1 
 

general principles of three-dimensional  graphics. Now is the time to introduce 
complexity into our objects: provided that you understand the limitations of the 
algorithms, you will find that the ideas we have discussed are equally valid. 

 
Exercise 12.1 
Construct hidden surface scenes that are composed of cubes, tetrahedra, 
pyramids, octahedra and icosahedra. Introduce new backgrounds and write your 
own procedures for an octahedron, icosahedron, rhombic dodecahedron etc. (see 
Coxeter, 1974). 

 
Example 12.2 
By now you will have realised that hidden surface algorithms are very slow 
programs  we have to make a large number of comparisons. This means that we 
are rather limited in the scope of objects we can draw. Nevertheless it is very good 
practice, and if you have the opportunity to use larger machines you will 
see that the above algorithm will work on these also, but much faster. We give 
examples of two three-dimensional  star-shaped objects in listing 12.4 (both 
require a parameter A which changes the elongation of the spikes) as well as a 
‘scene3’ procedure. These two ‘star’ procedures are based on the tetrahedron and 
cube. Figure 12.2 was drawn with HORIZ = 4, VERT = 3 , and viewed from (35, 
20, 25) towards (0, 0, 0). 
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Listing 12.4 
 

6000 REM scene3 / two stars 
6010 DEF PROCscene3 
6020 LOCAL I%,J% 
6030 DIM 
X(22),Y(22),Z(22),XD(22),YD(22),FACET(3,36),SIZE(36),COL(36) 
6040 DIM A(4,4),B(4,4),R(4,4),Q(4,4) 
6050 NOV=0 : NOF=0 : PPD=3*VERT 
6060 PROCidR3 : PROClook3 : A=6 : PROCstar1 
6070 FOR I%=1 TO 4 : FOR J%=1 TO 4 
6080 Q(I%,J%)=R(I%,J%) : NEXT J% : NEXT I% 
6090 PROCidR3 : PROCtran3(5,5,5) 
6100 PROCmult3 
6110 FOR I%=1 TO 4 : FOR J%=1 TO 4 
6120 A(I%,J%)=Q(I%,J%) : NEXT J% : NEXT I% 
6130 PROCmult3 : A=4 : PROCstar2 
6140 PROChidden 
6150 ENDPROC 

 
6500 REM star1 /based on a cube 
6510 DEF PROCstar1 
6520 LOCAL I% 
6530 DATA 1,2,9, 2,3,9, 3,4,9, 4,1,9, 6,5,10, 5,8,10, 8,7,10, 

7,6,10, 2,1,11, 1,5,11, 5,6,11, 6,2,11, 4,3,12, 3,7,12, 
7,8,12, 8,4,12, 1,4,13, 4,8,13, 8,5,13, 5,1,13, 3,2,14, 
2,6,14, 6,7,14, 7,3,14 

6540 DATA 1,1,1, 1,1,-1, 1,-1,-1, 1,-1,1, 
-1,1,1, -1,1,-1, -1,-1,-1, -1,-1,1, 
A,0,0, -A,0,0, 0,A,0, 0,-A,0, 0,0,A, 0,0,-A 

6550 RESTORE 6530 
6560 FOR I%=1 TO 24 
6570 READ F1,F2,F3 : NOF=NOF+1 
6580 FACET(1,NOF)=F1+NOV : FACET(2,NOF)=F2+NOV 
6590 FACET(3,NOF)=F3+NOV : SIZE(NOF)=3 : COL(NOF)=1 
6600 NEXT I% 
6610 FOR I%=1 TO 14 
6620 READ XX,YY,ZZ : NOV=NOV+1 
6630 X(NOV)=R(1,1)*XX+R(1,2)*YY+R(1,3)*ZZ+R(1,4) 
6640 Y(NOV)=R(2,1)*XX+R(2,2)*YY+R(2,3)*ZZ+R(2,4) 
6650 Z(NOV)=R(3,1)*XX+R(3,2)*YY+R(3,3)*ZZ+R(3,4) 
6660 XD(NOV)=PPD*X(NOV)/Z(NOV) 
6670 YD(NOV)=PPD*Y(NOV)/Z(NOV) 
6680 NEXT I% 
6690 ENDPROC 
6700 REM star2 /based on a tetrahedron 
6710 DEF PROCstar2 
6720 LOCAL I% 
6730 DATA 2,1,8, 3,2,8, 1,3,8, 1,2,7, 4,1,7, 2,4,7, 2,3,5, 

4,2,5, 3,4,5, 3,1,6, 4,3,6, 1,4,6 
6740 DATA 1,1,1, 1,-1,-1, -1,1,-1, -1,-1,1, 

-A,-A,-A, -A,A,A, A,-A,A, A,A,-A 
6750 RESTORE 6730 
6760 FOR I%=1 TO 12 
6770 READ F1,F2,F3 : NOF=NOF+1 
6780 FACET(1,NOF)=F1+NOV : FACET(2,NOF)=F2+NOV 
6790 FACET(3,NOF)=F3+NOV : SIZE(NOF)=3 : COL(NOF)=2 
6800 NEXT I% 
6810 FOR I%=1 TO 8 
6820 READ XX,YY,ZZ : NOV=NOV+1 
6830 X(NOV)=R(1,1)*XX+R(1,2)*YY+R(1,3)*ZZ+R(1,4) 
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6840 Y(NOV)=R(2,1)*XX+R(2,2)*YY+R(2,3)*ZZ+R(2,4) 
6850 Z(NOV)=R(3,1)*XX+R(3,2)*YY+R(3,3)*ZZ+R(3,4) 
6860 XD(NOV)=PPD*X(NOV)/Z(NOV) 
6870 YD(NOV)=PPD*Y(NOV)/Z(NOV) 
6880 NEXT I% 
6890 ENDPROC 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 12.2 
 

Exercise 12.2 
The program in listing 10.1 checks that the order of the vertices of a triangular 
facet are anticlockwise. The program was devised for use with convex bodies that 
contain the origin. Extend it so that it can cope with the most general case. that is 
specify the position of the observer and the coordinates of a point inside the 
object (not necessarily the origin) so that this point and the observer lie on 
opposite sides of the infinite plane that contains the facet. Use this program to 
check the above star-shaped objects (in fact for these figures the origin could act 
as the inside point). 

Then produce your own star-shaped objects that are based on an octahedron, 
cuboctahedron,  icosahedron or dodecahedron. Always check the order of the 
vertices in your facets. You can produce stars that are based on very simple 
bodies of revolution, and we need not use only symmetrical objects! It is for 
these non-symmetrical  shapes that you really need the extended version of listing 
10.1. Provided that you stay within the restrictions mentioned, then listings 12.1 
and 12.2 will draw any shape. 
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Example 12.3 
We now give the procedures (listing 12.5) needed to set up and draw a much 
more complex picture (figure 12.3) which contains 120 facets (about 60 will be 
visible at any one time). It is viewed from (10, 20, 30) towards (0, 0, 0) and will 
take about a quarter of an hour to draw. So be patient! 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 12.3 
 

Now you have read (and understood) chapters 7 to 12 you will have found that we 
have reached the limits of three-dimensional  graphics on the BBC Mode] B 
microcomputer. You must get the use of larger computers if you wish to go further 
in your study of this type of computer graphics. Then you must study the 
techniques of using data structures and extend the very simple applications given 
in this chapter. If you use certain structured languages, Pascal for example you 
will find that it is not essential to build up your own HEAP, such structures are 
implicit to the language. This should enable you to use complex data structures 
for storing useful information about scenes. For example, a complete scene can be 
regarded as a linked list of pointers, each of which refers to a linked list of 
information about the facets on a particular type of object. The facets themselves 
can be stored as lists of vertices! A seemingly complex idea, but one that makes 
the use of fixed-size arrays obsolete. Certain context relationships between facets 
may be stored implicitly in the lists. When you have grasped these ideas you can 
go on to the complicated graphics algorithms which include methods for 
animating, colouring, patching and shading. You will find the books by HoroWitz 
and Sahni (1976) and Knuth (1973) invaluable for the study of data structures. You 
should read Newman and Sproull (1979) and Foley and van Dam (1982) for the 
really complex three-dimensional  graphics methods. In the next chapter we take a 
more advanced look at character graphics and introduce one method of producing 
animated three-dimensional  drawings. 
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Listing 12.5 
 

6000 REM scene3 / hollow cube 
6010 DEF PROCscene3 
6020 LOCAL I%,J% 
6030 DIM X(160),Y(160),Z(160),XD(160),YD(160), 

FACET(4,120),SIZE(120),COL(120) 
6040 DIM A(4,4),B(4,4),R(4,4),Q(4,4) 
6050 DIM XQ(8),YQ(8),ZQ(8) 
6060 DATA 1,1,1, 1,1,-1, 1,-1,-1, 1,-1,1, 

-1,1,1, -1,1,-1, -1,-1,-1, -1,-1,1 
6070 RESTORE 6060 
6080 NOV=0 : NOF=0 : PPD=3*VERT 
6090 FOR I%=1 TO 8 
6100 READ XQ(I%),YQ(I%),ZQ(I%) 
6110 NEXT I% 
6120 FOR I%=1 TO 8 
6130 PROCidR3 : PROCtran3(4.0*XQ(I%),4.0*YQ(I%),4.0*ZQ(I%)) : 

PROCmult3 : PROCrect(1,1,1,1) 
6140 NEXT I% 
6150 FOR I%=1 TO 4 
6160 PROCidR3 : PROCtran3(0.0,4.0*YQ(I%),4.0*ZQ(I%)) 

: PROCmult3 : PROCrect(3,1,1,2) 
6170 PROCidR3 : PROCtran3(4.0*ZQ(I%),0.0,4.0*YQ(I%)) 

: PROCmult3 : PROCrect(1,3,1,2) 
6180 PROCidR3 : PROCtran3(4.0*YQ(I%),4.0*ZQ(I%),0.0) 

: PROCmult3 : PROCrect(1,1,3,2) 
6190 NEXT I% 
6200 PROCidR3 : PROClook3 : A=6 : PROCmult3 
6210 FOR I%=1 TO NOV 
6220 XX=X(I%) : YY=Y(I%) : ZZ=Z(I%) 
6230 X(I%)=R(1,1)*XX+R(1,2)*YY+R(1,3)*ZZ+R(1,4) 
6240 Y(I%)=R(2,1)*XX+R(2,2)*YY+R(2,3)*ZZ+R(2,4) 
6250 Z(I%)=R(3,1)*XX+R(3,2)*YY+R(3,3)*ZZ+R(3,4) 
6260 XD(I%)=PPD*X(I%)/Z(I%) 
6270 YD(I%)=PPD*Y(I%)/Z(I%) 
6280 NEXT I% 
6290 PROChidden 
6300 ENDPROC 

 
6500 REM rectangular block 
6510 DEF PROCrect(LH,HT,WH,IC) 
6520 LOCAL I% 
6530 DATA 1,2,3,4, 2,1,5,6, 6,5,8,7, 7,8,4,3, 2,6,7,3, 5,1,4,8 
6540 DATA 1,1,1, 1,1,-1, 1,-1,-1, 1,-1,1, 

-1,1,1, -1,1,-1, -1,-1,-1, -1,-1,1 
6550 RESTORE 6530 
6560 FOR I%=1 TO 6 
6570 READ F1,F2,F3,F4 : NOF=NOF+1 
6580 FACET(1,NOF)=F1+NOV : FACET(2,NOF)=F2+NOV 
6590 FACET(3,NOF)=F 
6600 SIZE(NOF)=4 : COL(NOF)=IC 
6610 NEXT I% 
6620 FOR I%=1 TO 8 
6630 READ XX,YY,ZZ : NOV=NOV+1 
6640 XX=XX*LH : YY=YY*HT : ZZ=ZZ*WH 
6650 X(NOV)=R(1,1)*XX+R(1,2)*YY+R(1,3)*ZZ+R(1,4) 
6660 Y(NOV)=R(2,1)*XX+R(2,2)*YY+R(2,3)*ZZ+R(2,4) 
6670 Z(NOV)=R(3,1)*XX+R(3,2)*YY+R(3,3)*ZZ+R(3,4) 
6680 NEXT I% 
6690 ENDPROC 
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Complete Programs 
 

All these programs should be loaded with PAGE = &1100 and the REMs must be 
stripped away. 

 
I  ‘lib1’, ‘lib3’, listings 12.1 (‘overlap’), 12.2 (‘hidden’, ‘topsort’, ‘push’ and 

‘pop’) and 12.3 (‘scene3’, ‘cube’, ‘background’).  Data required: mode, 
HORIZ, VERT, (EX, EY, EZ), (DX, DY, DZ), size of HEAP and licet list. 
Try 7, 4, 3, (20, 5, 10), (0, 0, 0), 10 and 10. When the picture has been 
SPOOLed on to backing store as file PICCY you must then then type 

 
NEW 

MODE 1 

*EXEC PICCY 
 

II  ‘lib1’, ‘lib3’, listings 12.1, 12.2, 12.4 (‘scene3’, ‘starl’ etc.) and the 
‘background’ from 12.3. Data required: mode, HORIZ, VERT, (EX, EY, 
EZ) and (DX, DY, DZ), HEAP and facet counts. Try 7, 4, 3, (40, 30, 20), 
(0, 0, 0), 50, 20; and EXEC picture on to the screen from PICCY. 

III  ‘lib1’, ‘lib3’, listings 12.1, 12.2, 12.5 (‘scene3’, ‘box’ etc.) and the 
‘background’ from 12.3. Data required: mode, HORIZ, VERT, (EX, EY, 
EZ) and (DX, DY, DZ), HEAP and facet counts. Try 7, 4, 3, (30, 20, 10), 
(0, 0, 0), 200, 20; and EXEC picture on to the screen from PICCY. 
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13 Teletext Graphics, Mode 7 
 
 
 
 

Mode 7 on the BBC micro is the only mode in which the shapes of the characters 
are not explicitly stored in memory. Instead just one byte is used for each of the 
screen character locations which, in the simplest case, holds the ASCII code of the 
character to be displayed there. The screen display is then generated by a special 
micro-chip which contains the data for each character. The chip looks at the screen 
memory to see which character is to be displayed at that position and then includes 
the correct data for that character directly into the television signal. This means 
that the chip has to recalculate the data for the whole screen each 
time the television display is refreshed, 50 times a second (60 times a second in 
the U.S.A.). 

The memory for the screen is arranged very simply and consists of 1000 
locations (40 across by 25 down). Starting at location HIMEM (which is set to 
&7C00 in mode 7) the data for the screen are stored row by row, with forty 
locations per row. Hence the location equivalent to the block accessed by PRINT 
TAB(X, Y) is given by &7C00 + 40 * Y + X. As in chapter 5, we assume that 
there is no hardware scrolling of the screen. 

There are two types of character in this mode: alphanumeric and graphic. Try 
the simple program in listing 13.1 which changes one single screen location at a 
time by storing the ASCII code of an alphanumeric character. 

 
Listing 13.1 

 
10 MODE 7 
20 REPEAT 
30 A=&7C00+(RND(25)-1)*40+RND(40)-1 
40 ?A=RND(32)+64 
50 UNTIL FALSE 

 
 
 

Example 13.1 
Invisible control codes may also be placed in these screen locations. These allow 
control of further display options such as colour, flashing, or distinguishing 
between alphanumeric and graphic characters. Rerun listing 13.1 (which drew 
alphanumeric characters by default) with line 40 replaced by ?A = RND(256) 
1. The effect of these codes is to mix up graphics and alphanumerics randomly 
on the screen. 
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Table 13.1 shows the ASCII codes that have special effects on the mode 7 
teletext screen. 

 

 Table 13.1  

128  144 
129 Alpha red 145 Graphic red 
130 Alpha green 146 Graphic green 
131 Alpha yellow 147 Graphic yellow 
132 Alpha blue 148 Graphic blue 
133 Alpha magenta 149 Graphic magenta 
134 Alpha blue 150 Graphic cyan 
135 Alpha white 151 Graphic white 
136 Start flash 152 Conceal 
137 End flash 153 Contiguous graphics 
138  154 Separated graphics 
139  155  
140 Normal height 156 Black background 
141 Double height 157 New background 
142  158 Hold graphics 
143  159 Release graphics 

 
Some of these characters are available (from OS 1.0 onwards) directly from 

the keyboard by using the shift or control keys with the red soft keys. Most 
useful are the colour codes alpha red to alpha white, which are available with 
shift on keys fl to f7 (see table 3.2), and colour codes graphic red to graphic 
white, which are available with control on the same keys. Other codes can be 
programmed for the function keys by using the ‘!’ option (see user guide) to 
produce codes that are numerically greater than or equal to 128. For example, 
typing ‘KEY1||!||M would set key fl to code 141 which corresponds to double 
height. The control keys H, I, J, K will move the text cursor (left, right, down, 
up): this will enable you to experiment by placing control codes all over the 
screen. For example, double-height letters may be placed on the screen by typing 
f1 (the control code 141) followed by the required text at the text cursor, and then 
repeating (or copying) the same string (code 141 followed by text) exactly one line 
above. You can see this in programmed form in the ‘brickout’ game of listing 
13.5 . 

Each line of the display is treated as an individual unit. Unless told otherwise, 
the computer assumes that a black background and white alphanumerics are 
required. For example, to get red text you must type the colour code for alpha red 
(shift fl), which would appear as a space on the line, followed by any required 
text. The red code will be effective either for the remainder of the present line or 
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until another colour code is encountered. Naturally all control codes take up one 
screen block and result in a space being displayed at that position. These codes 
can be used to highlight REMarks in program listings when viewed in mode 7. 
The programs on the audio cassettes that accompany this book contain colour 
codes in the REM statements to make it easier to find individual procedures and 
to read the explanatory comments. 

 
Listing 13.2 

 
10 MODE 7 
19 REM go through all the codes except the control codes ( < 32 ) 
20 FOR I=32 TO 255 STEP 32 
30 VDU 129 
40 FOR J=I TO I+31 
49 REM don't output characters 127 or it will delete previous code. 
50 IF J<>127 THEN VDU J 
60 NEXT J 
70 PRINT ‘ 
80 NEXT I 

 
Example 13.2 
Run listing 13.2. The program will display, in red, all the available alphanumeric 
characters (equivalent to ASCII codes 32 to 255). If we change line 30 from VDU 
129 (alpha red) to VDU 145 (graphic red) you will see all the available graphic 
characters. The upper case characters are the same in both the graphics and 
alphanumeric colours, but the remaining characters are different. These other 
codes will be displayed as the block graphics characters, each containing 6 small 
square blocks (3 vertically by 2 horizontally). The 64 possible characters that are 
produced from such a combination of 6 blocks may be accessed by typing the 
normal alphanumeric characters for the ASCII codes 32 to 63 and 96 to 127 after a 
graphics code. Note that the ASCII codes 65 to 95 still produce their normal 
symbols. All the codes from 32 to 127 are duplicated on ASCII codes 160 to 255. 
Therefore should we wish to write a program that PRINTs teletext characters 
(including teletext codes) it is easier to use the lower ASCII code values which 
can be typed (into the string inside quotes following PRINT) directly from the 
keyboard. This, however, has the disadvantage that code 127, which should 
correspond to a totally filled character, is equivalent to the delete code. The VDU 
command allows use of the characters with codes 160 onwards. To calculate the 
appropriate ASCII character for any given pattern of blocks you should use the 
method detailed in the user guide, which finds the code value for any block 
character in the higher set (160 to 255) or you can see them in figure 13.1. 

 
Example 13.3 
It is tedious to access each individual block character, especially if we wish to 
use them for drawing low-resolution diagrams. A far more sensible approach is to 
create a library of procedures to do the manipulation for us. For example, the 
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Figure 13.1 
 

listing 13.3 draws a low-resolution picture of sine and cosine curves. The 
individual square pixels of this picture are the 1/6th blocks from within the 
graphics characters. Naturally we must allow for the addition (or deletion) of 
extra square pixels within a graphics character. We use the locations down the 
left-hand side of the screen for the graphic white code (or any other graphics 
colour). This means that the x-coordinates for our square pixel-blocks are in the 
range 2 to 79 (character columns 1 to 39: column 0 holds the colour code) and 
the y-coordinates are in the range 0 to 74 (rows 24 to 0). We introduce a ‘plot’ 
procedure which has three parameters, the coordinates of the pixel to be plotted 
and an integer (1, 2 or 3) that is used to define the type of plot    plot 
FOREGROUND,  plot BACKGROUND  or plot EOR respectively. We also give 
the ‘draw’ procedure which joins two specified points with an approximation to a 
straight line. 

After running the program, hold down the RETURN key and you will delete 
all the control codes from the left-hand edge of the screen, and all the equivalent 
text characters become visible. Now type control Z, which will take the text 
cursor to the top of the screen. Then continuously press soft key f9 (set by line 
180 of the program), which will reset the graphics control codes. 
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Listing 13.3 
 

10 MODE 7 
19 REM Array D stores values for positioning each 1/6th block 

inside character. 
20 DIM D(1,2) 
30 FOR I%=0 TO 1 
40 FOR J%=0 TO 2 
50 READ D(I%,J%) 
60 NEXT J% 
70 NEXT I% 
80 DATA 16,4,1,64,8,2 
89 REM place graphics white codes down side of screen. 
90 FOR L=0 TO 24 

100 A=HIMEM+40*L : ?A=151 
110 NEXT L 
119 REM Draw axes. 
120 PROCdraw(1,2,35,79,35) 
130 PROCdraw(1,40,0,40,74) 
139 REM Simultaneously plot curves. 
140 FOR I=2 TO 79 STEP 1 
150 PROCplot(1,I,COS(4-I/10)*30+35) 
160 PROCplot(1,I,SIN(4-I/10)*30+35) 
170 NEXT I 
180 *KEY0|!|W|J|H 
190 END 

 
200 REM plot 
210 DEF PROCplot(M,X,Y) 
220 LOCAL C,XX,YY 
229 REM Find address of character block which contains ‘pixel'. 
230 A=&7C00+(25-(Y DIV 3))*40+X DIV 2 
240 XX=X MOD2 : YY=Y MOD 3 
249 REM Make sure we have character in higher set (160 to 255). 
250 C=?A : IF C<128 THEN C=C+128 
259 REM Modify character. 
260 IF M=1 THEN C=C OR D(XX,YY) 
270 IF M=2 THEN C=C AND (D(XX,YY) EOR &FF) 
280 IF M=3 THEN C=C EOR D(XX,YY) 
289 REM Replace character. 
290 ?A=C 
300 ENDPROC 

 
400 REM draw 
410 DEF PROCdraw(M,X1,Y1,X2,Y2) 
420 DX=X2-X1 : DY=Y2-Y1 : SX=SGN(DX) : SY=SGN(DY) 
430 DX=ABS(DX) : DY=ABS(DY) 
440 IF DX=0 THEN ST=DY : SX=0 : GOTO 480 
450 IF DY=0 THEN ST=DX : SY=0 : GOTO 480 
460 IF DX>DY THEN SY=SY*DY/DX : ST=DX ELSE SX=SX*DX/DY : ST=DY 
470 IF ST=0 THEN ENDPROC 
479 REM Plot each pixel along line. 
480 FOR I=0 TO ST STEP SGN(ST) 
490 PROCplot(M,X1,Y1) 
500 X1=X1+SX : Y1=Y1+SY 
510 NEXT I 
520 ENDPROC 
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Exercise 13.1 
Change the value of NXNX and NYP1X in the ‘start’ procedure (listing 2.1) and 
alter ‘moveto’ and ‘lineto’ (listings 2.4 and 2.5) so that they produce calls to the 
‘plot’ and ‘draw’ procedures. This will allow you to use any of our existing two- 
dimensional and three-dimensional  graphics programs to draw 1ow-resolution 
teletext pictures. Figure 13.2 is a 1ow-resolution  picture of a cube that was drawn 
by the program from chapter 9 which has been altered in this way. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 13.2 
 

Listing 13,4 
 

2000 DEF PROCkeys 
2010 DEF PROCinitkeys 
2020 *KEY0|!|L 
2030 *KEY1|!|M 
2040 *KEY2|!|Z 
2050 *KEY3|!|\ 
2060 *KEY4|!|] 
2070 *KEY5|!|^ 
2080 *KEY6|!|_ 
2090 ENDPROC 

 
 

We now return to a discussion of the control codes. As we have seen, not all 
the codes are immediately available from the keyboard so we give a procedure 
‘initkeys’ (listing 13.4) which simplifies the entry of control codes that are not 
a1ready available on the keyboard by redefining the soft keys. Table 13.2 lists the 
codes accessible from the keyboard. 
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Table 13.2 Control codes available on the function keys 
 

Key  With shift  With control 
 

fl   141  Double height  129  Alpha red  145 Graphic red 
f2  154  Separated graphics    130  Alpha green  146 Graphic green 
f3  156  Black background  131  Alpha yellow  147 Graphic yellow 
f4  157  New background  132  Alpha blue  148 Graphic blue 
f5  158  Hold graphics  133  Alpha magenta    149 Graphic magenta 
f6  159  Release graphics  134  Alpha cyan  150 Graphic cyan 
f7  135  Alpha white  151 Graphic white 
f8  136  Start flash  152 Conceal 
f9  137  End flash  153 Contiguous graphics 

 
 

The codes flashing (136) and non-f1ashing (137) are already available with 
shift on function keys 8 and 9. Like all control codes, these affect the remainder 
of the line (unless the opposite code is encountered) and they each appear as a 
space. Flashing displays the characters as alternately a blank background and 
then the normal character in quick succession. We have already seen double- 
height characters (code 141). This again will affect everything to the end of the 
line unless the normal height is restored with code 140. 

To get different background colours in teletext we must first select a new 
colour (either graphics or text, it does not matter which) and follow it with the 
code for a new background (157). Since we are unable to select black as a 
foreground colour there must also be a special command to set a black 
background (code 156), and naturally you will have to introduce a new 
foreground colour. This means that the codes to set a new background will appear 
as two spaces on the screen. Code 152 enables you to conceal a string with 
background colour. If you overprint this code with a different code then the string 
becomes visible. 

The last four codes to be considered all relate to the relative position of the 
graphics characters. Contiguous graphics (code 153) is assumed for all lines and 
means that 1/6th character blocks all touch. Separated graphics (code 154) slightly 
separates these square blocks. When pictures are drawn in teletext it is obviously 
a disadvantage to have a blank space between different colours. The hold graphics 
code (158) is designed so that subsequent control codes will not be displayed as 
blanks but will have the previous graphics character repeated and displayed at that 
location. The release graphics code (159) turns off this effect. 

 
Example 13.4 
We use some of these commands in the program given in listing 13.5 which plays 
a ‘brickout’ game in mode 7. The program first prints out a double-height logo, 
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and requests a skill factor (0 difficult to 10 easy). Five coloured walls are drawn, 
and on pressing the space bar a bat appears and a ball is served into play. The bat 
is moved left and right by the corresponding cursor keys, and is used to hit the ball 
back into play. Whenever the ball hits a wall it knocks a brick out and increments 
the score. If the ball hits the bottom of the screen then the serve is over. You have 
three serves per game. If the ball penetrates the five walls and hits the top line then 
the bat gets smaller. 

 
Listing 13.5 

 
10 MODE 7 : HISCORE=0 
20 REPEAT 
30 PROCinit 
40 PROCgame 
50 PROCend 
60 UNTIL FALSE 
70 STOP 

 
100 REM Initialise game variables 
110 DEF PROCinit 
120 SCORE=0 : BALLS=3 
130 B$=" ppppp " : LB=5 
140 BRICK$="////////////////////////////////////" 
150 B=2 : *FX15,0 
160 REPEAT : CLS 
170 PROClogo(3,2) 
179 REM print twice for double height letters 
180 PRINT TAB(9,12);"SKILL LEVEL (0 TO 10)" 
190 PRINT TAB(9,13);"SKILL LEVEL (0 TO 10)" 
200 PRINT SPC(40): PRINT TAB(17,14);:INPUT S 
210 UNTIL S>=0 AND S<=10 
220 SKILL=S*10 
230 PROCwall 
240 ENDPROC 

 
300 REM game 
309 REM repeat all stages of game. Note you have 3 chances to 

move bat each time ball moves 
310 DEF PROCgame 
320 REPEAT 
330 PROCthrow 
340 REPEAT 
350 PROCkey 
360 PROCball 
370 PROCkey 
379 REM slow down game 
380 FOR I=1 TO SKILL : NEXT I 
390 PROCkey 
400 UNTIL OUT 
410 BALLS=BALLS-1 
420 UNTIL BALLS=0 
430 ENDPROC 

 
500 REM start new ball 
510 DEF PROCthrow 
520 PRINT TAB(1,17); : VDU 141 
530 FOR I%=0 TO 1 
540 PRINT TAB(8,16+I%); : VDU 141,136 
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550 PRINT"PRESS"; : VDU 130 
560 PRINT"""SPACE"""; : VDU 151 
570 PRINT"FOR BALL"; : VDU 137 
580 NEXTI% 
590 REPEAT:UNTIL INKEY(-99) 
600 PRINT TAB(1,17); : VDU 32 
610 FOR I%=0 TO 1 
620 PRINT TAB(8,16+I%);" " 
630 NEXT I% 
640 X=RND(20)+10 : Y=22 
650 XD=SGN(RND(1)-.5) : YD=-1 
660 PRINT TAB(X,Y);"0"; : OX=X : OY=Y 
670 OUT=FALSE 
680 ENDPROC 

 
700 REM check keyboard 
710 DEF PROCkey 
720 IF INKEY(-122) AND B<38-LB THEN B=B+1 
730 IF INKEY(-26) AND B>2 THEN B=B-1 
740 PRINT TAB(B,23);B$; 
750 ENDPROC 

 
800 REM move ball 
810 DEF PROCball 
820 Y=Y+YD : IF Y>23 THEN OUT=TRUE : GOTO 930 
830 IF Y=22 AND YD=-1 AND BRICKOUT THEN PROCwall 
840 X=X+XD : IF X<4 THEN X=3 : XD=-XD 
850 IF X>37 THEN X=38 : XD=-XD 
860 IF Y=2 THEN YD=-YD : IF LB=5 THEN B$=" ppp " : LB=3 

: PRINT TAB(B,23);B$;" "; 
870 PRINT TAB(X,Y); : A%=135 : C=USR(&FFF4) 

: C=(C AND &FF00)/&100 
880 IF C=47 THEN PROCbrickout : YD=-YD :SOUND0,-15,2,1 
890 IF C<>112 THEN 910 ELSE YD=-YD : SOUND 1,-15,150,1 

: IF X<>(B+1+INT(LB/2))THEN XD=SGN(XD)*2 ELSE XD=SGN(XD) 
900 IF C=112 THEN 920 
910 PRINT TAB(X,Y);"0"; 
920 IF OY=23 THEN 940 
930 PRINT TAB(OX,OY);" "; 
940 OX=X : OY=Y 
950 ENDPROC 

 
1000 REM draw new wall 
1010 DEF PROCwall 
1020 CLS : VDU23,1,0;0;0;0; 
1030 VDU 134 : PRINT" SCORE ";SCORE 
1040 PRINT TAB(22,0);"HISCORE ";HISCORE 
1050 FOR I%=1 TO 22 
1060 PRINT TAB(0,I%); : VDU 151 
1070 PRINT" j" 
1080 PRINT TAB(39,I%); : PRINT"5" 
1090 NEXT I% 
1100 FOR I%=5 TO 9 
1110 PRINT TAB(0,I%); : VDU 140+I% 
1120 PRINT TAB(3,I%); : PRINT BRICK$ 
1130 NEXT I% 
1140 PRINTTAB(3,1);"````````````````````````````````````" 
1150 PRINTTAB(0,23);:VDU150 
1160 BRICKOUT=FALSE 
1170 ENDPROC 
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1200 REM add score for a brick 
1210 DEF PROCbrickout 
1220 SCORE=SCORE+10-Y 
1230 IF SCORE>HISCORE THEN HISCORE=SCORE 
1240 PRINT TAB(10,0);SCORE : PRINT TAB(30,0);HISCORE 
1250 IF SCORE MOD 540=0 THEN BRICKOUT=TRUE 
1260 ENDPROC 

 
1300 REM end of game 
1310 DEF PROCend 
1319 REM delete remaining bricks 
1320 PRINT TAB(39,9); : I=0 
1330 REPEAT 
1340 PRINT" "; : VDU 8,8 : I=I+1 
1350 A=RND(200) 
1360 SOUND1,-10,A,1 : SOUND2,-10,1.5*A,1 : SOUND3,-10,A*1.75,1 
1370 UNTIL INKEY(-99) OR I=200 
1380 ENDPROC 

 
1400 REM print double height brickout logo on screen 
1410 DEF PROClogo(B,F) 
1420 PRINT TAB(0,0); 
1430 FOR I%=1 TO 25 
1440 B=(B+2) MOD 6 : F=(F+2) MOD 6 
1450 IF I%<>1 THEN PRINT 
1460 VDU 129+B,157,129+F,141 
1470 PRINT"*********** BRICKOUT ***********"; 
1480 NEXT I% 
1490 ENDPROC 

 
 

The game was written in a modular fashion similar to that of the worm game 
chapter 1. We shall not give a detailed description of the program since the 
technique of construction should be self-evident from the listing. However, it is 
instructive to note from the game logo that the background and foreground 
colours for the two halves of a double-height character need not be the same. 

 
We now consider the construction of the sort of pictures that are familiar to all 

owners of teletext televisions. It is possible to write a program to generate each 
individual picture, or painstakingly to create pictures by typing in codes and text 
from the keyboard. It is far better to use an interactive program for drawing 
displays like figure 13.3. We give such a program in listing 13.6. 

Because the screen is used by the program for displaying messages as well as 
for drawing the picture, it is essential to store a copy of the picture elsewhere in 
the memory. We chose the locations between &7800 and &7C00, which we call a 
picture buffer, and set HIMEM to &7800 to protect this area. Any intentional 
changes made to the diagram on the screen (that is, to the screen memory) are 
also made to the corresponding buffer locations. Hence even though the screen is 
overwritten at several stages by the program, the diagram can be restored from 
‘he memory buffer when required. The program includes an error-handling 
routine which ensures that any problems, apart from a deliberate BREAK, will 
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Figure 13.3 
 

Listing 13.6 
 

10 ON ERROR GOTO 1510 
20 MODE 7 : HIMEM=&7800 
30 *LOAD EDPIC 7800 
39 REM array giving bit values for blocks in graphics characters 
40 DIM D(1,2) 
50 FOR I%=0 TO 1 
60 FOR J%=0 TO 2 
70 READ D(I%,J%) 
80 NEXT J% 
90 NEXT I% 

100 DATA 16,4,1,64,8,2 
110 VDU 15 : VDU 23,1,0;0;0;0; 
120 *FX4,1 
130 PROCinitkeys 
139 REM initialise positions of text and graphics cursors 
140 TX=20 : TY=10 
150 GX=40 : GY=35 
160 X1=GX : Y1=GY 
169 REM display picture with menu 
170 PROCbackon 
180 PROCmenu 
189 REM printing is done inside one line window at bottom of 

screen to appear flashing 
190 REPEAT 
200 PRINT'" TELETEXT EDITOR "; 
209 REM FNkeys waits for a key press in the same way as INKEY$ 

but allows the cursor to move 
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210 A$=FNkeys(100) 
220 IF A$<>"" THEN PROCcommand 
230 PRINT'" INPUT COMMAND ? "; 
240 A$=FNkeys(100) 
250 IF A$<>"" THEN PROCcommand 
260 UNTIL FALSE 
270 END 
300 REM command 
310 DEF PROCcommand 
319 REM deal with any keypress 
320 PRINT'" INPUT COMMAND ? ";A$; 
330 IF A$=CHR$(13) THEN ENDPROC 
340 P=INSTR("BGIMT",A$) 
350 IF P=0 THEN PRINT" INVALID"; : A$=GET$ : GOTO 320 
360 PRINT 
370 IF A$="I" THEN PROCinit 
380 IF A$="M" THEN PROCmenu 
390 IF A$="T" THEN PROCtext 
400 IF A$="B" THEN PROCbyte 
410 IF A$="G" THEN PROCgraphic 
420 ENDPROC 

 
500 REM keys 
510 DEF FNkeys(T%) 
520 T=TIME 
530 REPEAT 
540 B$=INKEY$(0) 
550 SHIFT=INKEY(-1) 
559 REM if shift is pressed remove graphics cursor 
560 IF SHIFT THEN PROCplot(1,3,GX,GY) 
569 REM alter text/graphics cursor depending on shift 
570 IF B$=CHR$(&8B) THEN PROCup : B$="" 
580 IF B$=CHR$(&8A) THEN PROCdown : B$="" 
590 IF B$=CHR$(&88) THEN PROCleft : B$="" 
600 IF B$=CHR$(&89) THEN PROCright : B$="" 
609 REM redraw graphics cursor 
610 IF SHIFT THEN PROCplot(1,3,GX,GY) 
619 REM if non-cursor key pressed or time is up then return 
620 UNTIL TIME>T+T% OR B$<>"" 
630 =B$ 
700 REM up 
710 DEF PROCup 
719 REM move graphics cursor position 
720 IF SHIFT THEN GY=GY+1 : IF GY=75 THEN GY=0 
730 IF SHIFT THEN ENDPROC 
739 REM erase text cursor move it and redraw it 
740 PROCcursoff : TY=TY-1 : IF TY=-1 THEN TY=24 
750 PROCcurson : ENDPROC 

 
800 REM down 
809 REM see up 
810 DEF PROCdown 
820 IF SHIFT THEN GY=GY-1 : IF GY=-1 THEN GY=74 
830 IF SHIFT THEN ENDPROC 
840 PROCcursoff : TY=TY+1 : IF TY=25 THEN TY=0 
850 PROCcurson : ENDPROC 

 
900 REM right 
909 REM see up 
910 DEF PROCright 
920 IF SHIFT THEN GX=GX+1 : IF GX=80 THEN GX=2 
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930 IF SHIFT THEN ENDPROC 
940 PROCcursoff : TX=TX+1 :IF TX=40 THEN TX=0 
950 PROCcurson : ENDPROC 

 
1000 REM left 
1009 REM see up 
1010 DEF PROCleft 
1020 IF SHIFT THEN GX=GX-1 : IF GX=1 THEN GX=79 
1030 IF SHIFT THEN ENDPROC 
1040 PROCcursoff : TX=TX-1 : IF TX=-1 THEN TX=39 
1050 PROCcurson 
1060 ENDPROC 

 
1100 REM get 
1109 REM return the value stored on the screen at location X,Y 
1110 DEF FNget(X,Y) 
1120 A%=&7C00+Y*40+X : =?A% 
1200 REM put 
1210 DEF PROCput(A,X,Y,CHAR) 
1219 REM store the CHARacter at X,Y either on the screen (A=1) 

or in the buffer (A=0) 
1220 A%=&7800+A*&400+Y*40+X 
1230 ?A%=CHAR : ENDPROC 

 
1300 REM curson 
1310 DEF PROCcurson 
1319 REM remove graphics cursor, store current value at text cursor 

position and replace with a square, replace graphics 
1320 PROCplot(1,3,GX,GY) : TST=FNget(TX,TY) : PROCput(1,TX,TY,255) 

: PROCplot(1,3,GX,GY) 
1330 ENDPROC 

 
1400 REM cursoff 
1410 DEF PROCcursoff 
1419 REM remove graphics cursor and replace text cursor by old 

screen value then replace graphics cursor 
1420 PROCplot(1,3,GX,GY) : PROCput(1,TX,TY,TST) : PROCplot(1,3,GX,GY) 
1430 ENDPROC 

 
1500 REM error section 
1509 REM if error occurs in loading EDPIC then carry on 
1510 IF ERL=30 THEN 40 
1519 REM if any other error occurs save the picture from buffer 

and then... 
1520 *SAVE EDPIC 7800 7C00 
1529 REM report error in usual way 
1530 MODE 7 : REPORT : IF ERL<>0 THEN PRINT" at line ";ERL : VDU 14 
1539 REM reset cursor keys and stop 
1540 *FX4,0 
1550 END 

 
1600 REM backup 
1610 DEF PROCbackup 
1619 REM copy screen to buffer 
1620 LOCAL I% : FOR I%=0 TO 996 STEP 4 
1630 I%!&7800=I%!&7C00 : NEXT I% 
1640 ENDPROC 

 
1700 REM backon 
1710 DEF PROCbackon 
1719 REM copy buffer to screen 
1720 LOCAL I% : FOR I%=0 TO 996 STEP 4 
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1730 I%!&7C00=I%!&7800 : NEXT I% 
1739 REM replace cursors 
1740 PROCplot(1,3,GX,GY) : PROCcurson 
1750 ENDPROC 

 
1800 REM menu 
1810 DEF PROCmenu 
1819 REM retrieve picture from buffer set window for menu 
1820 PROCbackon 
1830 VDU 28,2,21,39,4 : CLS 
1839 REM put control codes for yellow background outside window 

so they can't scroll away 
1840 FOR I%=4 TO 21 : PROCput(1,0,I%,131) : PROCput(1,1,I%,157) 

: NEXT I% 
1849 REM print out instructions with pauses making operating system 

scroll window up 
1850 PRINT TAB(0,16);" COMMAND M FOR MENU DISPLAY/REMOVAL" 
1860 A$=INKEY$(10) : PRINT'" USE CURSOR KEYS TO MOVE TEXT CURSOR " 
1870 A$=INKEY$(10) : PRINT'" USE SHIFT/CURSOR KEYS FOR GRAPHICS " 
1880 A$=INKEY$(10) : PRINT'" COMMAND T TO PLACE TEXT AT CURSOR" 
1890 A$=INKEY$(10) : PRINT'" COMMAND B TO ALTER BYTE AT CURSOR" 
1900 A$=INKEY$(10) : PRINT'" COMMAND G FOR GRAPHICS FUNCTION" 
1910 A$=INKEY$(10) : PRINT'" COMMAND I TO INIT TEXT/GRAPHICS" 
1919 REM back to the top of window print double height header 
1920 VDU30 : PRINT'SPC(12);CHR$(141);"COMMANDS" 
1930 PRINT SPC(12);CHR$(141);"COMMANDS" 
1939 REM alternate colours of two halves of header by colour codes 

while waiting 
1940 REPEAT 
1950 PROCput(1,10,5,133) : PROCput(1,10,6,130) 
1960 C$=INKEY$(50) : IF C$="M" THEN 1990 
1970 PROCput(1,10,6,133) : PROCput(1,10,5,130) 
1980 C$=INKEY$(50) 
1990 UNTIL C$="M" 
1999 REM replace picture and remove window 
2000 PROCbackon : VDU 28,0,24,39,24 
2010 VDU 15,30 
2020 ENDPROC 

 
2100 REM plot 
2110 DEF PROCplot(A,M,X,Y) 
2120 LOCAL C,XX,YY 
2129 REM calculate character position containing the point either 

on the screen (A=1) or in the buffer (A=0) 
2130 A=A*&400+&7800+(25-(Y DIV 3))*40+X DIV 2 
2139 REM find coordinates of point within the character 
2140 XX=X MOD 2 : YY=Y MOD 3 
2150 C=?A : IF C<128 THEN C=C+128 
2160 IF M=1 THEN C=C OR D(XX,YY) 
2170 IF M=2 THEN C=C AND(D(XX,YY) EOR &FF) 
2180 IF M=3 THEN C=C EOR D(XX,YY) 
2190 ?A=C 
2200 ENDPROC 

 
2300 REM draw 
2310 DEF PROCdraw(A,M,X1,Y1,X2,Y2) 
2319 REM draw a line from X1,Y1 to X2,Y2 either on the screen (A=1) 

or in the buffer (A=0) 
2320 DX=X2-X1 : DY=Y2-Y1 : SX=SGN(DX) : SY=SGN(DY) 
2330 DX=ABS(DX) : DY=ABS(DY) 
2339 REM find the amounts by which one coordinate must change assuming 

the other has a larger distance and is moving in steps of one 
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2340 IF DX=0 THEN ST=DY : SX=0 : GOTO 2380 
2350 IF DY=0 THEN ST=DX : SY=0 : GOTO 2380 
2360 IF DX>DY THEN SY=SY*DY/DX : ST=DX ELSE SX=SX*DX/DY : ST=DY 
2370 IF ST=0 THEN ENDPROC 
2379 REM go along line adding step size to coordinates and 

plotting resulting point 
2380 FOR I=0 TO ST STEP SGN(ST) 
2390 PROCplot(A,M,X1,Y1) 
2400 X1=X1+SX : Y1=Y1+SY 
2410 NEXT I 
2420 ENDPROC 

 
2500 REM init 
2510 DEF PROCinit 
2520 REPEAT : INPUT" INITIALISE G OR T ? "B$ : UNTIL B$="G" OR B$="T" 
2530 REPEAT : INPUT" WHICH COLOUR ( 1 TO 7 ) ? "C : UNTIL C>0 AND C<8 
2540 REPEAT : INPUT" RANGE OF LINES ? "T,B 

: UNTIL T<B AND T>=0 AND B<=24 
2550 IF B$="G" THEN C=C+144 ELSE C=C+128 
2559 REM place a colour code (either text or graphics) at the start 

of each line in range both in buffer and on screen 
2560 FOR I=T TO B : PROCput(1,0,I,C) : PROCput(0,0,I,C) : NEXT I 
2570 ENDPROC 

 
2600 REM text 
2610 DEF PROCtext 
2619 REM show whole picture and reset cursor so copy can be used 
2620 PROCbackon 
2630 *FX4,0 
2640 VDU 23,1,1,0;0;0;0; : VDU 28,0,24,39,0 
2650 PRINT TAB(TX,TY); : INPUT""ANY$ : IF LEN(ANY$)=0 THEN 2670 
2659 REM put the string into buffer 
2660 FOR I=1 TO LEN(ANY$) : PROCput(0,TX+I-1,TY,ASC(MID$(ANY$,I,1))) 
: NEXT I 
2669 REM reset mode 7 in case string was entered on bottom line 

scrolling screen 
2670 VDU 22,7 
2680 VDU 23,1,0,0;0;0;0; : VDU 28,0,24,39,24 
2689 REM redisplay picture and reset cursor keys for program use 
2690 PROCbackon 
2700 *FX4,1 
2710 ENDPROC 

 
2800 REM byte 
2810 DEF PROCbyte 
2820 PROCbackon 
2829 REM set one line window below byte and scroll to clear 

before printing value 
2830 TT=(TY+1) MOD 25 : TS=(TY-1) MOD 25 : VDU 28,0,TT,39,TT 
2840 PRINT'" 
2849 REM set one line window above byte and input new value 

‘return'=0 for no change 
2850 VDU 28,0,TS,39,TS 
2860 PRINT 
2870 REPEAT : INPUT" WHAT ASCII CODE ( 32 TO 255 ) ? "C : UNTIL C>31 
AND C<256 OR C=0 
2880 IF C=0 THEN 2910 
2890 PROCput(0,TX,TY,C) : PROCput(1,TX,TY,C) 
2900 IF TY<> 24 THEN TST=C 
2910 PROCbackon : VDU 28,0,24,39,24 
2920 ENDPROC 
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3000 REM graphic 
3010 DEF PROCgraphic 
3019 REM plot point at cursor or draw line from last point 

specified to cursor 
3020 REPEAT : INPUT" PLOT OR DRAW ( P OR D ) ? "A$ 

: UNTIL A$="P" OR A$="D" 
3030 REPEAT : INPUT" FOREGROUND,BACKROUND,EOR ( 1,2,3 ) ? "A 

: UNTIL A>0 AND A<4 
3040 PROCbackon 
3049 REM plot points directly into buffer then restore picture 
3050 IF A$="P" THEN PROCplot(0,A,GX,GY) 
3060 IF A$="D" THEN PROCdraw(0,A,X1,Y1,GX,GY) 
3070 X1=GX : Y1=GY 
3080 PROCbackon 
3090 ENDPROC 

 
3100 REM initkeys 
3110 DEF PROCinitkeys 
3119 REM set keys to produce more teletext codes directly 
3120 *KEY0|!|L 
3130 *KEY1|!|M 
3140 *KEY2|!|Z 
3150 *KEY3|!|\ 
3160 *KEY4|!|] 
3170 *KEY5|!|^ 
3180 *KEY6|!|_ 
3190 ENDPROC 

 
save the diagram as file EDPIC on backing store before ending. Before you start 
any construction you may wish to clear the picture buffer locations by typing 

 
CLS : PROCbackup 

 
Initially the program will try to load the edit picture EDPIC from backing store; 
however if this is not available the program will continue on to the next line when 
you press ESCAPE (if you are using tape backing store) or it will continue 
automatically (if you are using disks)    hence the need to clear the screen at the 
beginning of a diagram construction. Having loaded this picture (from the backing 
store or the buffer) the program will display it on the screen and then immediately 
display a menu over the top of it. This menu can be recalled or removed at any 
time by pressing key M. The other options available with this interactive program 
are Initialise, Graphics, Text and Byte. These commands are called by typing their 
initial letter and are described below. 

Initialise is used to place a Graphics or Text colour code (of any colour) in the 
first column of each one of a range of lines (a subset of rows 0 to 24). This will 
affect the whole line unless countermanded  by graphics/text colour codes further 
along that line. Text enables the typing of text and control codes on the screen 
(remember that if you want to start a text string with a space then you must 
enclose the whole entry in quotes). When text is being typed the copy cursor is 
enabled, so making it simple to copy parts of the screen to new locations. 
RETURN enables you to exit from this section of the program so that you can 
input another command. 
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Graphics allows you to use point plotting and line-drawing routines which 
include a choice of ‘plot’ options (background, foreground or EOR). The ‘draw’ 
command will draw from the last point specified either by plot or from the end of 
the last line drawn. The program creates a graphics cursor, by EORing a single 
point on the screen, which can be moved by using the shift and cursor keys. 
When this graphics cursor runs through alphanumeric lines (as opposed to 
graphics) it will appear as a text character. Sometimes the graphics cursor is 
invisible, but holding down the shift key makes it flash, thus making it visible. 
The ‘plot’ and ‘draw’ procedures have an extra parameter which allows you to 
plot either on the screen as with the graphics cursor (which is not stored with the 
diagram), or directly into the buffer area as with line drawing. The text/graphics 
cursors must be moved into position prior to entering the Text and Graphics 
sections. 

Byte allows you to read directly the value currently positioned at the text 
cursor location. This enables you to see exactly which control code or character 
is at that position, and allows you either to alter it by typing in the replacement 
value or to RETURN. This is especially helpful if a graphics hold mode is 
operative, which effectively hides the control codes. 

The program will automatically save the picture as file EDPIC on 
encounterin1 an error, such as typing ESCAPE by accident, so that any 
alterations are not lost. If you do not wish to save the picture, type BREAK to 
halt the program. The picture will still be in the buffer in memory. 

 
Example 13.5: Animation 
We can use the idea of a buffer to hold more than one picture in memory at any 
one time. This would be convenient for displaying simple teletext diagrams as a 
slide show in lectures or as advertisements.  Since each picture occupies only 1K 
of store, at least twenty teletext pictures can be fitted into the memory at once. 
This is impossible for modes 0 to 2 since each screenful takes up 20K of memory 
in these modes. We simply set HIMEM to protect whatever area we wish to use 
for picture storage and then transfer each picture to the actual screen memory 
when required. Listing 13.7 contains an assembler routine to do this. Because 
user-defined characters are unavailable in mode 7 we can use this part of the 
memory (locations starting at &C00) to store the machine code produced by this 
program. It also stores the code as a file DISPLAY on backing store. This routine 
uses the OSBYTE call with the accumulator A set to 19, which allows the machine 
to wait for the start of the next refresh of the screen before copying the data to the 
screen: this helps to eliminate flickering. The program in listing 13.8 allows us to 
display any one of 20 pictures by typing a number between 0 and 19. Even when 
called from BASIC programs, this routine is fast enough to display a new picture 
within the time the machine takes to refresh the screen, and so it enables us to 
display animated pictures. We simply draw a set of pictures at varying stages of 
rotation, and arrange that the last frame is the same as the first. The movie section 
of the program (accessed by typing M) displays all the 
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pictures in rapid succession to get the animation effect. Listing 13.8 draws 
twenty pictures of a simple curve rotated through a further   /40 radians with each 
frame, and stores each picture at the correct location in memory by using a 
modified version of the ‘backup’ procedure of the teletext editor (listing 13.6). 
Then the program allows the slide show and movie procedures to display. 

 
Listing 13.7 

 
9 REM display routine transfers a teletext picture to screen 

10 OSBYTE=&FFF4 
20 FOR I=0 TO 3 STEP 3 
30 P%=&C00 
39 REM multiply picture number in A by four and add to start of 

pictures to get hi-byte, use *FX19 to wait, then transfer 
40 [OPT I 
50 ASL A : ASL A 
60 CLC : ADC #&2C 
70 STA &71 
80 LDA #&7C : STA &73 
90 LDY #0 : STY &70 : STY &72 

100 LDX #4 
110 LDA #19 : JSR OSBYTE 
120 .LOOP 
130 LDA (&70),Y : STA (&72),Y 
140 INY : BNE LOOP 
150 INC &71 : INC &73 
160 DEX : BNE LOOP 
170 RTS 
180 ] 
190 NEXT 
199 REM run address set to a RTS in ROM so that program can be 

loaded from disk by *<fsp> 
200 *SAVE DISPLAY C00 +30 FFB8 

 
Listing 13.8 

 
10 MODE 7 
20 HIMEM=&2C00 
30 DIM D(1,2) 
40 FOR I%=0 TO 1 
50 FOR J%=0 TO 2 
60 READ D(I%,J%) 
70 NEXT J% 
80 NEXT I% 
90 DATA 16,4,1,64,8,2 

100 *LOAD DISPLAY 
109 REM draw 20 frames of movie with curve rotating through PI/2 
110 FOR F=0 TO 19 
120 ANG=F*PI/40 
129 REM for each frame put graphics white codes down the side 
130 CLS 
140 FOR I=0 TO 24 : PRINT TAB(0,I); : VDU 151 : NEXT I 
149 REM draw clover leaf curve 
150 OX=40+30*COS(ANG) : OY=38+30*SIN(ANG) 
160 FOR I=0 TO 2*PI STEP PI/100 
170 S=SIN(I+ANG) : C=COS(I+ANG) 
180 S2=SIN(2*I) : C2=COS(2*I) 
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190 R=(C2^3+S2^3)*30 
200 X2=40+R*C : Y2=38+R*S 
210 PROCdraw(1,OX,OY,X2,Y2) 
220 OX=X2 : OY=Y2 
230 NEXT I 
239 REM store frame F in memory 
240 PROCbackup(F) 
249 REM until all twenty frames are prepared and stored 
250 NEXT F 
260 PROCshow 
270 END 

 
300 REM plot 
310 DEF PROCplot(M,X,Y) 
320 LOCAL C,XX,YY 
330 A=&7C00+(25-(Y DIV 3))*40+X DIV 2 
340 XX=X MOD2 : YY=Y MOD 3 
350 C=?A : IF C<128 THEN C=C+128 
360 IF M=1 THEN C=C OR D(XX,YY) 
370 IF M=2 THEN C=C AND (D(XX,YY) EOR &FF) 
380 IF M=3 THEN C=C EOR D(XX,YY) 
390 ?A=C 
400 ENDPROC 

 
500 REM draw 
510 DEF PROCdraw(M,X1,Y1,X2,Y2) 
520 LOCAL DX,DY,SX,SY,ST,I 
530 DX=X2-X1 : DY=Y2-Y1 : SX=SGN(DX) : SY=SGN(DY) 
540 DX=ABS(DX) : DY=ABS(DY) 
550 IF DX=0 THEN ST=DY : SX=0 : GOTO 580 
560 IF DY=0 THEN ST=DX : SY=0 : GOTO 580 
570 IF DX>DY THEN SY=SY*DY/DX : ST=DX ELSE SX=SX*DX/DY : ST=DY 
580 IF ST=0 THEN ENDPROC 
590 FOR I=0 TO ST STEP SGN(ST) 
600 PROCplot(M,X1,Y1) 
610 X1=X1+SX : Y1=Y1+SY 
620 NEXT I 
630 ENDPROC 

 
700 REM show 
710 DEF PROCshow 
719 REM ensure screen hasn't scrolled and that mode 7 is set 
720 VDU 22,7 
729 REM if you have a file of twenty frames already stored 
730 INPUT" NAME OF SLIDE FILE OR PRESS <RETURN> ",A$ 
740 IF A$="" THEN CLS : GOTO 770 
749 REM use CLI to load file 
750 $&7D00="LOAD "+A$+" 2C00" 
760 X%=0 : Y%=&7D : CALL &FFF7 
769 REM alternate between single frame slide show and continuous movie 
770 REPEAT 
780 REPEAT 
790 VDU 26 : INPUT A$ 
800 A%=VAL(A$) 
809 REM put selected frame onto screen 
810 CALL &C00 
820 UNTIL A$="M" 
829 REM if M is pressed start showing frames in quick succession 
830 REPEAT 
840 FOR A%=0 TO 19 
850 CALL&C00 
860 NEXT A% 
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870 UNTIL INKEY(0)>-1 
879 REM never leave until escape 
880 UNTIL FALSE 
890 ENDPROC 
900 REM backup 
910 DEF PROCbackup(FRAME) 
920 LOCAL I%,A% 
929 REM start address from frame 
930 A%=&2C00+&400*FRAME 
939 REM transfer data from screen 
940 FOR I%=0 TO 996 STEP 4 
950 I%!A%=I%!&7C00 
960 NEXT I% 
970 ENDPROC 

 
 

Complete Programs 
 

I   Listing 13.1. No data required. 
II   Listing 13.2. No data required. 
II   Listing 13.3. No data required. 

IV   Listing 13.5. The ‘brickout’ game. Type in the skill level (try 10), then type 
a space to start the game and move the bat with the left and right cursors. 

V   Listing 13.6. The teletext interactive diagram construction package. Try the 
following sample inputs (those underlined). 

Type M, T, move the text cursor into position by using the cursor keys 
and type hello folks (note lower case characters). Then move the text cursor 
over the ‘e’ and type B. This will show the ASCII code for the character that 
is at present occupying that screen position (namely ‘e’ = ASCII 101). Type 
117 and RETURN. Now move the cursor away and you will see a ‘u’ replace 
the ‘e'  . Then type I and T and you will be asked for a colour (try 1) and a 
range of lines (try the whole screen 0, 24). Everything should go red. Now 
type I, G, a colour (2), and range (again 0, 24), and the lower case red text 
characters change into green graphics characters. 

VI   Listings 13.7 and 13.8. First run 13.7 which creates the file DISPLAY. Then 
run listing 13.8 which reloads DISPLAY and either loads 20 pictures from 
backing store or on typing RETURN takes about 15 minutes to draw them. 
Then type an integer between 0 and 19 to get an individual frame, or M to 
get a movie: any key will stop it. 
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14 Advanced Programming Techniques 
 
 
 
 

To give your programs that really professional quality it is essential to make them 
user friendly. This is one of the few pieces of advertising jargon that actually bears 
any relation to reality: it is essential to make programs easy to use, not just for 
yourself but for other people. We have all returned to programs written in a hurry 
three months previously, only to find that they are so badly structured/ commented 
that we cannot understand them. It is good programming practice to comment all 
but the most trivial programs, as well as to make their output self- explanatory. 
Mode 7 listings enable you to introduce colour codes that highlight sections of the 
program. REMarks do take up a great deal of space in the 
memory, but you must distinguish between a listing for general distribution and 
heavily used working programs. If you take a sensible approach at the beginning, 
and plan your programs, you can save a great deal of time and effort later on. For 
example, our placing of all BASIC statements on lines ending in 0 and REMs on 
lines ending in 9 makes the REM stripper (AUT09, 10) a simple way to turn a 
readable program into a memory-wise efficient one. Do not take the need to save 
store to ludicrous extremes; space out statements and never place too many 
BASIC statements on any one line    this makes programs incomprehensible. 
Ensure that the prompts displayed while you are actually RUNning the program 
are clear and concise. Another simple way of providing help is to include an 
introductory instruction routine, as found on many video games. 

In programs where a set of routines may be used in any order or combination, 
the usual method of providing for selection between options is the menu (such as 
the CHARACTER  GENERATOR  1 program, listing 5.6). Provided that the 
prompts are appropriate to the actions that they initiate, then this method is 
especially useful for people who do not understand the details of the program and 
are using it only as a drawing tool. Common-sense  plays its part in deciding what 
prompts should be issued. Avoid such classic misprompts as PRESS 1 FOR 
DUPLICATE DATA OR 2 FOR SINGLE DATA. If possible use cursor keys for 
movements about the screen (see option 3 of CHARACTER  GENERATOR  1); 
this will seem natural to any regular user of the BBC micro. 

As a rule it is best to write programs in modules. In this way each module can 
be tested individually and errors can be traced more quickly. Placing a coloured 
REMark before each procedure, routine or function allows us to isolate sections 
of the program and then read, correct and adapt them with ease. 
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A common-sense  practical approach saves a great deal of time in the long run. It 
is also very useful to understand exactly how the operating system stores and 
deals with BASIC programs. This is dealt with later in this chapter but first we 
introduce a simple disassembler which can be used to look at the storage of such 
programs. This disassembler is also extremely useful for rescuing programs that 
have become corrupted, for debugging assembly language programs or for 
understanding the operating system. 

 
Listing 14.1 

 
10 OSBYTE=&FFF4 : OSWORD=&FFF1 : OSASCI=&FFE3 
20 OSRDCH=&FFE0 : CLI=&FFF7 
30 IF ?&8015=49 THEN HEXSP=&856A : HEX=&8570 ELSE HEXSP=&B562: HEX=&B545 
40 OUT=&70 : PUT=&71 : SP=&72 : BPT=&74 
50 CONBLK=&76 : HI=&81 : LO=&80 : DISP=&82 : DH=&83 
60 UP=&85 : STK=&86 : ACR=&84 
70 OLO=&7B : OHI=&7C 
80 HA=&8D : HB=&8E : HC=&8F 
90 DLINES=&7D : NUMB=&7E : TEMPSTACK=&7F 

100 FOR OP=0 TO 3 STEP 3 
110 P%=&7000 
120 [OPT OP 
130 TSX : STX TEMPSTACK 
140 \ make sure BASIC rom is paged in since we will use it \ 
150 LDX#0:.ROM STX &FE30:LDA &8009:INX: CMP #ASC("B"):BNE ROM 
160 \ set &600 as address for string for OSWORD with A=0 \ 
170 LDA #0 : STA CONBLK : LDA #6 : STA CONBLK+1 
180 \ set display mode to Dump mode \ 
190 LDA #ASC("D") : STA DISP 
200 \ ST1 is string which sets mode 7 and prints instructions \ 
210 LDX #(ST1 MOD 256) 
220 LDY #(ST1 DIV 256) 
230 JSR OUTPUT 
240 \ *FX4,1 sets cursor keys to produce ascii codes \ 
250 LDA #4 : LDX #1 : JSR OSBYTE 
260 
270 
280 \ main loop, update display then deal with commands \ 
290 .L5 : JSR DISPLAY 
300 \ get key, if it's a command then execute else try again \ 
310 .L7 : JSR KEYIN 
320 \ deal with commands common to both modes \ 
330 CMP #ASC("D") : BNE NOND 
340 \ set display mode to either D or L \ 
350 .STD : STA DISP : JMP L5 
360 .NOND : CMP #ASC("L") : BEQ STD 
370 
380 \ if H command then input hex address \ 
390 CMP #ASC("H") : BNE NONH 
400 \ begin H command, PRINT TAB(15,2); \ 
410 .HGIN : LDX #15 : LDY #2 : JSR SETAB 
420 \ input 4 characters in range 0-F \ 
430 LDA #4 : LDX #ASC("0") : LDY #ASC("F") : JSR STRIN 
440 \ convert first two chars to one byte, if error then reinput \ 
450 JSR DHEX : BCC HGIN : LDA DH : STA HI 
460 \ convert next two chars to one byte \ 
470 LDA &602 : STA &600 : LDA &603 : STA &601 : JSR DHEX 
480 \ if error then reinput \ 
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490 BCC HGIN : LDA DH : STA LO : JMP L5 
500 
510 \ check display mode if it's L then do L COMmands \ 
520 .NONH : LDX DISP : CPX #ASC("L") : BNE NONF : JMP LCOM 
530 
540 \ commands only available in Dump mode \ 
550 \ check for cursor keys and alter address accordingly \ 
560 .NONF : CMP #&88 : BNE NLEFT 
570 \ cursor left, take one off \ 
580 LDA LO : BNE DE1 : DEC HI : .DE1 : DEC LO : JMP L5 
590 
600 .NLEFT  : CMP #&89 : BNE NRT 
610 \ cursor right, add one on \ 
620 INC LO : BNE DE2 : INC HI : .DE2 : JMP L5 
630 
640 .NRT : CMP #&8A : BNE NDOWN 
650 \ cursor down, add eight on \ 
660 LDA LO : CLC : ADC #8 : STA LO 
670 LDA HI : ADC #0 : STA HI : JMP L5 
680 
690 .NDOWN : CMP #&8B : BNE NMOVE 
700 \ cursor up, take eight off \ 
710 LDA LO : SEC : SBC #8 : STA LO 
720 LDA HI : SBC #0 : STA HI : JMP L5 
730 
740 \ not a cursor movement \ 
750 .NMOVE : CMP #ASC("A") : BNE NONA 
760 \ start of A command to ALTER a byte \ 
770 .AGIN : LDY #14 
780 \ ACR is no of bytes ACRoss cursor is on display \ 
790 LDA ACR : ASL A : CLC : ADC ACR : CLC : ADC #6 
800 \ set text position TAB(ACR*3+6,14); \ 
810 TAX : JSR SETAB 
820 \ get two characters between 0 and F \ 
830 LDA #2 : LDX #ASC("0") : LDY #ASC("F") : JSR STRIN 
840 \ convert chars to byte value, store if valid or reinput \ 
850 JSR DHEX : BCC AGIN : LDA DH : LDY #0 : STA (LO),Y 
860 JMP L5 
870 
880 
890 \ characters to hex conversion routine \ 
900 .DHEX : LDA &600 : CMP #ASC("9")+1 : BCS AL1 
910 AND #&0F : BCC TIP 
920 .AL1 : CMP #ASC("A") : BCC ERHEX : SBC #ASC("A")-10 
930 \ put value of first hex digit in top half of byte \ 
940 .TIP : ASL A : ASL A : ASL A : ASL A : STA DH 
950 LDA &601 : CMP #ASC("9")+1 : BCS AL2 
960 AND #&0F : BCC BOT 
970 .AL2 : CMP #ASC("A") : BCC ERHEX : SBC #ASC("A")-10 
980 \ mix value of second digit in as bottom half \ 
990 .BOT : ORA DH : STA DH : SEC 

1000 \ if error detected then carry flag is unset \ 
1010 .ERHEX : RTS 
1020 
1030 
1040 \ back to checking commands \ 
1050 .NONA : CMP #ASC("S") : BNE NONS 
1060 \ start of S command, set text position to ascii dump \ 
1070 .SGIN : LDY #14 : LDA ACR : CLC : ADC #30 : TAX : JSR SETAB 
1080 \ get up to 255 characters between blank and alpha white \ 
1090 LDA #255 : LDX #ASC(" ") : LDY #&87 : JSR STRIN 
1100 \ copy all characters from buffer to memory \ 
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1110 LDX #0 : LDY #0 
1120 \ stop when we find a carriage return \ 
1130 .LOP : LDA &600,X : CMP #&0D : BEQ FINLOP 
1140 STA (LO),Y : INY : INX : BNE LOP 
1150 .FINLOP : JMP L5 
1160 
1170 \ arrive here if keypress was nonsense \ 
1180 .NONS 
1190 JMP L7 
1200 
1210 
1220 \ deal with commands for listing mode \ 
1230 .LCOM : CMP #&0D : BNE NONS 
1240 \ only return is valid, reset start to one line lower \ 
1250 LDA OLO : STA LO : LDA OHI : STA HI : JMP L5 
1260 
1270 
1280 \ disassemble routine used in Listing mode \ 
1290 .DIS : LDX #(ST2 MOD 256) 
1300 LDY #(ST2 DIV 256) 
1310 \ ST2 removes cursor and sets print position to (0,7) \ 
1320 JSR OUTPUT 
1330 \ set number of lines counter \ 
1340 LDA #16 : STA DLINES 
1350 .LINLOP 
1360 \ output address + space \ 
1370 LDA HI : JSR HEX : LDA LO : JSR HEXSP 
1380 \ copy following three bytes to buffer \ 
1390 \ three bytes in question are now HA,HB,HC \ 
1400 LDY #0 : LDX #3 
1410 .HALOP : LDA (LO),Y : STA HA,Y : INY : DEX : BNE HALOP 
1420 \ from opcode type find number of bytes in instruction \ 
1430 LDX HA : LDA TYPE,X : TAX : LDA NUM,X 
1440 \ move address on to next instruction \ 
1450 STA NUMB : CLC : ADC LO : STA LO : LDA #0 : ADC HI : STA HI 
1460 \ output bytes of instruction then... \ 
1470 LDX NUMB : LDY #3 : LDA HA : JSR HEXSP : DEY : DEX : BEQ PAD 
1480 LDA HB : JSR HEXSP : DEY : DEX : BEQ PAD 
1490 LDA HC : JSR HEXSP : DEX : BEQ MNEM 
1500 \ pad with spaces if necessary \ 
1510 .PAD : TYA : PHA 
1520 LDX #(ST4 MOD 256) : LDY #(ST4 DIV 256) : JSR OUTPUT 
1530 PLA : TAY : DEY : BNE PAD 
1540 \ add one more space before mnemonic \ 
1550 .MNEM : LDA #ASC(" ") : JSR OSASCI 
1560 \ find which mnemonic starts instruction \ 
1570 LDX HA : LDA HASH,X : ASL A : ASL A : STA OUT 
1580 \ multiply by 4 to find address in string of mnemonics \ 
1590 LDA #(STRING DIV 256) : STA PUT : LDX #4 : LDY #0 
1600 \ output four chars, first one is colour code \ 
1610 .MNMLOP : LDA (OUT),Y : JSR OSASCI : INY : DEX : BNE MNMLOP 
1620 LDA #ASC(" ") : JSR OSASCI 
1630 \ form rest of instruction depending on type \ 
1640 LDX HA : LDA TYPE,X : CMP #1 : BNE NOD1 
1650 \ type 1, immediate so format #&HH \ 
1660 LDA #ASC("#") : JSR OSASCI : LDA #ASC("&") : JSR OSASCI 
1670 \ Y is no. of spaces to make format 10 wide \ 
1680 LDA HB : JSR HEXSP : LDY #5 : JMP NDLINE 
1690 
1700 .NOD1 : CMP #2 : BNE NOD2 
1710 \ type 2, absolute format &HHHH \ 
1720 LDA #ASC("&") : JSR OSASCI : LDA HC : JSR HEX 
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1730 LDA HB : JSR HEXSP : LDY #4 : JMP NDLINE 
1740 
1750 .NOD2 : CMP #3 : BNE NOD3 
1760 \ type 3, zero page format &HH \ 
1770 LDA #ASC("&") : JSR OSASCI : LDA HB : JSR HEXSP 
1780 LDY #6 : JMP NDLINE 
1790 
1800 .NOD3 : CMP #4 : BNE NOD4 
1810 \ type 4, accumulator  format A \ 
1820 LDA #ASC("A") : JSR OSASCI : LDY #9 : JMP NDLINE 
1830 
1840 .NOD4 : CMP #5 : BNE NOD5 
1850 \ type 5, implied format \ 
1860 LDY #10 : JMP NDLINE 
1870 
1880 .NOD5 : CMP #6 : BNE NOD6 
1890 \ type 6, indirect x format (&HH,X) \ 
1900 LDA #ASC("(") : JSR OSASCI : LDA #ASC("&") : JSR OSASCI 
1910 LDA HB : JSR HEX : LDA #ASC(",") : JSR OSASCI 
1920 LDA #ASC("X") : JSR OSASCI : LDA #ASC(")") : JSR OSASCI 
1930 LDY #3 : JMP NDLINE 
1940 
1950 .NOD6 : CMP #7 : BNE NOD7 
1960 \ type 7, indirect y format (&HH),Y \ 
1970 LDA #ASC("(") : JSR OSASCI : LDA #ASC("&") : JSR OSASCI 
1980 LDA HB : JSR HEX : LDA #ASC(")") : JSR OSASCI 
1990 LDA #ASC(",") : JSR OSASCI : LDA #ASC("Y") : JSR OSASCI 
2000 LDY #3 : JMP NDLINE 
2010 
2020 .NOD7 : CMP #8 : BNE NOD8 
2030 \ type 8, zero page x  format &HH,X \ 
2040 LDA #ASC("&") : JSR OSASCI : LDA HB : JSR HEX 
2050 LDA #ASC(",") : JSR OSASCI : LDA #ASC("X") : JSR OSASCI 
2060 LDY #5 : JMP NDLINE 
2070 
2080 .NOD8 : CMP #9 : BNE NOD9 
2090 \ type 9, absolute x format &HHHH,X \ 
2100 LDA #ASC("&") : JSR OSASCI : LDA HC : JSR HEX 
2110 LDA HB : JSR HEX : LDA #ASC(",") : JSR OSASCI 
2120 LDA #ASC("X") : JSR OSASCI 
2130 LDY #3 : JMP NDLINE 
2140 
2150 .NOD9  : CMP #&A : BNE NODA 
2160 \ type A, absolute y format &HHHH,Y \ 
2170 LDA #ASC("&") : JSR OSASCI : LDA HC : JSR HEX 
2180 LDA HB : JSR HEX : LDA #ASC(",") : JSR OSASCI 
2190 LDA #ASC("Y") : JSR OSASCI 
2200 LDY #3 : JMP NDLINE 
2210 
2220 .NODA  : CMP #&B : BNE NODB 
2230 \ type B, relative format &HHHH \ 
2240 LDA #ASC("&") : JSR OSASCI 
2250 \ for relative must calculate address from displacement \ 
2260 LDA HB : CMP #&7F : BCS BACK 
2270 \ calculation for forward branch, leave lo-byte on stack \ 
2280 CLC : ADC LO : PHA : LDA #0 : ADC HI : CLC : BCC REL 
2290 \ calculation for backward branch, leave lo-byte on stack \ 
2300 .BACK : EOR #255 : ADC #0 : STA &70 : LDA LO : SEC : SBC &70 
2310 PHA : LDA HI : SBC #0 
2320 \ output hi-byte then get lo-byte and print that \ 
2330 .REL : JSR HEX : PLA : JSR HEXSP 
2340 LDY #4 : JMP NDLINE 
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2350 
2360 .NODB : CMP #&C : BNE NODC 
2370 \ type C, indirect format (&HHHH) \ 
2380 LDA #ASC("(") : JSR OSASCI : LDA #ASC("&") : JSR OSASCI 
2390 LDA HC : JSR HEX : LDA HB : JSR HEX 
2400 LDA #ASC(")") : JSR OSASCI : LDY #3 : JMP NDLINE 
2410 
2420 .NODC : CMP #&D : BNE NODD 
2430 \ type D, zero page y  format &HH,Y \ 
2440 LDA #ASC("&") : JSR OSASCI : LDA HB : JSR HEX 
2450 LDA #ASC(",") : JSR OSASCI : LDA #ASC("Y") : JSR OSASCI 
2460 LDY #5 : JMP NDLINE 
2470 
2480 .NODD : LDY #10 
2490 
2500 .NDLINE : LDA #ASC(" ") : JSR OSASCI : DEY : BNE NDLINE 
2510 \ output alpha white control code \ 
2520 LDA #&87 : JSR OSASCI 
2530 \ output ascii equivalents of bytes in instruction \ 
2540 LDX NUMB : LDY #0 
2550 .DISPLOP LDA HA,Y : JSR CHOUT :INY : DEX : BNE DISPLOP 
2560 \ if necessary pad with spaces to standard width \ 
2570 LDA #ASC(" ") : .PAD2 : JSR OSASCI : INY : CPY #4 : BNE PAD2 
2580 \ output sufficient spaces to get ready for next line \ 
2590 LDX #5 : .PAD3 : JSR OSASCI : DEX : BNE PAD3 
2600 \ if this was the first line then the address is where we \ 
2610 \ want to start next time if return is pressed \ 
2620 LDA DLINES : CMP #16 : BNE OVOLD 
2630 \ so store it somewhere \ 
2640 LDA LO : STA OLO :  LDA HI : STA OHI 
2650 \ keep doing lines until 16 done \ 
2660 .OVOLD : DEC DLINES : BEQ FINLIN : JMP LINLOP 
2670 .FINLIN : RTS 
2680 
2690 
2700 \ display routine calls either disassembler or dump \ 
2710 .DISPLAY : LDY #2 : LDX #15 : JSR SETAB 
2720 \ update address display \ 
2730 LDA HI : JSR HEX : LDA LO : JSR HEXSP 
2740 \ check whether Listing mode or not \ 
2750 LDA DISP : CMP #ASC("L") : BEQ DDISP 
2760 \ Dump mode just shows contents of memory \ 
2770 JSR SHOW : RTS 
2780 \ Listing mode produces disassembled display \ 
2790 .DDISP : JSR DIS : RTS 
2800 
2810 
2820 \ show routine \ 
2830 .SHOW : LDX #(ST2 MOD 256) 
2840 LDY #(ST2 DIV 256) 
2850 \ ST2 gets rid of cursor and sets print position to (0,7) \ 
2860 JSR OUTPUT 
2870 \ calculate byte at top so that active byte is central \ 
2880 LDA LO : AND #&F8 : SEC : SBC #64 : STA UP 
2890 LDA HI : SBC #0 : STA STK 
2900 \ find how many across to active byte \ 
2910 LDA LO : AND #7 : STA ACR 
2920 \ for X=0 to 15 , address=address+8 \ 
2930 LDX #0 : .L4 : STX STK+1 : LDA #8 : CLC : ADC UP : STA UP 
2940 LDA #0 : ADC STK : STA STK 
2950 \ output address plus space \ 
2960 JSR HEX : LDA UP : JSR HEXSP : LDA #ASC(" ") : JSR OSASCI 
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2970 \ for XX=0 to 7 \ 
2980 LDX #0 : .L2 : STX STK+2 : TXA 
2990 TAY 
3000 \ output each byte across line \ 
3010 LDA (UP),Y : JSR HEXSP 
3020 \ next XX \ 
3030 LDX STK+2 : INX : CPX #8 : BNE L2 
3040 \ for XX=0 to 7 \ 
3050 LDX #0 : .L3 :STX STK+2 : TXA 
3060 \ output each byte as ascii equivalent \ 
3070 TAY 
3080 LDA (UP),Y : JSR CHOUT 
3090 \ next XX \ 
3100 LDX STK+2 : INX : CPX #8 : BNE L3 
3110 \ move on to next line \ 
3120 LDA #ASC(" ") : JSR OSASCI : JSR OSASCI 
3130 \ next X \ 
3140 LDX STK+1 : INX : CPX #16 : BNE L4 
3150 \ calculate position of active byte in display \ 
3160 LDY #14 : LDA ACR : ASL A : CLC : ADC ACR 
3170 ADC #5 : STA STK+1 : TAX : JSR SETAB 
3180 \ put an alpha green in front of it \ 
3190 LDA #&82 : JSR OSASCI 
3200 LDA STK+1 : CLC : ADC #3 : TAX : LDY #14 : JSR SETAB 
3210 \ put an alpha white after it \ 
3220 LDA #&87 : JSR OSASCI 
3230 RTS 
3240 
3250 
3260 \ chout routine outputs ascii equivalent of byte \ 
3270 .CHOUT : CMP #ASC(" ") : BCC DUF 
3280 \ control codes or codes above &88 are not printed \ 
3290 CMP #&88 : BCS DUF 
3300 \ delete is not printed \ 
3310 CMP #127 : BNE OK 
3320 \ replace unprintable codes with a dot \ 
3330 .DUF : LDA #ASC(".") 
3340 .OK : JSR OSASCI : RTS 
3350 
3360 
3370 \ set tab position by printing ST3 with X,Y in it \ 
3380 .SETAB : STY ST3+2 : STX ST3+1 
3390 LDX #(ST3 MOD 256) : LDY #(ST3 DIV 256) 
3400 JSR OUTPUT : RTS 
3410 
3420 
3430 \ keyin clears the buffer and waits for a key \ 
3440 .KEYIN : LDX #0 : LDA #21 : JSR OSBYTE 
3450 JSR OSRDCH : BCS KEYERR : RTS 
3460 \ if an error has occurred then reset cursor keys \ 
3470 .KEYERR : STA STK+1 
3480 LDX #(ST6 MOD 256) : LDY #(ST6 DIV 256) : JSR CLI 
3490 LDA STK+1 : CMP #&1B : BNE KERR 
3500 \ acknowledge escape \ 
3510 LDA #&7E : JSR OSBYTE 
3520 .KERR 
3530 \ set the print position, reset the stack \ 
3540 LDX #0 : LDY #22 : JSR SETAB : LDX TEMPSTACK : TXS : BRK 
3550 \ use break to print error message \ 
3560 ] 
3570 $(P%+1)="End of DIS" : P%=P%+11 
3580 [OPT OP 
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3830 $(P%+80)=" A Alter byte " 
3840 $(P%+120)=" S String"  3850 P%=P%+LEN($P%) : ?P%=&FF    

 
 
 

3590 \ end of error marked by break \ 
3600 BRK 
3610 
3620 
3630 \ output a string of codes ending with an &FF \ 
3640 .OUTPUT : STX &70 : STY &71 
3650 LDY #0 
3660 .LOOP : LDA (&70),Y : CMP #&FF : BEQ OUTEND 
3670 JSR OSASCI : INY : BNE LOOP 
3680 .OUTEND : RTS 
3690 
3700 
3710 \ store parameters in control block and use OSWORD \ 
3720 \ with A=1 to get a string \ 
3730 .STRIN : STA CONBLK+2 : STX CONBLK+3 : STY CONBLK+4 
3740 LDX #(ST5 MOD 256) 
3750 LDY #(ST5 DIV 256) : JSR OUTPUT 
3760 LDA #0 : LDX #CONBLK : TAY : JSR OSWORD 
3770 BCS ESC1 : RTS 
3780 .ESC1 : LDA #&1B : JMP KEYERR 
3790 ] 
3800 ST1=P%+1 : !ST1=&0D0C0716 : P%=P%+5 
3810 $P%=" BBC Disassembler D Dump memory " 
3820 $(P%+40)=" H Hex addr. : 0000 L Listing " 

 
 

3860 ST2=P%+1 : !ST2=&00000117 : ST2!4=0 : P%=P%+9 
3870 !P%=&001F0000 : P%=P%+4 : !P%=&FF07 : P%=P%+2 
3880 ST3=P% : !P%=&0000001F : P%!4=&FF000000 : P%=P%+8 
3890 ST4=P% : !P%=&FF202020 : P%=P%+4 
3900 ST5=P% : !P%=&00010117 : ST5!4=0 : P%=P%+8 
3910 !P%=&FF000000 : P%=P%+4 
3920 ST6=P% : $ST6="FX4,0" : P%=P%+6 
3930 RESTORE 
3940 NUM=P% : FOR I=0 TO 14 : READ N% : P%?I=N% : NEXT I 
3950 P%=P%+15 
3960 P%=(P% DIV 256)+1 : P%=P%*256 
3970 HASH=P% : TYPE=P%+256 : P%=P%+512 : STRING=P% 
3980 NEXT OP 
3990 FOR I%=0 TO 255 STEP 4 : HASH!I%=0 : TYPE!I%=0 : STRING!I%=0 
: NEXT I% 
4000 REPEAT 
4010 READ A$ : IF A$="*" THEN 4050 
4020 IF ASC(A$)=ASC("-") THEN I=ABS(VAL(A$)) : GOTO 4010 
4030 M=EVAL("&"+LEFT$(A$,1)) : MN=EVAL("&"+RIGHT$(A$,2)) 
4040 HASH?MN=I : TYPE?MN=M 
4050 UNTIL A$="*" 
4060 A$="     ADC AND ASL BCC BCS BEQ BIT BMI BNE" 
4070 A$=A$+" BPL BRK BVC BVS CLC CLD CLI CLV CMP CPX" 
4080 A$=A$+" CPY DEC DEX DEY EOR INC INX INY JMP JSR" 
4090 A$=A$+" LDA LDX LDY LSR NOP ORA PHA PHP PLA PLP" 
4100 A$=A$+" ROL ROR RTI RTS SBC SEC SED SEI STA STX" 
4110 A$=A$+" STY TAX TAY TSX TXA TXS TYA" 
4120 $STRING=A$ 
4130 END 

 
4140 DATA1,2,3,2,1,1,2,2,2,3,3,2,3,2,1 
4150 DATA-1,169,26D,365,661,771,875,97D,A79 
4160 DATA-2,129,22D,325,621,731,835,93D,A39 
4170 DATA-3,20E,306,40A,816,91E 
4180 DATA-4,B90 
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4190 DATA-5,BB0 
4200 DATA-6,BF0 
4210 DATA-7,22C,324 
4220 DATA-8,B30 
4230 DATA-9,BD0 
4240 DATA-10,B10 
4250 DATA-11,500 
4260 DATA-12,B50 
4270 DATA-13,B70 
4280 DATA-14,518 
4290 DATA-15,5D8 
4300 DATA-16,558 
4310 DATA-17,5B8 
4320 DATA-18,1C9,2CD,3C5,6C1,7D1,8D5,9DD,AD9 
4330 DATA-19,1E0,2EC,3E4 
4340 DATA-20,1C0,2CC,3C4 
4350 DATA-21,2CE,3C6,7D6,9DE 
4360 DATA-22,5CA 
4370 DATA-23,588 
4380 DATA-24,149,24D,345,641,751,855,95D,A59 
4390 DATA-25,2EE,3E6,7F6,9FE 
4400 DATA-26,5E8 
4410 DATA-27,5C8 
4420 DATA-28,24C,C6C 
4430 DATA-29,220 
4440 DATA-30,1A9,2AD,3A5,6A1,7B1,8B5,9BD,AB9 
4450 DATA-31,1A2,2AE,3A6,ABE,DB6 
4460 DATA-32,1A0,2AC,3A4,8B4,9BC 
4470 DATA-33,24E,346,44A,856,95E 
4480 DATA-34,5EA 
4490 DATA-35,109,20D,305,601,711,815,91D,A19 
4500 DATA-36,548 
4510 DATA-37,508 
4520 DATA-38,568 
4530 DATA-39,528 
4540 DATA-40,22E,326,42A,836,93E 
4550 DATA-41,26E,366,46A,876,97E 
4560 DATA-42,540 
4570 DATA-43,560 
4580 DATA-44,1E9,2ED,3E5,6E1,7F1,8F5,9FD,AF9 
4590 DATA-45,538 
4600 DATA-46,5F8 
4610 DATA-47,578 
4620 DATA-48,28D,385,681,791,895,99D,A99 
4630 DATA-49,28E,386,D96 
4640 DATA-50,28C,384,894 
4650 DATA-51,5AA 
4660 DATA-52,5A8 
4670 DATA-53,5BA 
4680 DATA-54,58A 
4690 DATA-55,59A 
4700 DATA-56,598,* 
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The Disassembler 
 

It is often more reliable to do the job of rescuing programs by hand but it is 
always useful to have a disassembler that gives a convenient way of examining 
the memory and altering it. Running listing 14.1 creates a machine-code version 
of the disassembler program and stores it, starting at the location given by 
variable P% (line 80), which we set at &7000. It also stores this code in a file 
called DIS. You can run the code directly by typing CALL &7000 or by typing 
*DIS which loads the code from backing store and runs it. 

The micro immediately switches to teletext mode and displays a simple menu 
(coloured blue), the hexadecimal address of the currently active byte (in green) 
and a dump (in white). This dump is in the standard format generated by the 
*DUMP command of the disk filing system. It shows the contents of 128 
consecutive locations as 16 rows, each row containing (a) an address, (b) the 
contents of eight consecutive bytes of memory and (c) the characters equivalent 
to these bytes when treated as ASCII codes (a dot denotes an unprintable code). 
The address, which is always a multiple of 8, is the location of the first byte in 
the row. The currently active byte is coloured green and appears in the middle of 
the dump. We can return to the dump at any time by typing D. 

The currently active byte can be changed by typing H, which places a flashing 
cursor on the screen, thus signifying a request for four hexadecimal digits (it 
must be exactly four). A new dump centred at this new byte is then displayed. You 
can also change the active byte via the cursor keys; the screen scrolls where 
necessary to keep the active byte in the middle of the screen. 

You can alter the value of the currently active byte (and the equivalent ASCII 
character) by typing A followed by two hexadecimal digits, or by typing S which 
allows you to replace the ASCII dump with a new string; naturally the machine 
makes the equivalent alterations to the bytes. 

Option L changes the machine code into assembler mnemonics and gives a 
listing of 16 assembly codes; the code for the currently active byte is at the top of 
the screen. Immediately the currently active byte is redefined to be the byte that 
follows the last instruction that was displayed on the screen. Type RETURN and 
the code that contains this byte scrolls up on to the screen and the currently 
active byte is changed to one byte after the last code displayed. Typing L again 
displays the code that contains the currently active byte at the top of the screen 
and then changes its values in the same way as before so that it is just off the 
screen. H can be used to alter the currently active byte directly. If the currently 
active byte is not the first byte of a valid assembler instruction then three light- 
blue dashes are displayed when it is brought on to the screen. The locations that 
start at &7800 hold the table of mnemonics that are used by the List option of the 
disassembler. Each mnemonic is stored as four bytes, one for a colour code and 
three for the mnemonic characters. JMP has been set to red, JSR to green, 
branching instructions to yellow, BRK to purple, invalid bytes and NOP to light 
blue, RTI and RTS to dark blue. This allows us to colour code the mnemonics 
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and makes it easy for us to recognise these codes when Listed. You can change 
these colour codes if you wish by using the disassembler     you can even add 
flash. 

 
Exercise 14.1 
Experiment with this disassembler. LOAD a simple BASIC program at PAGE = 
&1900 and then type *DIS (having previously RUN listing 14.1). Set the 
currently active byte to &1900 and read through the BASIC program byte by 
byte to see how such a program is stored. Also see the sample input at the end of 
the chapter. 

 
 

The Structure of BASIC Programs 
 

The previous exercise will have raised a number of questions about the way the 
BBC microcomputer  stores BASIC programs. You will have noticed that the 
programs are stored line by line, starting with a cursor-return code (13) at 
location PAGE. Each line starts with the line number (16 bits) which takes up 
two locations, the hi-byte followed by the lo-byte; then comes a description of 
the line as a sequence of characters or TOKENs (see user guide) each of which 
takes up one byte, and finally a cursor-return (13). Apart from the line number all 
other numeric values are stored in a standard lo-hi format. 

 
Example 14.1 
To illustrate this idea we enter the trivial program that consists of a single line 10 
REM and use the indirection operator ‘?'. If we type 

 
PRINT ? PAGE, ? (PAGE + 1), ? (PAGE + 2) 

 
we shall see that the values 13, 0 and 10 are stored in locations PAGE, PAGE + 1 
and PAGE + 2 respectively. If we replace line 10 with another trivial statement, 
34 REM, we shall see that the representation of this new number is now stored in 
the latter two locations. 

 
The third byte for a line gives the length of the present line (the number of 

bytes including the line number, the third byte itself, the codes for the line and 
the final cursor-return) and it can be used to find the start of the next program 
line without traversing the whole of the present line. Whenever a reference is 
made to another line (for example, in a GOTO or THEN) then this line number is 
not stored directly but in a devious way. It is given as four bytes: a token &8D to 
indicate a reference and three 8-bit digits which are manipulated to give the 
required line number. The end of a program is indicated by ASCII 255 (&FF) 
following th$ ASCII 13 of the final line. 

We can get the operating system to print out the equivalent keyword for each 
token (or a character if not a token) by calling the routine at &B53A in the ROM 
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which accesses a table stored after location &806D. You should use the 
disassembler to investigate this table. 

 
A Search/Replace  and Listing Program 

 
We have all written programs to which on completion we would have preferred 
that different variable names had been given. Also when debugging a program it 
is difficult to locate the occurrence of specific variables. By using the 
information about how BASIC programs are stored we can write a program 
(listing 14.2) that will list any program, including itself. It also searches out text 
strings in the program and if required replaces them with alternative strings. 

 
Listing 14.2 
10 MODE 7 
20 INPUT"SEARCH ",A$ : SEARCH=(A$<>"") 
30 IF NOT SEARCH THEN REPLACE=FALSE : GOTO 50 
40 INPUT"REPLACE ",B$ : REPLACE=(B$<>"") 
49 REM use BASIC ROM routine to get keywords from tokens 
50 IF ?&8015=49 THEN DECRUNCH=&B53A ELSE DECRUNCH=&B50E 
60 INPUT"LOCATION OF PROGRAM ",P$ 
70 IF LEFT$(P$,1)="&" THEN P%=EVAL(P$) ELSE P%=VAL(P$) 
79 REM assume disk system is used 
80 IF P%=0 THEN P%=&1900 
89 REM find end of program 
90 Q%=P% : REPEAT : Q%=Q%+1 : UNTIL ?Q%=&FF 
99 REM if first byte of line number is 255 then stop 

100 P%=P%+1 : I=?P% : IF I=255 THEN END 
110 P%=P%+1 : I=I*256+?P% 
119 REM pad line number with blanks for printing 
120 C$=STR$(I) : IF LEN C$<6 THEN REPEAT C$=" "+C$ : UNTIL LEN 
C$=6 
130 C$=C$+" " : PRINTC$; 
140 P%=P%+1 
149 REM L% points to byte where lines length is stored 
150 L%=P% 
159 REM set flag to decide whether characters are inside quotes 
160 QUOTE=FALSE 
169 REM list each token of line 
170 REPEAT 
180 P%=P%+1 
190 A%=?P% : PROClist 
200 UNTIL P%=L%+?L%-3 
210 PRINT 
220 GOTO100 

 
300 REM list 
310 DEF PROClist 
319 REM first section deals with line numbers stored in code 
320 IF A%<>&8D THEN 390 
330 A%=?(P%+1)*4 : B%=?(P%+2) : C%=?(P%+3) 
340 S%=A% AND &C0 : B%=B% EOR S% 
350 S%=(A%*4) AND &C0 : C%=C% EOR S% 
360 PRINT"";B%+C%*256; 
370 P%=P%+3 
380 ENDPROC 
389 REM deal with all other tokens 
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390 T$=LEFT$($P%,LEN(A$)) 
399 REM highlight string if searching 
400 IF T$=A$ AND SEARCH AND NOT REPLACE THEN VDU 133 : 
PROCout(A$) : VDU 135 : P%=P%+LEN(A$)-1 : ENDPROC 
409 REM replace string if it isn't inside quotes 
410 IF T$=A$ AND REPLACE AND NOT QUOTE THEN PROCreplace : ENDPROC 
419 REM if quote symbol encountered reverse quotes flag 
420 IF A%=&22 THEN QUOTE=NOT QUOTE 
429 REM if character is inside quotes just print it out else 

use decrunch routine 
430 IF QUOTE THEN VDU A% ELSE CALL DECRUNCH 
440 ENDPROC 

 
500 REM replace 
510 DEF PROCreplace 
519 REM if the strings are different lengths the rest of the 

program must be moved 
520 DIFF=LEN A$-LEN B$ 
530 IF DIFF>0 THEN PROCdown(DIFF,P%) 
540 IF DIFF<0 THEN PROCup(DIFF,P%) 
549 REM temporarily save the byte that's overwritten 

by the carriage return 
550 T%=?(P%+LEN B$) 
559 REM replace string and restore following byte 
560 $P%=B$ : ?(P%+LEN B$)=T% 
570 A%=0:PROCout(B$):P%=P%+LEN(B$)-1 
580 ENDPROC 

 
600 REM down 
610 DEF PROCdown(N%,M%) 
619 REM move program from M% to end down by N% bytes 
620 FOR I%=M% TO Q% 
630 ?I%=I%?N% 
640 NEXT I% 
649 REM change length of current line and whole program 
650 ?L%=?L%-N% : Q%=Q%-N% 
660 ENDPROC 

 
700 REM up 
710 DEF PROCup(N%,M%) 
719 REM move program from M% to end up by N% bytes 
720 N%=ABS(N%) 
730 FOR I%=Q% TO M% STEP -1 
740 N%?I%=?I% 
750 NEXT I% 
759 REM change length of current line and whole program 
760 ?L%=?L%+N% : Q%=Q%+N% 
770 ENDPROC 

 
800 REM out 
810 DEF PROCout(C$) 
820 LOCAL I% 
829 REM output a string with decrunch 
830 FOR I%=1 TO LEN(C$) 
840 A%=ASC(MID$(C$,I%,1)) :  CALL DECRUNCH 
850 NEXT I% 
860 ENDPROC 
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You must load the program that you are investigating into the store at &1900 and 
then load listing 14.2 into the store somewhat above it (use TOP to find the 
location of the end of your first program). Now RUN the search program, which 
will first ask you for a search string. Typing a RETURN means you wish only to 
list the program. If you do specify a search string it will ask you for a 
replacement string. You can search/replace BASIC keywords by redefining the 
soft keys with their corresponding token and then entering them. If you RETURN 
without a replacement it will place a purple code in front of the search string. The 
listing then follows, starting at a specified location (RETURN means 
&1900). You can then SAVE the program in its adjusted form. 

 
Example 14.2 
Add the line 

 
315 1F A% = 58 THEN PRINT'SPC(7);:  ENDPROC 

 
to the search program and repeat the above procedure. Note that now each 
individual BASIC statement of your program appears on a new line of a listing 
that is produced by this program. 

 
 

Scrolling 
 

In chapter 13 we saw the need for machine-code routines for rapid transfer of data 
(the ‘movie'). BASIC is just not fast enough to be of any practical use where such 
animation is required. In any mode other than mode 7 it takes tens of seconds to 
reorganise the screen memory. As an example we give both a BASIC and 
assembly language program (listings 14.3 and 14.4) for scrolling the whole 
screen in (mode 0) character-size blocks in any of eight directions (up, down, 
1eft, right, or diagonally up + left, down + 1eft, up + right, down + right). The 
direction of movement is passed to the routine via the X-register from the variable 
X%, and the size of the block to be moved is defined by the four values in 
locations &70 to &73 . In this implementation  of software scrolling a line that 
goes off the top of the screen will reappear on the bottom (and vice versa) and a 
line that goes off one edge will reappear on the other side, that is we imagine the 
screen as a torus. 

 
Compare the time taken to run the BASIC procedure with that for the machine 
code routine. You will find the machine code is hundreds of times faster. Even so 
it is often useful to write your routines first in BASIC in order to check that your 
algorithm works before embarking on the assembly language stage of 
development. 
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Listing 14.3 
 

10 REM BASIC version of scroll 
20 MODE 2 : HIMEM=&2D00 
30 HI=&2D00 : TEMP=&2D80 
40 PROCtable 
50 FOR I=1 TO 31 : FOR J=1 TO 20 : VDU ((I+J)MOD 27)+63 : NEXT J,I 
59 REM check cursor keys 
60 REPEAT 
70 IF INKEY(-122) THEN PROCscroll(1) 
80 IF INKEY(-58) THEN PROCscroll(2) 
90 IF INKEY(-26) THEN PROCscroll(3) 

100 IF INKEY(-42) THEN PROCscroll(4) 
110 UNTIL FALSE 
120 END 
200 REM scroll 
210 DEF PROCscroll(X) 
220 IF X=1 THEN PROCright 
230 IF X=2 THEN PROCup 
240 IF X=3 THEN PROCleft 
250 IF X=4 THEN PROCdown 
260 ENDPROC 
300 REM left 
310 DEF PROCleft 
319 REM for each row save the first eight bytes 
320 FOR I%=0 TO 31 
330 ADT=TEMP 
340 ADF=(HI?I%)*256+(I% MOD 2)*&80 
350 PROCtran(8) 
359 REM then move the transfer the rest to the left 
360 ADT=ADF : ADF=ADT+8 
370 PROCtran(632) 
380 ADF=TEMP 
389 REM then retrieve the first eight bytes at the end of the row 
390 ADT=HI?I%*256+(I% MOD 2)*&80+632 
400 PROCtran(8) 
410 NEXT I% 
420 ENDPROC 
500 REM up 
510 DEF PROCup 
519 REM store the whole top row 
520 ADT=TEMP 
530 ADF=(HI?0)*256 
540 PROCtran(640) 
549 REM set the address-to pointer to the current row 

and the address-from pointer to the next row 
550 FOR I%=0 TO 30 
560 ADT=(HI?I%)*256+(I% MOD 2)*&80 
570 N%=I%+1 
580 ADF=(HI?N%)*256+(N% MOD 2)*&80 
589 REM transfer a whole row 
590 PROCtran(640) 
600 NEXT I% 
609 REM retrieve the top row from temporary store to the bottom 
610 ADF=TEMP 
620 ADT=(HI?31)*256+&80 
630 PROCtran(640) 
640 ENDPROC 
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700 REM down 
710 DEF PROCdown 
719 REM save bottom row 
720 ADT=TEMP 
730 ADF=(HI?31)*256+&80 
740 PROCtran(640) 
749 REM transfer current row to the row below 
750 FOR I%=30 TO 0 STEP -1 
760 ADF=(HI?I%)*256+(I% MOD 2)*&80 
770 N%=I%+1 
780 ADT=(HI?N%)*256+(N% MOD 2)*&80 
790 PROCtran(640) 
800 NEXT I% 
809 REM retrieve row for top 
810 ADF=TEMP 
820 ADT=(HI?0)*256 
830 PROCtran(640) 
840 ENDPROC 
900 REM right 
910 DEF PROCright 
920 FOR I%=0 TO 31 
929 REM for each row save the final eight bytes 
930 ADT=TEMP 
940 ADF=(HI?I%)*256+(I% MOD 2)*&80+632 
950 PROCtran(8) 
959 REM set a pointer to the start of the row 
960 TT=(HI?I%)*256+(I% MOD 2)*&80 
969 REM for each block of eight bytes from right to left 

move the block to the right 
970 FOR K%=78 TO 0 STEP -1 
980 ADF=TT+8*K% 
990 ADT=ADF+8 

1000 PROCtran(8) 
1010 NEXT K% 
1019 REM retrieve the bytes for the start of the line 
1020 ADT=TT 
1030 ADF=TEMP 
1040 PROCtran(8) 
1050 NEXT I% 
1060 ENDPROC 
1100 REM tran 
1110 DEF PROCtran(A) 
1119 REM move A bytes from pointer ADF to pointer ADT 
1120 FOR J%=0 TO A-1 
1130 ADT?J%=ADF?J% 
1140 NEXT J% 
1150 ENDPROC 
1200 REM table 
1210 DEF PROCtable 
1219 REM construct table of hibytes of addresses for screen 
1220 M%=&3000 
1230 FOR I%=0 TO 31 
1240 M=M%+640*I% 
1250 HI?I%=M DIV 256 
1260 NEXT I% 
1270 ENDPROC 
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Listing 14.4 
 

10 REM M/C code version of scroll 
20 MODE 2 : HIMEM=&2A00 
30 HI=&2D00 : TEMP=&2D80 
40 PROCtable : PROCassemble 
50 FOR I=1 TO 31 : FOR J=1 TO 20 : VDU ((I+J)MOD 27)+63 : NEXT J,I 
59 REM check cursor keys 
60 REPEAT 
70 IF INKEY(-122) THEN A%=1 : CALL scroll 
80 IF INKEY(-58) THEN A%=2 : CALL scroll 
90 IF INKEY(-26) THEN A%=3 : CALL scroll 

100 IF INKEY(-42) THEN A%=4 : CALL scroll 
110 UNTIL FALSE 
120 END 
200 REM assemble 
210 DEF PROCassemble 
220 VDU 22,7,14 
230 ADFL=&70 : ADFH=&71 
240 ADTL=&72 : ADTH=&73 
250 TTL=&74 : TTH=&75 
260 TAL=&76 : TAH=&77 
270 FOR I%=0 TO 3 STEP 3 
280 P%=&2A00 
290 [ OPT I% 
300 \ scroll routine \ 
310 
320 .scroll 
330 CMP #1 : BNE NO1 : JSR right : RTS 
340 .NO1 
350 CMP #2 : BNE NO2 : JSR up : RTS 
360 .NO2 
370 CMP #3 : BNE NO3 : JSR left : RTS 
380 .NO3 
390 CMP #4 : BNE NO4 : JSR down 
400 .NO4 
410 RTS 
420 
430 
440 \ left routine \ 
450 
460 .left 
470 LDA #0 
480 .LOOP1 : PHA 
490 LDA #(TEMP MOD 256) : STA ADTL : LDA #(TEMP DIV 256) : STA ADTH 
500 PLA : PHA : JSR calc 
510 LDA TAL : STA ADFL : LDA TAH : STA ADFH 
520 LDA #0 : LDX #8 : JSR tran 
530 LDA ADFL : STA ADTL : LDA ADFH : STA ADTH 
540 LDA ADTL : CLC : ADC #8 : STA ADFL 
550 LDA #2 : LDX #120 : JSR tran 
560 LDA #(TEMP MOD 256) : STA ADFL : LDA #(TEMP DIV 256) : STA ADFH 
570 PLA : PHA : JSR calc 
580 LDA TAL : CLC : ADC #120 : STA ADTL : LDA TAH : ADC #2 : STA ADTH 
590 LDA #0 : LDX #8 : JSR tran 
600 PLA : CLC : ADC #1 : CMP #32 : BNE LOOP1 
610 RTS 
620 
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630 
640 \ up routine \ 
650 
660 .up 
670 LDA #(TEMP MOD 256) : STA ADTL : LDA #(TEMP DIV 256) : STA ADTH 
680 LDA HI : STA ADFH : LDA#0 : STA ADFL 
690 LDA #2 : LDX #128 : JSR tran 
700 LDA #0 
710 .LOOPU1 : PHA 
720 JSR calc : LDA TAL : STA ADTL : LDA TAH : STA ADTH 
730 PLA : PHA : CLC : ADC #1 
740 JSR calc : LDA TAL : STA ADFL : LDA TAH : STA ADFH 
750 LDA #2: LDX #128 : JSR tran 
760 PLA : CLC : ADC#1 : CMP #31 : BNE LOOPU1 
770 LDA #(TEMP MOD 256) : STA ADFL : LDA #(TEMP DIV 256) : STA ADFH 
780 LDX #31 : LDA HI,X : STA ADTH : LDA #&80 : STA ADTL 
790 LDA #2: LDX #128 : JSR tran 
800 RTS 
810 
820 
830 \ down routine \ 
840 
850 .down 
860 LDA #(TEMP MOD 256) : STA ADTL : LDA #(TEMP DIV 256) : STA ADTH 
870 LDX #31 : LDA HI,X : STA ADFH : LDA #&80 : STA ADFL 
880 LDA #2: LDX #128 : JSR tran 
890 LDA #30 
900 .LOOPD1 : PHA 
910 JSR calc : LDA TAL : STA ADFL : LDA TAH : STA ADFH 
920 PLA : PHA : CLC : ADC #1 : JSR calc 
930 LDA TAL : STA ADTL : LDA TAH : STA ADTH 
940 LDA #2: LDX #128 : JSR tran 
950 PLA : SEC : SBC #1 : BPL LOOPD1 
960 LDA #(TEMP MOD 256) : STA ADFL : LDA #(TEMP DIV 256) : STA ADFH 
970 LDA HI : STA ADTH : LDA #0 : STA ADTL 
980 LDA #2 : LDX #128 : JSR tran 
990 RTS 

1000 
1010 
1020 \ right routine \ 
1030 
1040 .right 
1050 LDA #0 
1060 .LOOPR1 : PHA 
1070 LDA #(TEMP MOD 256) : STA ADTL : LDA #(TEMP DIV 256) : STA ADTH 
1080 PLA : PHA : JSR calc 
1090 LDA TAL : CLC : ADC #120 : STA ADFL : LDA TAH : ADC #2 : STA ADFH 
1100 LDA #0 : LDX #8 : JSR tran 
1110 LDA #0 
1120 .LOOPR2 : PHA 
1130 LDA ADFL: STA ADTL : SEC : SBC #8 : STA ADFL : LDA ADFH 

: STA ADTH : SBC #0 : STA ADFH 
1140 LDA #0 : LDX #8 : JSR tran 
1150 PLA : CLC : ADC #1 : CMP #79: BNE LOOPR2 
1160 LDA TAL : STA ADTL : LDA TAH : STA ADTH 
1170 LDA #(TEMP MOD 256) : STA ADFL : LDA #(TEMP DIV 256) : STA ADFH 
1180 LDA #0 : LDX #8 : JSR tran 
1190 PLA : CLC : ADC #1 : CMP #32 : BNE LOOPR1 
1200 RTS 
1210 
1220 
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1230 \ tran routine \ 
1240 
1250 .tran 
1260 TAY : TXA : PHA : TYA : BEQ NOHI 
1270 .LOOPT1 
1280 PHA : LDY #0 
1290 .LOOPT2 
1300 LDA (ADFL),Y 
1310 STA (ADTL),Y 
1320 INY : BNE LOOPT2 
1330 INC ADTH : INC ADFH 
1340 PLA : SEC : SBC #1 : BNE LOOPT1 
1350 .NOHI : PLA : TAX 
1360 .LOOPT3 
1370 LDA (ADFL),Y 
1380 STA (ADTL),Y 
1390 INY : DEX : BNE LOOPT3 
1400 RTS 
1410 
1420 
1430 \ calc routine performs \ 
1440 \ TA=(HI?A%)*256+(A% MOD 2)*&80 \ 
1450 
1460 .calc 
1470 TAX : LDA HI,X : STA TAH 
1480 TXA : AND #1 : CLC : ROR A : ROR A : STA TAL 
1490 RTS 
1500 ] 
1510 NEXT I% 
1520 VDU 22,2 
1530 ENDPROC 
1600 REM table 
1610 DEF PROCtable 
1619 REM construct table of hibytes of addresses for screen 
1620 M%=&3000 
1630 FOR I%=0 TO 31 
1640 M=M%+640*I% 
1650 HI?I%=M DIV 256 
1660 NEXT I% 
1670 ENDPROC 

 
 
 

Exercise 14.2 
Write a BASIC program that specifies a fixed window on the screen and then 
software scrolls the contents of that window as above, while the outside of the 
window stays fixed. 

 
Animation: hardware scrolling 
Software scrolling can only achieve fast animation on relatively small areas. To 
move large areas of screen about we need to use hardware scrolling. The simplest 
way to get this without learning the complexities of programming the 6845 CRT 
display controller is to force the operating system to scroll the screen for you. 
This is done by moving the text cursor to either the top or bottom of the screen 
and by printing the appropriate control code (control K or control J) to force the 
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cursor off the screen and thus to initiate a scroll. We use this method in a simple 
game (listing 14.5). The object of the game is to catch randomly appearing apples 
in an ever-increasing  shower of bricks. If a brick hits your hand then the game is 
over. 

To get the speed of animation we hardware scroll the whole screen and then 
PRINT (or perhaps software scroll) stationary text and characters back in 
position. Machine code is needed for more complicated tasks and this requires a 
great deal more thought and study. A good book on the subject and preferably 
specifically written for the BBC Micro should be consulted; see, for example, 
Birnbaum (1982) and Zaks (1978). 

 
Listing 14.5 
10 ENVELOPE 1,2,5,10,15,5,3,1,64,4,0,-126,100,126 
20 MODE 5 
29 REM get rid of cursor and define characters for game 
30 VDU 23,1,0;0;0;0;0; 
40 VDU 23,128,&FF,&BD,&C3,&DB,&DB,&C3,&BD,&FF 
50 VDU 23,129,&18,&10,&7C,&FE,&FE,&FE,&7C,&38 
60 VDU 23,130,&10,&54,&55,&D5,&FF,&FE,&7C,&3C 
70 VDU 19,3,6,0,0,0 : VDU 19,2,2,0,0,0 
79 REM reset keyboard to give better response 
80 *FX4,1 
90 *FX11,15 

100 *FX12,13 
110 X=10 
120 COLOUR 3 : PRINT TAB(X,20);:VDU 130 
130 DEAD=FALSE : C=0 : SCORE=0 
140 REPEAT 
150 HARD=(SCORE DIV 20) 
160 COLOUR1 
169 REM put some bricks on top row 
170 FOR I%=1 TO RND(HARD) 
180 PRINT TAB(RND(20)-1,0);: VDU 128 
190 NEXT I% 
200 COLOUR 2 
209 REM add an apple 
210 PRINT TAB(RND(20)-1,0);: VDU 129 
220 NX=X 
229 REM check for left or right cursor 
230 A$=INKEY$(0) 
240 IF ASC(A$)=&88 AND X>0 THEN NX=X-1 
250 IF ASC(A$)=&89 AND X<19 THEN NX=X+1 
259 REM erase hand before scrolling 
260 PRINT TAB(X,20);" "; 
269 REM force scroll down with home and cursor up 
270 VDU 26,11 
279 REM prepare to reprint hand 
280 X=NX : PRINT TAB(X,20); 
289 REM read character at hands new position 
290 A%=135 : C=(USR(&FFF4) DIV &FF) AND &FF 
299 REM was it a brick 
300 IF C=55 THEN DEAD=TRUE 
309 REM score one for an apple 
310 IF C=56 THEN SCORE=SCORE+1 : SOUND 1,1,60,4 
320 COLOUR 3 : IF NOT DEAD THEN VDU 130 
330 PRINT TAB(0,31);"SCORE ";SCORE; 
340 T=TIME : REPEAT UNTIL TIME>T+4 
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350 UNTIL DEAD 
359 REM crunching noise 
360 FOR I%=1 TO 6 : SOUND 0,-15+I%*2,4,3 : NEXT I% 
369 REM use text window to display game over message 
370 VDU 28,4,10,16,6 
380 COLOUR 129 : CLS : COLOUR 3 
390 PRINT''"  GAME OVER" 
399 REM return keyboard to normal 
400 *FX4,0 
410 *FX12,0 
420 *FX15,1 
430 COLOUR 128 : COLOUR 2 
440 VDU 26 : END 

 
Unusual Displays 

 
The BBC micro is a very sophisticated machine that allows you to perform 
complicated manipulations on the screen. It would be impossible to give all the 
techniques, so to give you a flavour we introduce two such methods: (a) 
changing the print vector, and (b) synchronous display. 

 
(a) Changing the print vector 
The print vector (locations &20E and &20F) contains the address of that section 
of the PRINT routine that places characters on the screen. We can write our own 
routine and let the print vector refer to it instead. Subsequent calls to PRINT 
inside a BASIC program will use the revised output routine. Take the simple 
example that is given in listing 14.6. If you run this program it will place a 
machine-code routine which prints a character and two backspace codes at 
location &C00. Soft key 1 is defined to change the print vector to this location, 
soft key 0 returns it to normal. If you now load another program and LIST it, 
having pressed f1 you will see that the listing appears backwards. Press f9 and 
L1ST and a normal listing appears. 

 
Exercise 14.3 
You can adjust the ‘prynt’ routine of chapter 5 and make it available to PRINT by 
changing the print vector. Note that ‘prynt’ could draw only simple strings. By 
using this adjusted method quite complex strings of multi-coloured  characters 
can be printed, with all the complex evaluation being done by the BASIC PRINT 
statement before it calls your new output routine. 

 
(b) Synchronous Display 
The television display is completely redrawn every 1/50th of a second (1/60th in 
the U.S.A.). *FX19 is used to wait until the start of the next frame, and thus gives 
us a method of starting instructions at a fixed time relative to each refresh of the 
display. If we change the logical-actual colour relationship partway through the 
drawing of the display, then for that frame only the top part of the screen 
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Listing 14.6 
 

10 FOR I=0 TO 3 STEP 3 
20 OUTPUT=!&20E AND &FFFF 
30 P%=&C00 
40 [OPTI 
50 CMP #10 : BNE OD : JSR OUTPUT 
60 .OD 
70 CMP #32 : BCC OF 
80 JSR OUTPUT 
90 LDA #8 : JSR OUTPUT 

100 LDA #8 
110 .OF 
120 JSR OUTPUT 
130 RTS 
140 ] 
150 NEXT I 
159 REM f1 changes vector to routine 
160 *KEY1?&20E=0 : ?&20F=&C|M 
169 REM f0 changes vector back 
170 O%=OUTPUT DIV 256 : P%=OUTPUT MOD 256 
180 *KEY0?&20E=P% : ?&20F=O%|M 

 
will show one actual colour while the remainder of the screen shows another. 
Obviously we could use *FX19 to wait for the start of the next frame and repeat 
the process. Provided that we keep repeating the same actions, this will result in 
the display of a multi-colour steady(ish!) picture, even in mode 0! Listing 14.7 
draws a simple picture in mode 0 and then redefines the background colour 
continuously. There is a little flickering at the junctions of the colours so we 
cover this up by placing blocks of foreground colour across the screen. Type any 
key and the coloured bands move because we have interrupted the time balance. 

 
Listing 14.7 

 
10 MODE 0 
20 A%=19 : Z%=0 
30 GOSUB 130 
40 GCOL0,1 
50 FOR Y=75 TO 1025 STEP 165 
60 MOVE 0,Y : MOVE 0,40+Y 
70 PLOT 85,1280,Y : PLOT 85,1280,40+Y 
80 NEXT Y 
90 REPEAT 

100 FOR I%=1 TO 6 : VDU A%,Z%,I%,Z%,Z%,Z% : NEXT I% 
110 *FX19 
120 UNTIL FALSE 
129 REM draw lace curtains 
130 FOR I=0 TO 1280 STEP 16 
140 MOVE 0,I : DRAW 1280-I,0 
150 MOVE 1280,I : DRAW 1280-I,1024 
160 MOVE 0,1024-I : DRAW 1280-I,1024 
170 MOVE 1280,1024-I : DRAW 1289-I,0 
180 NEXT I 
190 RETURN 
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Complete Programs 
 

Sample input will be underlined. 
 

I    Listing 14.1. RUN the program and then CALL &7000. Then type H and 
8000 which will bring you to the start of the BASIC ROM. Now H and 
7C00 will bring you to the start of the disassembler. H and 7C00; the start 
of the mode 7 screen. Type S and What’s up Doc?. Type H, 78DC, which 
will get you into the table that holds mnemonics, specifically code TXS. A 
and 81 will change the value of the currently active byte from 87 to 81. 
Now type H and 7000 and List through the program to locate TXS code 
which will be in red. 

II    Listing 14.2. First 1oad any program (such as listing 13.2) at PAGE = 
&1900. Then load listing 14.2 at PAGE = &3000 and RUN. Try the 
following sample data. 

 
Search?RETURN ,  , location?RETURN 

Search?J  , replace?RETURN  , location?&1900 

Search?J  , replace?K  , location?&1900 
 

III    Listing 14.3 or 14.4. RUN and use the cursor keys to scroll the screen. 
IV    Listing 14.5. The apple-catching game. RUN to start, move the ‘hand’ 1eft 

or right by means of the cursor keys. 
V    Listing 14.6. RUN, press f1 and LIST, then f0 and LIST. 

VI    Listing 14.7. Type any key. 
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15 A Worked Example of a Video Game 
 
 
 
 

In this chapter we examine the use of both BASIC and Assembler programming 
for animated video games. In general games are expensive, and the players 
interest can be short-lived. If players can achieve a reasonable result themselves 
then most would prefer to write their own simple video games, and spend their 
money only on good-quality sophisticated games. Tape cassette 2 contains an 
extensive example of the sort of game that most competent programmers can 
reasonably expect to write, without going to the extreme of putting the whole 
game into machine code. The game itself, RON the ROBOT in the WASTE of 
TYME, is a typical ‘shoot-em up’ game; however the techniques we discuss here 
could just as easily be applied to ‘bat and ball’ (such as TENNIS) or ‘tactical’ 
games (such as PAC-MAN). For you to make the most of the explanations in this 
chapter we advise you to get the companion cassette tapes, and LOAD and RUN 
these program listings. 

The most important part of writing any game is the planning. It is helpful to 
draw a plan of the intended screen on graph-paper: sketch in the proposed size 
and positions of fixed objects (the background) and the areas to be traversed by 
moving objects (the foreground). Both background and foreground are usually 
composed of user-defined characters. This should fix a scale for the objects and 
will give a general impression of the final game. It is worth spending some time at 
this stage to ensure that the proposed action can actually fit into the graphics area. 
Once you have decided on a screen layout you must create the multi- coloured 
objects for the foreground and the background by using the CHARACTER  
GENERATOR  2 of chapter 5. Before writing any complex code for moving these 
characters about you must first place them on the screen, both singly and in 
groups, in order to see what impression they make. We saw that the fastest way of 
putting a large number of characters on the screen is to ‘prynt’ them (see chapter 
5). In our program we shall adjust ‘prynt’ so that it draws strings of characters 
down the screen. 

 
 

Exercise 15.1 
Alter the CHARACTER  GENERATOR  2 program to allow characters to be 
defined in neighbouring blocks of two or four, which will allow compound 
shapes to be constructed with ease. This option will need the INPUT of two or 
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four ASCII codes to tell the program where to store the multiple character data. 
 

Always conceive and write your game programs as modules. Such subtasks 
can be programmed separately either in BASIC or directly in assembly code, and 
tested individually before they are combined into larger modules or the final 
program. Speed is the essence, so that most of the BASIC procedures should be 
translated into machine code for the final version of the game. There are, however, 
some sections of the game that do not need speed, such as any explanatory text 
before the game starts and some initialisation processes. These can be left in 
BASIC. 

Since we are aiming at speed of execution we must make all routines as 
explicit as possible. We calculate every possible value at the programming stage 
or by a previously run initialising program. The barest minimum of computation 
should be done while the game is being played. 

One important technique for minimising the calculation, which we use in the 
example program, is the cascade or multiple entry point method. We write cascade 
routines which are called by a pointer, each cascade being made up of separate 
sections. Only one section is entered per execution of the routine. Inside the 
routine the pointer may be changed so that with the next entry a different section 
is obeyed. This continues with the pointer usually moving down through the 
sections of the cascade until it reaches the bottom, where it will usually be reset to 
the top. Such cascades are normally implemented by GOSUB with variable labels 
in BASIC, or as indirect jumps or conditional branching statements in assembly 
language. Normally this technique is used on several 
cascades which are called from within a loop. This loop describes the major tasks 
needed in playing the game. It gives us the ability to carry on different processes 
in an interwoven yet independent manner. Apparent parallelism of this sort is 
essential for games, where independent events may be following complicated 
courses. Effectively the program operates on two or more routines 
simultaneously,  with one section only from each cascade being executed each 
time through the loop. 

Consider the following two simple programs run in mode 7, which perform 
independent functions. Listing 15.1 waits until a key is pressed and then shoots a 
point across the screen. Listing 15.2 continuously moves a cross up the screen in a 
zig-zag pattern. Both programs use the fast animation techniques that are found in 
the game that follows, so it is necessary to slow them down with the *FX,19 
command (except on OS 0.1) and REPEAT loops. Excess speed is sometimes a 
problem in assembler programs, but only when programs are very simple. We 
combine these two programs into a simple loop of cascades. We set pointers 
(‘cross’ and ‘point’) to the top of the cascades and control entry to the 
corresponding cascades by changing their values inside the routines (listing 
15.3). In this simple game you type any key and the point moves across the 
screen: when the point and cross coincide    SPLAT. 
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Listing 15.1 
 

200 REM dot 
209 REM fire dot across screen when a is pressed 
210 MODE 7 : VDU23,1,0;0;0;0; 
220 PRINT TAB(0,11);"." 
230 A$=GET$ 
240 D=0 
250 PRINT TAB(D,11);" " : D=D+1 
260 IF D=40 THEN 220 
270 PRINT TAB(D,11);"." 
279 REM wait for start of frame to slow movement down 
280 *FX19 
290 GOTO 250 

 
 

Listing 15.2 
 

300 REM cross 
309 REM continually move cross up screen 
310 MODE 7 : VDU 23,1,0;0;0;0; 
320 X=8 : Y=23 
330 PRINT TAB(X,Y);"+" 
340 PRINT TAB(X,Y);" " : Y=Y-1 
350 IF Y<0 THEN 320 
359 REM make cross move in zig-zag 
360 IF Y>12 THEN X=X+1 ELSE X=X-1 
370 PRINT TAB(X,Y);"+" 
379 REM slow down movement of cross 
380 T=TIME : REPEAT UNTIL TIME>T+2 
390 GOTO 340 

 
 

Listing 15.3 
 

100 REM main loop 
110 dot=200 : cross=300 : D=0 
120 MODE 7 : VDU23,1,0;0;0;0; 
129 REM run modified dot and cross programs at same time. 
130 REPEAT 
140 GOSUB dot : GOSUB cross 
150 UNTIL FALSE 

 
200 REM dot cascade 
210 PRINT TAB(0,11);"." : dot=220 : RETURN 
219 REM now use INKEY$ to check for keypress so cross can move. 
220 IF INKEY$(0)="" THEN RETURN 
230 D=0 : dot=240 : RETURN 
240 PRINT TAB(D,11);" " : D=D+1 
250 IF D=40 THEN dot=210 : RETURN 
260 PRINT TAB(D,11);"." 
270 RETURN 

 
300 REM cross cascade 
310 X=8 : Y=23 
320 PRINT TAB(X,Y);"+" : cross=330 : RETURN 
330 PRINT TAB(X,Y);" " : Y=Y-1 
340 X=X+1 : PRINT TAB(X,Y);"+" 
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350 IF Y<=11 THEN cross=380 
360 T=TIME : REPEAT UNTIL TIME=T+2 
370 RETURN 
379 REM as cross changes direction check for dot hitting cross. 
380 IF Y=11 AND X=D THEN PRINT TAB(X,Y);"SPLAT!" : END 
390 PRINT TAB(X,Y);" " : Y=Y-1 
400 IF Y<0 THEN cross=310 : RETURN 
410 X=X-1 
420 PRINT TAB(X,Y);"+" 
430 T=TIME : REPEAT UNTIL TIME=T+2 
440 RETURN 

 
 

Exercise 15.2 
Add a line to the calling loop to reset the pointers to the top of the cascades and 
continue the game after a SPLAT, perhaps printing the score (number of hits). 
Write a ‘duck-shoot’ game with a hunter who moves left and right under 
keyboard control while shooting with a shotgun at ducks that are flying across 
the screen. 

 
How to Write a Game 
For a simple game as outlined in the above example (and the worm game of 
chapter 1) the saving in time and programming effort from using the cascade 
technique is significant. We shall now describe a good approach for writing a 
non-trivial game by using the aforementioned  ideas, with RON as an illustration. 
First define and plan your game carefully. 

 
The definition 
In our game you are RON, the last robot remaining after a nuclear disaster and 
you are trying to rescue the few surviving microcomputers,  the BEEBS. While 
doing this you must avoid the Mutant Typists (MUTTS) who are trying to stop 
you. RON is equipped with a ray gun which he can fire in any of four directions 
(up, down, left, right), although this will not save him if the MUTTS get their 
MITTS on him. RON is currently rescuing BEEBS in the WASTE of TYME 
where there are many pools of radioactive materials that are fatal to MUTTS and 
RON alike, although RON can vapourise these with his ray gun. 

The gun has four firing directions that are specified by pressing ‘s’ for left, ‘d’ 
for down, ‘f’ for right and ‘e’ for up. If a blast from the gun hits either the MUTTS 
or the pools they will disappear; however if the MUTTS touch RON he dies. The 
movement of RON is similarly controlled by ‘j’, ‘k’, ‘l’ and ‘i’. A great deal of time 
at the planning stage of a game should be given to making the controls usable, and 
the keys you chose must be easy to reach. (If you have joysticks then things are 
much simpler.) 

Just to make things tricky there are occasional appearances of antinuclear 
demonstrators (DEMONs) wearing ‘I told you so’ tee-shirts. They are intent on 
shooting RON, since it was wry probably all his fault anyway! 
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The characters 
You need to create single or multiple multi-colour characters for each participant 
in a game. This game will be run in mode 2 so we use CHARACTER 
GENERATOR  2 to draw the pools, RON, the MUTTs, the BEEBs and the 
DEMONs which will all be two characters high. Because we do not want to be 
limited to mode 2 character blocks, each object will be stored as the equivalent of 
5 characters. (All the characters are stored between ASCII codes 65 and 89.) The 
screen is considered as a coordinate system with x-values from 0 to 79 and y- 
values from 0 to 63 (not 0 to 31). We move in half-characters  up the screen, hence 
the need for 5 characters per object: two are used to draw the object in normal 
character block position, but three are needed if it moves up half a block since it 
will range over three blocks. The ‘prynt’ routine has to be changed to move them 
about in this fashion. The characters will be stored as file RONCHAR. 

 
The initialisation 
The characters can go anywhere on the screen, but to start with we would like 
them to be fairly randomly spread, but without overlapping. So we start with a 
BASIC program (stored in file XYDATAP) that finds suitable positions fur 128 
objects: 32 BEEBs, 32 pools and 64 MUTTs. It draws coloured squares on the 
screen to show you where they go, yellow for BEEBs, green for pools and 
magenta for MUTTs. If you do not like these positions run the program again. 
These are the x/y coordinates of the objects and are placed in store between 
locations &1100 and &1400. RON has 16 waves of MUTTs to contend with, each 
wave containing more than the one before. The positions within a wave are a 
subset of the total calculated above. The table of data that specifies the number of 
occurrences of each object in a round is also stored by this program in the same 
area of store. Finally the program calculates a table of the addresses of the 
beginning of each screen line and stores this as well. Once all the data have been 
prepared it is saved as the file XYDATA. 

 
The logo 
This section (file BJPRSNT) would probably be written last of all and simply 
draws a logo for the game on the screen and follows it with a brief description of 
the rules of the game. There is no need to use machine code, BASIC is more than 
adequate for this section. When interrupted by pressing ‘S’ it will load the main 
game program (a previously constructed machine-code program) and execute it. 

 
The main game program 
We finally come to the main game program (file GAME) which consists of a 
loop of calls to cascade routines: 

 
MBEEB moves one BEEB each time through the loop. 
CHKEYS checks the keyboard to find any change in direction of RON’s 
movement or when the ray gun has been fired. 
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FIRE moves the photon blasts from the gun around the screen. 
MMUT moves some of the mutants each time through the loop. Some of 
them will change direction to chase RON. 
Then the flag KILLED checks whether RON has been killed by a MUTT. 
MRON moves RON. 
Then the flag DEAD checks to see if RON has hit a pool; if so a new RON 
appears or the game is over. (You have three RONs to start with.) 
DEMON tells if a demonstrator is on the screen, in which case we enter the 
cascade for its movement. It will use the same FIRE routine as RON. 
We then move back to the top of the loop and repeat. Naturally there are a 
few other checks, such as to see if RON has blasted all the MUTTs or if your 
score is high enough to gain another RON. 

 
In the game we have tried to show an elementary modular way of approaching 

the programming of video games in a mixture of BASIC and machine code, 
where large amounts of data are stored in a variety of tables. The positions for 
everything on the screen are stored in large tables of x-coordinates and y- 
coordinates and collisions are detected simply by assuming that the background 
is all black (zero). Objects are moved by printing them in their new positions and 
then by obliterating any leftover parts from their previous positions with blanks. 
The missiles are drawn by calculating the appropriate byte(s), and then by 
overprinting the data into the byte and out of that byte after the shot has passed. 
Reprinting often takes less time when removal of the old position can be 
combined with the printing at the new (see the sections where RON is moving 
vertically). Remember that discretion is the better part of valour and it is far 
better to check for problems and to cover them up, rather than to rewrite your 
program and find that another fault has appeared. When trying to remove faults 
also remember that a brute-force cover-up will probably be quicker than a fancy 
fault-avoidance  routine. 

There is no background in this game for the simple reason that it would 
necessitate the removal of data from the screen prior to printing. This would be 
essential in order to allow the background to be restored after the object in the 
foreground had moved on. 

By combining these techniques for moving objects and allowing objects to 
pass each other, displays of very high quality can be made. Of course for the 
really fast and complex games efficient machine-code routines with even greater 
numbers of look-up tables must be used. However many of the initialisation and 
instruction routines can still be in BASIC so do not bother trying to produce 
completely machine-code programs unless you wish to sell your games. 

Finally, as your games’ programs become more and more interwoven and 
cross-connected  you must try to keep a simple overview of the game. Use 
sensible variable names, put in plenty of comments during development, and 
above all, Don’t Panic! 
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Complete Programs 
 

I    Listing 15.1. Type any key. 
II    Listing 15.2. No data required. 

III    Listing 15.3. Press any key. 
IV    See description of tape 2 in the appendix for the video game RON. 
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16 Projects 
 
 
 
 

I  Use your BBC micro to draw a digital clock. Produce the special large 
characters for the digits and use a colon to separate them. Your clock 
can be made to keep correct time by using the internal clock of the 
Model B (see the user guide). 

 
II  Make a program that tests the Morse Code proficiency of the user. The 

data for the program will be a paragraph of text, which the Model B 
should translate into Morse and then print out by means of dots and 
dashes using the teletext block graphic characters. It can also use 
SOUND to simulate the sound of Morse. Your program should have a 
variable rate of production of the code so that the speed of the test 
increases as the user gets more proficient. 

 
III  Draw a set of International Road Signs. Your program should draw the 

background of the figures, such as red triangles, and then use your own 
special routines or the programs of chapters 5 and 6 to finish off the 
foreground. 

 
IV  Construct crossword puzzles on your television set. Each square of the 

puzzle should be 2 by 2 character blocks. The four blocks will either be 
black (in which case nothing goes in the square), or white with the 
bottom left-hand comer holding the letter of a solution, and either the 
top two characters holding the clue numbers (if any) or the top left 
character holding two ‘thin' digits. This allows space for a 16 by 16 
puzzle. 

You also have to place the clues on the screen, and these can be 
printed on request on the remaining area of the screen. Solutions to the 
puzzle can be added by a ‘cursor’ method or by having a special input 
code, such as letter 'A’ (across) or ‘D’ (down) followed by the number of 
the clue, followed by your solution. 

 
V  Write programs or use the character generator and the diagram routines 

(chapters 5 and 6) to produce the flags of all nations. You can draw 
company logos, or even design new ones. Use the techniques in chapter 
14 for accessing screen memory locations to add an extra option to the 
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diagram routines. This option should allow you to make a copy of a set 
of character blocks (already on the screen and specified by ‘cursor’) to 
another set of blocks of the same size elsewhere on the screen (also 
specified by ‘cursor'  ). You could even rotate or reflect them! 

 
VI  The user manual shows you how to use SOUND to create music(?). 

While SOUND is making the noises you can draw the musical notation 
on the screen. You can construct the staves and then use special 
characters to place quavers, minims etc. on the screen. The old Music 
Hall method of the ‘bouncing ball’ could be used to beat the time of the 
tune. 

 
VII  Use the character block method to draw mazes. Naturally your program 

must generate mazes with real solutions. You can give yourself time 
limits for getting through the maze. You can make them dynamic by 
changing them as the game progresses. Add extra problems: man-eating 
monsters that roam the maze; holes that suddenly appear and can 
swallow you up; ‘space warps’ that can transfer you anywhere in the 
maze if you do not move fast enough. 

 
VIII  Extend the ideas of chapter 6. Draw your own special histograms, pie- 

charts and graphs. Make them dynamic (either by the ‘movie’ method of 
chapter 13, or by drawing a new graph on the old axes). Generate whole 
sets of special characters. Draw solid data graphs by joining each point 
on the graph to the x-axis. Extend the mathematical surface program 
(listing 10.6) to draw three-dimensional  histograms. For every rectangle 
on the x/z grid there must now be one y-value. So for each such grid 
rectangle, starting at the back and working forward, you simply need to 
draw the rectangular block from the grid base up to this y-value. 

 
IX  Create patterns. Use EOR with large numbers of random lines or 

triangles about the screen. Or draw lines in a dense but regular way to 
get Moire patterns. For example, draw lines that join the points (0, 1) to 
(1279, 1023    I) for 0    I    1023, and points (1, 0) to (1279    I, 1023) 
for 0    I    1279 in varying step sizes. Extend the ideas of the pattern 
program of chapter 5 to produce complex symmetrical patterns    any 
introductory book on crystallography  (such as Phillips, 1956) will give 
you lots of ideas. Draw two spirals in mode 0, one slightly off centre, 
and see what patterns emerge. 

 
X  Crystallography  books (such as Phillips, 1956) will give you many ideas 

for three-dimensional  objects. Extend into four dimensions     each 
vertex is simply a vector of four numbers and so requires 5 × 5 matrices 
for transformations.  The simplest orthographic projection of a four- 
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dimensional point is where we ignore two of the coordinates (as opposed 
to one, z, in three dimensions). There are many more complex 
projections. What are translation, scale and rotation in four dimensions? 

 
XI  We have already presented one board game    Chess. There are many 

more possibilities: draughts (or checkers), Scrabble, Hangman, Ludo, 
Master Mind. You can create a compendium of games. The BBC micro 
can simply act as the board, or it can also act as a referee. If you feel 
really adventurous it can even act as an opponent. 

 
XII  Use special characters to construct a deck of playing cards. These can 

be incorporated into a program to play blackjack (or pontoon) with the 
Model B acting as the bank and opponent. 

 
XIII  You can draw certain types of brain-teasers on your television screen. 

For example, suppose you have nine squares and each is divided into 
quarters down the diagonals . Each quarter has a colour (red ‘1’, green 
‘2’, yellow ‘3’ and blue ‘4’) and a sign (+ or     ). Denote each square as a 
sequence of four numbers that represent the areas taken clockwise 
around the centre. For example we could have (  1,   2, 1, 4), (  1, 3, 4, 
2), (1,   4,   2, 3), (1, 2,   3,   4), (1, 3,   2,   4), (1, 4,   3,   2), (2,   3,   4, 
3) and two occurrences of (  1,   4, 3, 2). The problem is to place the nine 
squares in a four by four arrangement, so that if two quarters on 
neighbouring squares touch, then they must be of the same colour but of 
opposite sign. You can use the BBC microcomputer  to draw the squares 
initially on the left side of the screen and a three by three grid of the 
same sizes on the right. Then you take squares from the left and place 
them in the grid, or replace them back to the left. Write a program to 
find the two independent solutions of the above problem. 

 
XIV  Use the low-resolution graphics package of chapter 13 to manipulate the 

teletext screen so that it produces an approximation to a photograph. Take 
any photograph of yourself and superimpose a grid of 80 by 75 on it that 
corresponds to the graphic blocks of 2 by 3 small squares that will be 
placed on the screen in a matrix of 40 by 25. For each small square, 
decide whether it is mainly light or dark, and colour the corresponding 
1/6th block accordingly. This seems like a lot of work. But note that 
most of the picture will be a light background, so if we use white 
background and blue foreground then most of the squares need not be 
considered. You could draw two heads side by side on the screen. 

 
XV       Write a Pac-Man type of video game in BASIC. This involves drawing 

five moving objects on the screen at a time. In order to make the game 
move faster allow only two of the ghosts to move with each move of 
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when they are in hunting mode, and the best escape route in running 
mode. Because of the complex layout of the screen you will have to con 
promise. Simply move towards (or away from) the player if there is no 
wall in the way. Find a quick way of coding their movements as this 
will be the most time-consuming  parts of the game. Speed is the essence 
of a good video game. Perhaps a simple machine-code routine could be 
used to print all five figures on the screen after altering their PRINT TAB 
positions. 

 
XVI  Write a program that first prints a graphics menu of special symbols on 

some part of the screen in mode 4. For example, use the stylised 
components for electronic circuits (resistors, capacitors etc.). These 
symbols should consist of combinations of lines. Keep a copy of the 
area under the menu in the same way that the whole screen is buffered 
in the teletext editor (listing 13.6). Use a cursor to point at any menu- 
symbol and then (using EOR (GCOL 3, COL)) drag a copy of it to a 
required position on the screen. Also add a facility for drawing 
connecting lines and labelling them with ‘thin’ numeric and special 
characters (such as W for ohms). You should also allow the deletion of 
symbols that are inadvertently placed in the wrong position. Extra 
options could include saving and loading. 

 
XVII  In all our perspective diagrams it is assumed that the objects lie totally 

in front of the eye. Change our programs so that they deal with the 
general case where vertices may lie anywhere in space, including 
behind the eye. See Newman and Sproull (1979) and Foley and van 
Dam (1982) for details about this concept of three-dimensional  clipping. 

Change the three-dimensional  procedures so that they form an 
interactive program. Set up a complex scene (such as a group of houses) 
and use the menu technique to specify and change the observation point. 
You can change the observation point or a point on the straight-ahead 
ray by moving it a specified distance in the x-direction, y-direction or z- 
direction    see listing 9.12. 

 
XVIII  Produce stereoscopic hidden line views of three-dimensional  objects. 

Now the facets must be coloured in background white and the edges in 
red or cyan. Remember that when you are drawing the facets for the 
second eye that they must not obliterate the lines drawn for the first eye. 

 
XIX  Draw a Rubik’s cube or Rubik’s Revenge. Enter the rotation details 

from the keyboard and redraw the cube in each new position. 
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Further Reading 
Read any periodical, magazine or journal that is relevant to computer graphics 
such as SIGGRAPH, CADCAM, CAD journal (and there are many, many more), 
and the more advanced graphics textbooks (such as Newman and Sproull, 1979: 
Foley and van Dam, 1982), as well as the general computer newspapers and 
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monthly magazines (such as Byte, Personal Computer World, Practical 
Computing, Interface, BEEBUG etc.). It does not matter if you do not 
immediately understand the more advanced articles: it is important to appreciate 
the flavour, excitement and achievement of the subject. Obtain the promotional 
and advertising literature of the major graphics companies (Tektronix, Imlac, 
A.E.D., Sigma, Hewlett-Packard,  D.E.C. etc.), and get as much information as 
possible about graphics software packages. Keep an eye on the television usage 
of computer graphics, whether it be in science programs, science-fiction 
melodramas or advertisements.  Study video games and try to understand from 
the display how the characters are drawn and manipulated. 



 

 
 
 
 
 

Appendix: Contents and Availability of the 
Two Related Software Cassettes 

 
 
 
 

There are two companion audio-cassette tapes for this book. TAPE 1 contains 
complete listings of the larger programs relating to high-resolution  graphics (that 
is, two-dimensional  and three-dimensional  graphics), while the listings on TAPE 
2 relate to low-resolution graphics (that is, characters, data diagrams, video 
games, the disassembler etc.). Each tape contains two CATALOGUE  programs 
(one at the start of each side of the tape) that give concise details of each listing 
on the tape and explains the PAGE setting for LOADing, MODE of execution 
etc. A brief description of the two tapes is given below. 

 
TAPE 1 
File Name  Contents 
PTOPT  Program to join points on a regular polygon (listing 2.8 etc.) 
ROSE  Program to draw rose pattern (listing 2.9 etc.) 
ILLUSION  Draws rotating spirals by varying logical/actual  colours and the 

illusion of the expanding square (listing 2.1 1 etc.) 
ENVELOPE  Draws a simple envelope (listing 2.12 etc.) 
SPIROGRAPH    Emulation of Spirograph (listing 2.13 etc.) 
SQINSQS  Draws 21 squares, one inside another (listing 3.1 etc.) 
1NTER2L2D  Intersection of two lines in two-dimensional  space (listing 3.2) 
FLAGS2D  Draws four flags in two-dimensional  space (Listings 4.11, 4.12 

etc.) 
INTERLP3D  Intersection  of a line  and  a plane  in three-dimensional   space 

(listing 7.1) 
INTER2L3D  Intersection of two lines in three-dimensional  space (listing 7.2) 
DOTVEC  Example program of dot and vector product (listing 7.3) 
INTER3P3D  Intersection  of three planes in three-dimensional  space (listings 

7.4, 7.5) 
INTER2P3D  Intersection  of two planes  in three-dimensional  space (listings 

7.4, 7.6) 
ORIENT2  Orientation of a triangle in two-dimensional  space (listing 7.7) 
GENROT  Rotation  of  point  about  a  general  axis  in  three-dimensional 

space (listing 8.5 etc.) 
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ORTHOCUBES   Orthographic  projection  of two  ‘wire’ cubes  (listings  9.4,  9.5 
etc.) 

MOVIE  Movie program of a rotating ‘wire’ cube (listing 9.12 etc.) 
ORIENT3  Orientation of a triangle in three-dimensional  space (listing 10.1 

etc.) 
JET  Orthographic view of a ‘wire’ jet (listing 9.9 etc.) 
REVBOD  Orthographic  view  of  a  ‘wire’  body  of  revolution  (a  sphere) 

(listing 9.10 etc.) 
SPHERE  Orthographic  hidden  surface  view  of  a  sphere  (listings  9.10, 

10.5 etc.) 
FLAGCUBE  Orthographic  hidden  surface  drawing  of a cube  with flags  on 

faces (listing 10.3 etc.) 
MATHSURF  Orthographic  hidden  surface  view  of  a  mathematical  surface 

(listing 10.6 etc.) 
PERSPCUBES    Perspective view of two ‘wire’ cubes (listings 9.6, 11.1 etc.) 
CUBESTACK  Perspective  hidden surface view of a stack of 27 cubes (listing 

11.2 etc.) 
STEREO  Stereoscopic view of two ‘wire’ cubes (listing 11.3 etc.) 
HIDSURFACE    Hidden  surface  view of two cubes  on a coloured  background 

(listings 12.1, 12.2, 12.3 etc.) 
EXSTARS  EXEC file to overwrite SETUP procedure in previous program. 

It draws two stars on the same background (listing 12.4) EXBOX
 EXEC    file   to   overwrite    SETUP   procedure    in   program 

HIDSURFACE.    It   draws    a   hollow    cube   on   the   same 
background (listing 12.5) 

lib1  EXEC library file of real-to-pixel procedures 
lib2  EXEC library file of two-dimensional  procedures 
lib3  EXEC library file of three-dimensional  procedures 

 
TAPE 2 

 
LOGACT  Program   to  show   relationship   between   logical   and   actual 

colours (listing 1 .9) 
TRIANGPAT  Spiral  pattern  formed  from  triangles.  Example  of  animation: 

rotation caused by redefinition of logical colours (listing 1 .12) 
WORMGAME    The worm game (listing 1.13) 
PIC1.16  Listing 1.16 
FONT  Character font calculations 
COLFONT  Coloured-character font calculations (listing 5.2) 
CHARG0  Simple two-colour character generator (listing 5.3) 
THIN  Construction of ‘thin’ characters (listing 5.4) 
CHARG1  CHARACTER  GENERATOR  1(listing 5.6) 
CHESS Chess board program (listing 5.7) 
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CHESSP1  characters for CHESS program 
CHESSP1  More characters for CHESS program 
PREPRYNT  Assembly code construction of the PRYNT routine (listing 5.8) 
CHARG2  CHARACTER  GENERATOR  2 (listing 5.9) 
CHARG3  Program   that  enables   keyboard   to  print  out  multi-coloured 

characters (listing, 5.10) 
COLCHAR  Sample character set for use with CHARG3 
HISTO1  First histogram (listings 6.1, 6.2) 
HISTO2  Second histogram (listings 6.1, 6.3) 
PIE  Pie-chart (listings 6.1, 6.3) 
GRAPHS Scientific graphs listings 6.1 , 6.4) 
LABELS  Labelling program (listings 6.1 , 6.5) 
TRIG7  Low-resolution  trigonometric curves with TELETEXT (listing 
13.3) 
BRICKOUT  TELETEXT game ‘Brickout’ (listing 13.5) 
TELETEXTED    TELETEXT editor (listing 13.6) 
DCODE  Assembly code for generation of D1SPLAY (listing 13.7) 
CLOVER  Animation of a ‘clover leaf’ using, rapid transfer of screen data 

(listing 13.8) 
DISASSEM  The disassembler (listing 14.1) 
SANDR  Search and replace program listing 14.2) 
BASCROLL  Screen scrolling using BASIC (listing 14.3) 
MCSCROLL  Screen scrolling using machine code (listing 14.4) 
APPLES  Apples and bricks game (listing 14.5) 
SPLAT  Simple cascade program (listing 15.3) 

 
The following files are needed for the the-scale video game RON: 
XYDATAP  should be RUN to produce a file like XYDATA below 
START  Sets   up   sound   envelopes,   resets   PAGE   boundaries   and 

CHAINs in BJPRSNT 
BJPRSNT  Logo at the beginning of the game 
XYDATA  Tables  of  random  data  needed  for  game  and  produced   by 

XYDATAP above 
GAME  Machine-code   routine  to  play  game  produced  by  ACGAME 

below 
RONCHAR  Character set for game 
ACGAME  Assembly code for game 

 
 

Availability 
 

These cassettes are available through all major bookshops, but in case of 
difficulty order direct from 
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Globe Book Services 
Canada Road 
Byfleet 
Surrey KT14 7JL 

 
Cassette 1  ISBN 0 333 35053 7    £9.00 (including VAT) 
Cassette 2  ISBN 0 333 36141 5    £9.00 (including VAT) 

 
If bought together as a set, the cost is £16.00 (including VAT) for the two 
cassettes. The prices quoted apply to the United Kingdom. 
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