
MICRO-

Newman College MAPE BLUG

Contents

Published by Heinemann Computers in Education Ltd
in partnership with Ginn and Company Ltd.

Typeset by Castlefield Press, Northampton.
Printed by Biddles of Guildford.

Editorial 1
The spirit of LOGO discerned Allan Martin 2
Why BLUG? Derek Radburn 7
LOGO-where next? Julian Pixton 8
Simple LOGO in primary schools: a structured or unstructured approach?

Helen Finlayson 10
Approaching LOGO Richard Noss 13
St Maurice School LOGO Project: a rationale Tony Mullan 15
But what's the use of asking kids to have the computer draw a house?

Catherine Berdonneau 20
What do children think about turtles? Beryl Maxwell 23
Turtle graphics in the secondary school Kim O'Driscoll 25
Languages for young programmers Tim O'Shea 26
LOGO implementations 30
Books 32

Editorial team Allan Martin, Derek Radburn (BLUG)
Roger Keeling, John Lane {MICRO-SCOPE}

© Newman College/MAPE and BLUG 1983
ISBN 0 602 22692 9 ISSN 0264-3847
Sponsored by the Department of Industry
Correspondence to the Editor: Newman College, Bartley Green, Birmingham, B32 3NT

tel: 021 4761181

MAPE (Micros and Primary Education) is open to individuals and institutions.
The current subscription of £7.50 p.a. includes direct mailing of MICRO-SCOPE.
Application forms from: Barry Holmes, St Helen's C.P. School, Bluntisham, Cambs.

BLUG subscription is £7.50 p.a. Secretary: Pam Valley, Shell Centre for Mathematics,
School of Education, University of Nottingham.

MICRO-SCOPE LOGO SPECIAL

Editorial

At last we have got it together! Here is the
long-planned, long-promised MICRO-SCOPE
Special on LOGO as a programming language for
use in schools.

This issue has been shaped through collabora
tion between the MICRO-SCOPE/NAPE team
and the newly-formed British LOGO User Group
(BLUG), who provided the majority of the
articles very quickly. Other promised and im
portant articles were less prompt, which in turn
led to delays in rescheduling the publication
process. We apologise to all readers for stretching
their patience, and particularly to BLUG for
missing the target date of their first annual
Conference, held successfully in September
with Seymour Papert in attendance.

The material that follows needs very little
editorial comment. Allan Martin provides an
introduction to the LOGO atmosphere,
an atmosphere experienced as a very real thing
by those of us who attended the BLUG
Conference. Derek Radburn, BLUG’s Chairman
and himself a primary school Headteacher,
describes BLUG’s origins and aims. Julian
Pixton shows how paths can be developed along
two of the many avenues possible in a LOGO
environment. Tony Mullan, Helen Finlayson
and Richard Noss explore some of the issues
involved in thinking about using LOGO in
school. The articles by Catherine Berdonneau
and Beryl Maxwell concentrate very much on

the LOGO users, children in French and
British primary schools. Kim O’Driscoll’s note
serves to point out that LOGO’S possibilities
extend into the secondary school, that LOGO
isn’t just for the very young. Finally, Tim
O’Shea compares some of the programming
languages available for young programmers.
We have appended two more items, a list of
currently available LOGO implementations,
and details of some books which will provide
readable introductions to LOGO.

The BLUG Conference has undoubtedly been
the most recent major LOGO event in this
country. An international attendance of 200
people, keen to learn and open to new ideas,
made it an exciting experience for all who
attended. Particularly notable was the mixture
of interested people of all kinds: teachers,
advisers, civil servants, journalists, researchers,
business computer consultants, publishers,
psychologists, and more. The main speakers
— Deborah Booth (a primary school teacher),
Peter Ross (Edinburgh University) and Seymour
Papert — represented this diversity, and
expressed the feeling of those who mix with
LOGO that they are dealing with a thing of
power.

We hope this collection will enable you to
sample something of the LOGO potential.

November 1983

2 LOGO SPECIAL

The spirit of LOGO discerned

Allan Martin
St Andrew's College of Education,
Bearsden, Glasgow

PART I WHAT IS LOGO?

Answer 1: LOGO is a programming language
LOGO is one of a number of computer languages
to have been developed in the field of Artificial
Intelligence. Researchers in Artificial Intelligence
(Al for short) attempt to understand human
thinking processes and behaviour patterns (such
as language or vision) by trying to develop
computer-based simulations of these.

In pursuing this end they have found it
convenient to develop computer languages
suitable to these particular activities. One of
these languages is LISP (short for LISt Processing
language). LISP is highly logical and has a
powerful facility for handling and manipulating
lists of items as complete units; however, LISP
programs have a tendency to be difficult to
follow when they reach any degree of
complexity.

LOGO was developed out of LISP in 1968 as
part of a research project to create a language
for the teaching of mathematical ideas through
programming. Its creators, principally Feurzeig
and Papert, intended that it should be easy to
learn, easy to use, and easy to read. Throughout
the 1970s, research was carried out on LOGO,
chiefly at Massachusetts Institute of Technology
(under the direction of Seymour Papert) and at
the Artificial Intelligence Department at
Edinburgh University (under the direction of
Jim Howe). Some of this research was concerned
with the use of LOGO in teaching mathematics,
but its value in many other learning areas
(including music and juggling) has also been
demonstrated.

As a programming language, LOGO can
handle three types of data objects. These are
numbers, words, and lists. Any of these three
types can be accepted by LOGO as single items.
Thus the following variable declarations are all
acceptable:

MAKE "X 206
MAKE "Y "GREETINGS
MAKE "Z [RATS GLUE PLASTIC

BANANAS]
Here X is assigned a number as its current value,
Y a word, and Z a list. Data-handling operations
can be carried out on all three types of data
object:

will produce

will produce

will produce

PRINT BUTLAST :Y
GREETINGS

PRINT LAST :Z
BANANAS

PRINT :X + 44
250

The function of the operations BUTLAST and
LAST can be deduced from these examples.
The ability to manipulate lists easily is one of
LOGO’S most powerful features, and makes
LOGO accessible to many areas beyond the
mathematical.

LOGO programs are built up through the
use of procedures. A number of LOGO
commands can be combined to form a simple
procedure. Simple procedures can be used as
commands in more complex procedures, and so
on.

TO SPACE
CLEARTEXT
REPEAT 10 [PRINT []]
END

This procedure, SPACE, which clears the screen
(using the command CLEARTEXT) and prints
ten empty lines, can itself be used as a command
in the procedure TITLE.

TO TITLE
SPACE
PRINT [WELCOME TO THE WORLD

OF LOGO]
WAIT 20
END

WAIT may be defined as a delaying procedure
requiring an input (in this case 20). The
procedure TITLE may now be used as a
command itself. A LOGO program therefore
consists of a hierarchy of procedures, each one
fairly short and thus hopefully easy to under
stand and to alter if necessary. This hierarchical
structure contrasts with the serial nature of
programs written in a language like BASIC.

Answer 2: LOGO is a theory about thinking
and programming.
The LOGO programming process can be seen as
a direct analogy of the thinking process.
Seymour Papert spent several years in Europe
working with Jean Piaget, and his views on
LOGO as a vehicle for thought show the
influence of a tradition in European thinking

LOGO SPECIAL 3

which seeks to interpret human behaviour and
human cultural products as evidence of ‘deep
structures’ which govern the way in which
people think and interact. Piaget’s work lies
within this tradition: he sees the development of
the child’s thinking abilities as a process
whereby simple structures are generated and
tested, and later (at an appropriate stage of
development) combined with other simple
structures to form a more complex or more
abstract structure. This latter forms the basis of
further intellectual growth. The building up of
intellectual capacity is then a continuous process
of generating more complex and abstract
thought-structures out of simpler ones. In this
way a hierarchy of thought-structures is built up.

The similarity between the building up of
LOGO programs and the building up of thought
structures is clear. When we develop a LOGO
program we go through a process which parallels
that of thinking. Individual procedures are
written and tested, then put together with
others to form super-procedures, and so on. For
Papert, this similarity between LOGO-work and
thought-work is what makes LOGO a ‘tool to
think with’ in a way which other programming
languages cannot be.

Answer 3: LOGO is a philosophy of education.
The parallelism between LOGO activity and
thinking lies at the base of the ‘LOGO approach’
to education. In developing his powers of
thinking, the child builds up structures of
thought by exploration of the world around him.
Thus, faced with the challenge of a new problem
or situation, concepts previously mastered are
combined to produce a new insight, one which
can then be transferred to the child’s thinking
about similar situations. The proponents of this
view of intellectual development place emphasis
on exploration and discovery as important
elements in learning, and these are generally
accepted as essential parts of the experience
which the primary school can offer. Exploration
and discovery are also central elements of the
LOGO learning experience. The LOGO user may
explore situations and think out problems by
building up LOGO programs out of procedures
constructed by himself. Different sets of LOGO
facilities place the user in different ‘micro
worlds’ which can become environments for
exploration and therefore for learning. The
possibilities offered by ‘turtle geometry’ give
only one of the sets of micro-worlds which
current implementations of LOGO can make
available.

There is an ongoing debate in the world of
primary education about the teacher’s role in
the process of discovery learning, the central

question being ‘how guided should discovery be?’
This debate is mirrored in the LOGO
community. All would accept that LOGO
learning is a process of discovery through the
achievement of insight into the nature of a
problem or situation. Differences only emerge
over the degree to which the process should be
guided or channelled. Papert takes what is
perhaps a consciously utopian line, arguing that
placing children in a ‘computer-rich environment’
and allowing them to explore is sufficient for
acceptable learning to occur. Ultimately, he
suggests, schools and teachers are unnecessary,
for computer-rich learning environments can be
made available without such institutional
trappings. However, in a world where schools
still exist, many researchers and teachers who
have used or are using LOGO in the classroom
would raise two points:

a) Gaining knowledge of a learning area by
complete discovery is a very time-consuming
and inefficient process. Supplying tools for
discovery and even hints for the direction
of exploration can speed up the process
while retaining the insight-gaining
experience.

b) In schools, where many activities compete
for involvement in the learning programme,
LOGO must be justifiable in currently
intelligible curricular terms if it is to be
given time during the school day.

These qualifications have resulted in variations
in approach between different research and
development groups, and even between different
projects carried out by the same group. Some
LOGO activities thus look more highly organised
than others, or are slanted in different curricular
directions. It is important to note however that
all major LOGO developers agree in viewing
LOGO learning as in essence a discovery process.
Clearly, LOGO-use has important implications
for what is taught and the way in which it is
taught.

PART II WHAT FACILITIES CAN BE USED
THROUGH LOGO?
Teaching mathematical ideas is at present
possibly the most common LOGO use in schools.
However, LOGO is essentially a programming
structure upon which various ‘facilities’, or tool
kits of relevant procedures, can be hung. The
facility for turtle graphics is one of a number of
actual or potential toolkits; thus teaching
mathematics through turtle graphics must be
seen as merely one of many possible applications
of LOGO. LOGO is not a ‘maths-oriented’
language. Some of the facilities accessible
through LOGO are indicated in the following
paragraphs.

4 LOGO SPECIAL

1. Turtle graphics
Turtle graphics is undoubtedly the most familiar
facility which LOGO offers. As a visually
rewarding and easily usable system, it is often
seen as a convenient introduction to LOGO
programming, either as a thinking exercise or as
a vehicle for understanding particular mathem
atical concepts. In practice most activity with
LOGO in education so far has concentrated on
the use of turtle graphics. Some confusion in
this area has arisen, due to the fact that turtle
graphics packages are also available in non-
LOGO contexts, for instance, in Apple Pascal oi
Atari PILOT. There are also available, particularly
for the BBC microcomputer and the RML 380Z,
turtle graphics programs (usually written in
BASIC) offering a limited range of LOGO-like
command structures. These programs should
not be confused with full implementations of
LOGO. Where, as with the BBC micro, no
implementation of LOGO is available (or likely
to be for some time), inexpensive turtle
graphics programs may form a useful stop-gap
sampler of LOGO-like activities. However, where
a LOGO implementation is available (as in the
case of the 380Z), the power and the range of

facilities which LOGO offers make turtle
graphics packages seem very much a false
economy.

These procedures indicate the way in which
the complex may be built up easily from the
simple.

TO TRIANGLE
REPEAT 3 [FORWARD 100 RIGHT 120]
END

TO SPINTRI
REPEAT 12 [RIGHT 30 TRIANGLE]
END

TO SPINTRIN :NUM
REPEAT :NUM [RIGHT 360/:NUM
TRIANGLE]

END

The procedure TRIANGLE draws a triangle of
three equal sides. SPINTRI combines twelve
such triangles into a wheel-shaped design.
SPINTRIN enables you to combine any
number of triangles (shown as the variable
NUM) into a wheel-shape. Thus SPINTRIN 15
forms a wheel of fifteen triangles.

TO TRIANGLE
REPEAT 3 CFD 60 RT 1203

END

REPEAT :NUM CRT 360/:NUM TRIANGLE]3.° END

LOGO SPECIAL 5

2. List processing
LOGO offers powerful facilities for dealing with
words. Here are some examples:

TO MONKEYS
REPEAT 6 [PRINT[MONKEYS LIKE

BANANAS]]
END

The outcome of the procedure MONKEYS is
fairly clear.

TO ECHO
PRINT [TYPE A WORD]
MAKE "ITEM REQUEST
PRINT (SENTENCE : ITEM : ITEM

: ITEM)
END

The procedure ECHO asks for a word to be
typed in, then prints it out three times. Typing
in SHOUT will result in the printed output
SHOUT SHOUT SHOUT.

TO EATS :ANIMALS :FOOD
PRINT (SENTENCE [WHAT DO]

:ANIMALS [LIKE TO EAT ?])
IF REQUEST = -.FOOD THEN PRINT

[RIGHT] STOP
PRINT[HERES NEWS]
PRINT (SENTENCE :ANIMALS [EAT]

: FOOD)
PRINT [NOW TRY THIS]
EATS :ANIMALS :FOOD
END

The procedure EATS must be supplied with two
parameters in square brackets (i.e. as lists).
EATS [MONKEYS] [BANANAS] will produce
continued asking of the question ‘What do
monkeys like to eat?’, with suitable prompts
until the answer ‘bananas’ is provided. EATS can
be applied to any combination of animals and
their favourite food, e.g.

EATS [BLACKBIRDS] [WORMS]
EATS [BIRD-EATING SPIDERS] [BIRDS]
EATS [CERTAIN FRENCH PERSONS]

[FROGS LEGS]

Notice that because the parameters to EATS are
lists, descriptions of more than one word are
possible.

These examples give only a hint of LOGO’S
processing power, a power which makes LOGO
not only suitable forchildren to play with words,
but also for teachers and learners of any age to
write complex interactive programs.

3. Numerical operations
The definition of simple operations followed by
their combination into complex ones likewise
characterises LOGO’S number-handling abilities.
Normal numerical operators can be used with
LOGO, e.g.

PRINT 12 * 9
PRINT 264+ 1032

Supplying inputs to procedures enables custom-
built operations to be performed.

TO SQ :NUM
OUTPUT :NUM * :NUM
END

The procedure SQ will generate the square of a
number supplied. Thus the command PRINT
SQ 9 will print 81,

TO SQADD :Y :Z
PRINT (SQ :Y) + (SQ :Z)
END

SQADD will square two numbers supplied, add
the squares together and print out the result on
the screen. Thus SQADD 2 3 will produce 13.

TO EXP :NUM rPOWER
IF TOWER = 0 THEN OUTPUT 1
OUTPUT :NUM * (EXP :NUM TOWER-1)
END

Recursion, that is, the ability of a procedure to
call itself (seen in EATS), enables LOGO to
offer complex calculations in concise form.
The procedure EXP raises the number supplied
to the power supplied. Thus PRINT EXP 4 2
will produce 16 whilst PRINT EXP 4 3 will
produce 64.

4. Music
Another toolkit Of procedures enables most
LOGOs to offer a music facility. The Terrapin
version for the Apple II uses the command
PLAY followed by two lists, one of pitches, one
of durations.

TO C. CHORD
PLAY [8 12 15 20] [40 40 40 40]
END

TO F. CHORD
PLAY [13 17 20 13+] [40 40 40 40]
END

The procedure C. CHORD plays the notes C, E,
G, and C in succession, while F. CHORD plays
F, A, C, and F. The numbers representing the
pitches can be read off a diagram of the stave.
C. CHORD and F. CHORD can be combined
together to make FC. TUNE.

6 LOGO SPECIAL

TO FC. TUNE
C. CHORD
C. CHORD
F. CHORD
C. CHORD
END

Since a wide range of pitches and durations may
be chosen, the possibilities of creating individual
bars and combining them in different ways are
considerable. The potentiality for exploring
rhythmic, melodic and harmonic patterns in
music by the exercise of building it from simple
components may be imagined. The possibilities
will be even greater if LOGO implementations
appear which will support more than one
channel of sound simultaneously.

5. Control
As yet still under development is the application
of LOGO to the control of equipment external
to the computer. In the early years of its life,
LOGO was used to control the Floor Turtle, a
dome-shaped robot capable of following LOGO
commands to draw lines. However, in the United
States and in this country, the construction of
LOGO-type languages for control applications is
being actively pursued. One early candidate for
such application is the BBC Buggy, however,
in the next few years we can expect to see
LOGO in measurement, in switching operations,
and in the control of robot devices.

PART III WHERE DOES LOGO GO FROM
HERE?
Having looked at some of the facilities which the
LOGO language offers, it remains to ask where
current LOGO developments may be heading.
Here are some possibilities.

1. Widening range of applications
An existing area of application which is still
moving on is graphics. Recent implementations
of LOGO support sprites (moveable graphics
objects which can move in front of or behind
each other), multiple turtles, and sprites whose
collisions can be sensed and acted upon. Music
is another area where new implementations
may offer more facilities, such as multi-channel
sound. As mentioned above, more control
applications may be expected also. We must in
addition be prepared for applications as yet not
considered.

2. New implementations
Full LOGO implementations are now available
on the Apple II (two versions), Texas
Instruments 99/4a, IBM Personal Computer,
RML 380Z and 480Z, Commodore 64, and
Atari 800. Of these, the Atari is possibly the
most advanced. However, LOGO has been
promised for the Sinclair Spectrum and the BBC
microcomputer, and one looks forward to see
what facilities these will offer.

3. Increasing use in education
LOGO makes an ideal language for developing
computer familiarisation and computer use, as
well as general skills of structured thinking and
problem-solving. As such, it should have a place
in both primary and secondary schools. In the
primary school, LOGO can form the ideal
environment for many computer-based
activities. In the secondary school, it may
ultimately supplant BASIC as the language of
Computer Studies. Further testing and
evaluation lies ahead before such things will
happen. Clearly, however, there is a future for
LOGO.

LOGO SPECIAL 7

Why blug:

Derek Radburn
Chairman, British LOGO User Group

It’s an unprepossessing acronym, isn’t it? But it’s
just sufficiently discordant to be memorable
(and vulnerable to snide remarks about
BLUGGERS!). The British LOGO User Group,
to give it its full name, was formed in the latter
part of 1982. The coming together was a result
of people of varying degrees of experience and
different motives of interest in LOGO having
shared a week at the Edinburgh LOGO Summer
School of 1982.

Underlying the Group’s formation was the
conviction that LOGO had something special to
offer to learning (and not just children’s learning).
LOGO directs the learner’s attention not just to
results but to the means by which those results
are achieved. LOGO offers the learner the
opportunity for the practice and development of
the intellectual skills of analytical and sequential
thinking — a problem-solving approach. At the
child level, LOGO, through its resemblance to
natural language and its extensibility, makes
computing power accessible to children as
programmers. Its stimulus to the imaginative and
creative use of the computer has a potency
which goes beyond intellectual gain to affect
the learner’s self-image in a way the closed
‘drill and practice’ software can never do. (This
well-nigh unquantifiable aspect of attitude,
particularly self-attitude, is one which is too
often overlooked.) I must apologise for this
seeming digression, but it is all germane to the
causes which led to BLUG coming into being.

BLUG has, as its prime aim, ‘the promotion
of LOGO as a thinking tool’. To achieve this,
the Group’s chief activity is communication.
We want to make people aware that there is
more to LOGO than just turtle graphics — that
nearly 80% of the implementations of full
LOGOs are dedicated to the list-processing
powers of the language. As a Group, we attach
particular importance to the philosophy which
underlies LOGO. Misused, LOGO is just as
vulnerable to becoming a new item of pedagogic
orthodoxy as any other development, but not if
its use is true to the philosophy, which we see
as an integral part of the LOGO package. We aim
to communicate ideas and examples of use
involving LOGO. This involves putting our
membership in touch with each other and with
anyone else using LOGO. We shall make soft
ware available to our members and give

Terms explained: HEADING

information about machines, implementations,
and literature pertinent to LOGO. A subsidiary
role, but an important one, which we hope the
Group will develop will be to influence the
standards of implementations appearing in
machines; there is some evidence that this is
happening already.

The way in which we are setting about doing
this is by the quarterly publication of a News
letter, entitled Logos. This will be sent to
BLUG members, together with a complete
membership list.

The first annual BLUG conference was held
at Loughborough University in September
1983. BLUG’s President, Seymour Papert, was
both a speaker and a participant.

We shall be publishing, later, the first annual
LOGO Almanack, which will have a content
which will be of a more academic nature than
the Newsletter, and we hope will soon establish
itself as an authoritative reference on LOGO.
We also have hopes of making the first items of
software available to members soon. Our
membership now approaches 400, despite the
fact that we have not done much active seeking
of members so far. We even passed by the
opportunity for publicity at the time the
Horizon programme, ‘Turtle-Talk’, was screened.
We preferred not to be inundated and appear
inefficient, but to grow slowly and effectively.
We feel we have now established an effective
organisation and are ready to go out and seek
members. At present BLUG has no sponsors.

So, in conclusion, if you are interested in
LOGO and would like to be involved in BLUG
and its aspirations, we shall be happy to hear
from you. Write to Pam Valley (BLUG
Secretary), Shell Centre for Mathematics,
School of Education, University of Nottingham.

8 LOGO SPECIAL

LOGO — where next!

Julian Pixton
Hillary Junior School,
Walsall

LOGO is the global name for a growing family
of computer language implementations.
Characteristic features of these languages include
the ability to define procedures as new words,
which can then be used exactly as primitive
commands and functions. These defined
procedures may also include variables which are
local to a given procedure, which permits true
recursion.

LOGO also embodies a full list structure. That
means the language can manipulate lists which
themselves can be made up of the names of
other lists, which themselves may be lists of lists
and so on.

Newer implementations of LOGO are shortly
to become available with elements of parallel
processing and sophisticated message passing in
order to facilitate speedier graphics programming.

1. Multiple Turtles
Conventionally, in the LOGO graphics subset
known as turtle graphics, complex figures are
constructed by drawing one piece of the object
at a time, until the figure is complete.

Newer implementations will soon offer the
possibility of drawing all the component parts
of a complex shape at once, using several turtles.

Multiple turtles provide many extra
possibilities. It is often possible to simplify
programming by giving individual turtles
different sub-tasks in a program. We can make
drawings by assigning turtles to the tasks of
drawing individual pieces of the whole. In this
way, the drawing seems to evolve instead of just
appearing, piecemeal. At a more serious level,
multiple turtles can be used to illustrate
concretely the process of multiprogramming.

New turtles are created in MIT LOGO by
means of the HATCH command.

The form of the command is:
HATCH turtle number Procedure for the
turtle

For example,
HATCH 1 SQUARE 20

The turtle number is the name or label of the
turtle. It can be any number between 1 and 254.
Turtle 0 is the master turtle.

SQUARE is the name of the procedure which
we are telling turtle 1 to run. The number
following SQUARE is the value to be passed to
the local variable within SQUARE.

Having defined SQUARE as,
TO SQUARE : LENGTH :XPOS :YPOS

SX : XPOS SY:YPOS
REPEAT 4 (FORWARD : LENGTH

RIGHT 90)
END

we can try out this simple multiple turtle
program.

TO TRYOUT
HATCH 1 SQUARE 50 30 60
HATCH 2 SQUARE 40 180 90
HATCH 3 SQUARE 60 100 90
SQUARE 20 150 120
END

Notice that each turtle has its own procedure
and its own set of values for the variables. The
last call of SQUARE has no HATCH preceding
it, so it is addressed to turtle 0. Turtle speed
obviously slows down as the number of turtles
on the screen increases.

One interesting exercise is to try and adapt an
existing program which utilises recursion into a
routine using multiple turtles. The famous tree
program is ideal.

TO TREE :SIZE
IF :SIZE <2 (STOP)
FORWARD : SIZE
RIGHT 15
TREE (3 * :SIZE/4)
LEFT 30
TREE (3 * :SIZE/4)
RIGHT 15
BACK : SIZE
END

Here is the same program written using
multiple turtles:

TO TREE : SIZE
IF ME = 0 (CLEAR SY0)
IF :SIZE>6

(FORWARD :SIZE LEFT 30
HATCH 1 TREE (3 * :SIZE/4)
RT60
HATCH 2 TREE (3 * : SIZE/4)
VANISH)
ELSE

END

LOGO SPECIAL 9

The elegant and powerful mathematical ideas
embodied in the TREE program are worth
investigating in detail. Recursion is a little
complex, but it is so powerful that it is well
worth the effort to understand.

Comparing the speed of the multiple turtle
version with the earlier version is interesting. It
will give you some idea why the concept of
multiprogramming is worth learning about.

Trees are so easy to draw with multiple turtles
that you could quickly draw a complete forest.
Using the previous TREE procedure we can add:

TO FOREST
BACKGROUND 1
SX 236
REPEAT 3 (SY 10

SX XLOC ME + 40
HATCH 1 TREE 20
SX XLOC ME + 40
HATCH 2 TREE 30
MANYCLOUDS)

END

TO CLOUD :SIZE :X
SETHEADING 90
REPEAT (:SlZE/6)
(MAKE :X RANDOM (:SIZE/2)

PENUP FORWARD :X/2 PENDOWN
FORWARD :SIZE - :X PENUP
BACK :SIZE - :X/2
SY YLOC ME - 2)

END

TO MANYCLOUDS
PENCOLOUR 2 SX 10 SY 180
CLOUD 60
SX 100 SY 164
CLOUD 30
SX 190 SY 176
CLOUD 65
END

Here we have the beginnings of a microworld.
With 255 turtles to play with, you can redefine
some of them as cars, some as people, some as
animals, some as aeroplanes, and then animate
them with simple commands.

2. Using Lists.
Children can have lots of fun with programs that
print random sentences.

Many children experience great difficulty in
understanding grammatical categories, the
differences between nouns, verbs and adverbs,
etc. For some of them it is an inability to work
with logical categories, but for many it is the
inability to appreciate what grammar might be
used for.

Using LOGO, you can put a child into the
position of teaching a computer to manufacture
strings of words that mimic English.

Firstly, they have to teach the micro to
choose words from an appropriate list. To
construct these lists, the child needs to classify
the words he wishes to use into suitable
categories.

For many children this leads to a real under
standing that words can be sorted into different
groups or sets and, consequently, not just to a
conception of fundamental grammatical rules,
but to an actual change in the child’s formal
relationship to grammar.

In designing random sentence programs, it is
useful to have a procedure like PICKRANDOM
that takes a list as input and outputs an item
from the list chosen at random.

PICKRANDOM is a LOGO primitive in some
implementations shortly to be released, but if
it is not present in your version of LOGO, you
can define it by using lists and recursion.

PICKRANDOM is implemented in terms of
the associated procedures PICK (which outputs
the Nth item of a particular list) and LENGTH
(which gives the number of items in a list).

TO PICK :N :X
IF :N = 1 OUTPUT FIRST :X
OUTPUT PICK (:N - 1) (BUTFIRST :X)

END
TO LENGTH :X

IF :X = () OUTPUT 0
OUTPUT 1 + LENGTH BUTFIRST :X

END
TO PICKRANDOM :X

OUTPUT PICK (1 + RANDOM (LENGTH
:X)) :X

END
Once you have PICKRANDOM it is easy to

generate simple random sentences of the form
NOUN — VERB by picking words at random
from lists of nouns and verbs. For example,

TO VOCABULARY
MAKE " NOUNS (TEACHERS SCHOOLS

COMPUTERS THEATRES DANCERS
CARETAKERS)

MAKE "VERBS(FAIL TEACH CHANGE
EXPLORE THINK CLEANUP)

TALK
END

TO TALK
PRINT SENTENCE
(PICKRANDOM :NOUNS)
(PICKRANDOM :VERBS)

TALK
END

This would lead to the following kind of output;

10 LOGO SPECIAL

VOCABULARY
DANCERS EXPLORE
CARETAKERS TEACH
SCHOOLS CHANGE
TEACHERS CLEANUP
THEATRES THINK
etc. etc.

Obviously there are a number of ways that
this can be refined. For example, you could
easily make more complex sentences by adding
more lists containing other parts of speech, such
as adjectives and adverbs. Further sophistication
could lead to matching singular with singular
and plural with plural.

Beware!
LOGO is certainly no toy language, as some
recent bizarre pseudo-implementations might
suggest. The idea behind turtle graphics is to
provide an early and easy entry into communi
cating with a computer. It is designed for total
beginners with no prior mathematical knowledge.
This conception is analogous to a very young
child learning to speak. Turtle talk is like baby
talk. It is a simple subset of a vast, rich and
complex language — LOGO. Anything that does
not offer this depth and richness is not LOGO.
At best, it is merely a misguided educational
dead end. At worst, it is a cynical rip-off.

Simple LOGO in primary schools:
a structured or unstructured approach!

Helen Finlayson
Department of Artificial Intelligence,
Edinburgh University

The Edinburgh turtle, a small robot which can
move around the floor in response to simple
commands in the LOGO language, is now
becoming available to primary schools, as a
means of extending the use of micro
computers. This paper addresses two problems.
For what purposes can the turtles be used, and
what teaching style should be adopted? In
Edinburgh we have been using the prototype
turtle with primary school children over the past
18 months, and this is a personal view based on
this experience. There is also work currently
under way developing the use of the turtle for
mentally and physically handicapped children
in special schools, but this is not considered
here.

1. What educational purpose can be served by
using a turtle in a primary classroom?
The turtle was devised as a medium for explor
ing mathematical ideas, to enable children to be
mathematicians doing mathematical things
rather than learning about mathematics (Papert
1972). It can be used to explore the properties
of number, as linear or angular displacement; to
investigate geometric ideas of regular shapes, and
the relationship between the angle turned and
the shape produced; and to see mathematics as
being about the creation and recognition of

patterns. The turtle provides a learning environ
ment where children can experience mathe
matical rules. It can thus also be used to back up
normal classroom lessons, to give children
greater understanding of abstract relations.

The turtle can be useful in other types of
learning which are not overtly mathematical. It
can be used to teach general problem attack
skills, by the analogy to producing a turtle
drawing. The child has the aim of producing a
particular drawing with the turtle. He can learn
to approach the problem in a top down manner,
breaking it into subproblems by recognising
component shapes and the relations between
them, and then planning each of the sub
problems, testing and debugging them, and
finally putting the whole drawing together.
These component processes can be used in
approaching problems in any domain (Polya
1957), and practice in such turtle exercises can
give valuable experience and act as a basis for
the discussion of other problems.

A third approach is to use the turtle as an
introduction to programming in the LOGO
language. Important programming notions such
as procedures, subprocedures and recursion can
all be learned through the simple subset of the
language available with the Edinburgh turtle run
on the OKLOGO software. Because the pro
gramming activities all produce drawings, it is a
very rewarding way to learn programming, and
after this children can transfer to micro
computers and use the full LOGO language with
great confidence. They can then approach other

LOGO SPECIAL 11

fields of learning through programming, such as
creative writing or grammar (Sharpies 1978,
Rowe 1978).

2. What teaching style should be adopted? —
the theoretical issue

a) Discovery versus rule learning
The theoretical issue of discovery learning versus
rule learning has been debated for a long period
of time, and the results of research into the
problem have not been clear cut (Shulman 1970,
Wittrock 1966). One argument for a discovery
approach is that it produces a structurally
different learning outcome; one which relates
the new knowledge to the learner’s existing
knowledge. This ‘relational’ learning permits
different approaches to a problem to be recog
nised, and allows for thinking about the problem
(Skemp 1976). A rule learning approach, on the
other hand, produces instrumental learning,
which is not necessarily related to previous
knowledge, and which tends to fail when dif
ferent approaches to a problem are used. (Mayer
and Greeno 1973; Egan and Green 1972).

b) Structured versus unstructured learning
The turtle was clearly designed as a tool for dis
covery learning, and has been used by Papert
and his fellow workers at MIT in a very un
structured manner, where children have been set
no goals and given very little guidance on what
to do. However, discovery learning does not
necessitate an unstructured approach, and a
great deal more guidance can be given to a child
working with the turtle, without removing the
essential exploratory element of experience. To
what extent would this be a desirable and
practical thing to do? Does the unstructured
approach produce any undesirable learning
effects, which could be overcome by structuring
the learning situation a little more?

Experimental observations
In one typically unstructured study at MIT
(Papert et al. 1979) children spent a total of 25
hours working with LOGO over a 7 week period.
The children chose their own projects and
worked with them with the minimum of
guidance. Most children learned a lot from the
considerable amount of time that they were
spending on the computers: however, for others
the learning experience was less successful. An
analysis of the children’s work identified the
mathematical and programming concepts which
they had used, but in some instances these
embedded concepts were not discovered by the
child, because, although he had used them, they
were not made explicit. Two of the 16 children

Don’t cry, love, we ’ll have him
down in no time’

studied in detail did not learn to program. One
child used the computer only as a typewriter,
and did not use the turtle at all. Another child
limited her work to a ‘microworld’ using only a
few values for input to both the forward and
turning commands. In another study Perlman
(1974), using younger children with a floor
turtle and slot machine, found that children
would keep repeating the same actions over and
over again until they became bored, but would
not try to explore different alternatives. These
studies show that the learning implicit in a
situation is not always grasped, and some child
ren show an inability or lack of desire to
explore a situation.

In Edinburgh we were interested in develop
ing a system of using the turtle for the
exploration of mathematical ideas. We spent the
first term in a primary school using an open-
ended unstructured approach with small groups
of children working on the Edinburgh turtle. In
the early sessions several observations were made
which are summarised below.

12 LOGO SPECIAL

1. It was very time-consuming; very few children
were able to use the turtle in a half-morning
session.
2. Children wanted to do complicated drawings
before they were confident of the simpler actions.
3. They were much more successful when they
had time to think and plan beforehand - one
Primary 6 boy drew a parallelogram in his first
session (after one class introductory lesson),
having already planned it on paper.
4. Most children prefer to ignore their mistakes
and go on to something else, rather than learn
from them and debug their program.
5. Many children apparently got bored with the
turtle, because they could not think of anything
to do with it, or became frustrated because they
could not get their overambitious plans to work,
and so gave up.

In practice we found that children vary a lot
in their exploratory behaviour, and on con
sideration it seems that most successful un
structured learning situations probably have a
great deal of hidden structure in them. The
problems children seem to have of not knowing
where to explore and what to attempt, or of
avoiding frustration, could be overcome by the
intervention of a teacher, with just a hint or a
suggestion to guide the child.

From our observations we put forward the
tentative hypothesis that children have different
levels of tolerance for uncertainty, which affect
their performance in an unstructured situation.
Children with low tolerance levels will seek to
put structure into the situation to reduce the
uncertainty or, if they are unable to do this, will
seek to avoid or leave the situation. Confident
children, on the other hand, will enjoy the un
structured learning environment and experiment,
perhaps not always in the way a teacher would
expect.

A great many of the observations of the way
children operate with the turtle, from our
experience, and from written reports (Noss
1983, Maxwell 1982), can be interpreted as
‘coping behaviour’ by children with a fairly low
tolerance of uncertainty. Some children are well
practised at finding structure to put into a situa
tion, if it is not supplied. They will follow any
vague suggestions from the teacher as closely as
possible, use only a self-imposed limited set of
commands, or copy what someone else has done.
Their pleasure in recreating a design which is a
direct copy of another (Noss 1983) may be less
of the joy of creating and more of relief in
successfully overcoming the uncertainty of the
situation in an acceptable manner. They may
also borrow structure from their more formal
lessons, as in one school where children investi
gated reflections using the turtle, having just
been studying them in mathematics.

A guided discovery learning approach

If, as the hypothesis suggests, many children do
need structure in a learning situation, then it is
surely better to provide it in a well-thought-out
way, rather than letting them find it where they
can. It also became clear that if children were to
make best use of their time on the turtle, they
should be encouraged to:-
a) Think about what they were going to do
beforehand, and possibly plan it on paper and
keep a record of it.

b) Be confident in the use of direct commands
before going on to building procedures.

c) Keep procedures fairly short to make de
bugging them a practical alternative.

Thus a structured learning approach has been
adopted. Workcards have been developed to
introduce new programming techniques in order
of difficulty. Each card contains suggestions for
mini-projects which children can pursue, although
at all times they are encouraged to try out their
own variations and approaches. These workcards
are currently being used in an evaluation study.

References
Egan, D. and Greeno, J.G. (1973) ‘Acquiring cognitive

structure by discovery and rule learning’ J. of Educ.
Psychol. 64(1) 85-87

Maxwell, B. (1982) LOGO at Crabtree School (AUCBE,
Hatfield)

Mayer, R. and Greeno, J.G. (1972) ‘Structural differ
ences between learning outcomes produced by
different instructional methods’J. of Educ. Psychol.
63 165-173

Noss, R. (1983) Starting LOGO; Interim report of the
Chiltern MEP L OGO Project

Papert, S. (1972) ‘Teaching children to be mathematicians
v. teaching about mathematics’. I. J. Maths. Educ.
Sci. Technol. 3 249—262

Papert S. et al. (1979) ‘Final Report of the Brookline
Project’ MIT Al Memo No. 545

Perlman, R. (1974) ‘TORTIS: Toddler’s own recursive
turtle interpreter system’ LOGO memo 9

Polya, G. (1957) How to solve it (Doubleday Anchor
Books, New York)

Rowe, N. (1978) Grammar as a programming language
(Creative Computing)

Sharpies, M. (1978) ‘Poetry from LOGO’ DAI Working
Paper No. 30.

Shulman, L. S. (1970) ‘Psychology and Mathematics
Education’ In E. G. Begle (Ed) Mathematics educa
tion (69th yearbook of NSSE, Chicago)

Skemp, R. R. (1976) Mathematics Teaching 77 20—26.
Wittruck, M.C. (1966) ‘The learning by discovery hypo

thesis’ In L. S. Shulman and E. R. Keisler (Eds)
Learning by Discovery: A critical appraisal (Rand
McNally, Chicago)

LOGO SPECIAL 13

Approaching LOGO

Richard Noss
Co-ordinator, Chiltern MEP LOGO Project

For many teachers, particularly primary teachers,
LOGO seems like a light at the end of the tunnel.
Having stared at the endless succession of ‘drill
and practice’ programs which make up the bulk
of available software, it is easy to be lulled into
the belief that LOGO will solve all problems by
itself. It won’t.

It is easy to underestimate the difficulties
involved. After all, Papert’s vision is of a
computer-rich culture in which the restrictions
of school are replaced by a learning environment
in which the child is free to create his or her
own curriculum. Unfortunately that is not the
reality which we face at the moment. Instead,
we have severe limitation on staffing and
resources, a restrictive and examination-oriented
secondary curriculum which has a spin-off into
the primary’s, and a situation in which most
primary schools have yet to take delivery of
their first micro.

In this situation, it is important to face up to
issues of classroom organisation realistically.
How many children should use the machine at
a time? How much time should be devoted to
LOGO? How can the machine be allocated
fairly to classrooms within the school? What age
groups — if any — should have priority on the
machine? There are many such questions;

although many of them will begin to disappear
as LOGO-speaking machines come down in price,
they will remain with us in the immediate future.
The intention of this article, however, is to
concentrate on only one issue — and one on
which the increasing availability of hardware will
have only a marginal effect. How prescriptive
should a LOGO curriculum be? More funda
mentally, should there be a LOGO curriculum at
all?

It is not surprising that this question has
formed the basis of much of the discussion
about LOGO. The essence of LOGO is that it
allows the child a high degree of control over
his/her learning environment. Ideas belong to
the child; discoveries are the child’s own. As a
consequence, the issue of teacher-direction
looms especially large. It is always difficult to
decide when to intervene and when to hold back
and allow the child to experiment, make mistakes
and discover by herself. In LOGO, it is doubly
difficult. It is not surprising that the two major
centres for LOGO research throughout the
seventies — at the Massachusetts Institute of
Technology in the USA, and at the University of
Edinburgh — have adopted widely differing
approaches to this problem.

The MIT approach, under the direction of
Seymour Papert, has concentrated on a project
based approach. Children have been encouraged
to formulate their own problems, and to learn
the necessary elements of the LOGO language in

14 LOGO SPECIAL

their search for workable solutions. No attempt
has been made to link LOGO activities explicitly
with the existing curriculum of the school;
indeed a central feature of LOGO is seen as its
function of transcending the traditional subject
borders.

Edinburgh’s approach has been radically
different. It has been based on sets of work
sheets which introduce, in a linear way, a
hierarchy of programming concepts (procedures,
editing, inputs, recursion, list-processing, etc),
and then uses these ideas to enrich specific
mathematical topics, found in existing published
materials.

Does this polarisation provide the primary
teacher with a useful starting point in attempting
to devise an approach to using LOGO in the
classroom? The answer is a qualified yes. But in
order to provide such help, it is necessary to
distinguish between two aspects of the debate.

The first is a tactical difference. That is to
say, it is concerned with a difference in materials
used, type of activities, etc. To an extent, this
has to depend on the age range and experience
of the children and on the teaching style of the
individual teacher. Learning to program is
certainly not a trivial task — even in LOGO —
and there is no disagreement about the need to
teach the child how to use the language. Work
sheets, workcards, word of mouth, whole-class
discussion, children teaching each other; these
are the tactical choices which have to be made.
The Edinburgh approach is designed to teach
programming through worksheets, while the
MIT approach is founded upon the child dis
covering on his or her own. It is this contrast
between child-discovery and teacher-direction
which is usually seen as the major source of
difference between the two approaches.

However, there is a more fundamental
difference — a strategic rather than a tactical
one. It is here that the real source of difference
emerges. More importantly, it raises the first
question which any teacher considering the
introduction of LOGO into the classroom must
answer — why LOGO?

The single biggest misconception held by
teachers and others about LOGO is that it is
designed to teach the ideas of geometry. In the
first place, of course, turtle graphics represents
only a small fraction of LOGO’S capabilities (for
example, only about 20% of Apple LOGO’S
inbuilt ‘primitives’ deal with turtle graphics).
But this is not the main point. Let’s just restrict
ourselves to turtle activities, which will, after all,
make up the major part of most children’s early
activities. To argue that turtle/LOGO activities
are designed to teach geometry is like arguing
that learning to read will enable you to under
stand a newspaper. Both are true. Both miss the
point. Learning LOGO, like learning reading,

provides the learner with a powerful thinking
tool, a powerful means of expression. Just to
push the simile a little further, both activities
provide a rich fund of material and experience
in the learning process itself. The best way to
learn to read is to read interesting books. The
best way to learn LOGO is to engage in LOGO
activities. On the way, you can’t help but learn
lots of other exciting things.

What are the implications of all this for class
room practice? Firstly, that the issue is not so
much about how to structure LOGO activities.
It is much more to do with ensuring that the
richness and power of the language are offered
to children; and that both the content and form
of the activities are seen by them as being under
their control. If that seems very general, it is
supposed to be. It does not seem useful to offer
a proposed LOGO teaching-sequence; children
need to be free to develop their own. It might,
however, be useful to offer some possible guide
lines. In the spirit of LOGO, these are not meant
prescriptively — merely as a set of personal
suggestions based on observation of introducing
LOGO into a number of primary classrooms.
1. Let the child keep control. The central
feature of LOGO is that it allows the child to
control her own learning. This does not preclude
direction into productive activities offering help
when necessary, or even suggesting useful avenues
to explore.
2. Whatever happens, let the children try things
out on their own first. LOGO gives a concrete
meaning to the cliche that we learn from our
mistakes.
3. Allow for plenty of exploration. This can be
of the ‘fundamental’ type (e.g. discovering that
the turn in a square is 90°), or it can involve
exploring the effect of playing with or modifying
a procedure. Children need time to explore.
4. Don’t be afraid to offer models. Procedures
written by friends or even the teacher are
valuable. Following an idea and exploring it in
a new and personal way is as valuable as thinking
of the idea in the first place.
5. Don’t introduce the child to new ideas out of
the blue. New ideas are best based on need: if a
child can see the relevance of a new idea, she is
much more likely to feel it belongs to her, and
to understand it.
6. Trust LOGO. Remember that it is a
programming language, and not just a software
package. As such, it offers, first and foremost,
an environment which encourages the skills of
planning, modifying, analysing and debugging —
i.e. thinking. The specific content — geometric,
algebraic, linguistic or whatever — is embedded
in LOGO.

LOGO SPECIAL 15

This last point needs illustrating. It is import
ant because it is, as I pointed out above, at the
heart of the divergence between the Edinburgh
and MIT approaches. The following is a sequence
of activities undertaken recently by two fourth
year junior children. I have chosen this example
because it represents a very elementary level of
programming development. The only LOGO
ideas the girls have met is that of procedure and
subprocedure. They are working with a floor
turtle. The plan was to draw a rabbit. There is
no space to describe the process in detail; notes
will have to do.
The question is: what did they learn?

1. How big should the body be? Repeat ?
(FD 8 LT 5) but . . . How many repeats?

2. What about the head? How can we make the
circle smaller? (The girls decided to find out
and in fact spent two or three sessions
researching the relationship between the inputs
to forward, left and repeat).

3. Where should the whiskers go? How can they
be incorporated into the head?

4. The tail must be drawn halfway round the
body otherwise we’ll have to retrace our steps.

5. What turn should there be at the top of the
ears?

6. Why is the second ear lop-sided?
7. Why isn’t the turtle facing in the right •

direction? etc. . . .
and later . . .

8. Can we make a procedure for drawing circles
so that we don’t have to write a new one each
time we want to change the size?
None of this takes account of the discussion

between the two girls. By the end, words like
‘input’ had become useful tools to help them
think about the idea of varying the relationship
between distances, turns and repeats.

The girls did learn a lot about geometry. They
also learned about planning, debugging, editing,
and analysing problems as well as setting the
scene for more sophisticated non-geometric
mathematical ideas such as variables. I was about
to write that what children learn from LOGO
depends on one’s priorities. In fact it depends on
theirs.

St Maurice School LOGO Project: a rationale

Tony Mullan

In any educational activity there are two main
considerations: firstly there is the philosophy of
the activity, and secondly the methodology.
Developments with the child as a programmer
using the computer language LOGO are no
exception. The philosophy is exemplified by the
phrase ‘the child is in control of the computer
rather than the computer in control of the child’.
This philosophy must be put into historical
relief against the educational philosophy
prevalent in America at the inception of the
language. American educational philosophy had
been heavily affected by the writings of the
psychologist B. F. Skinner. Thus the main thrust
of computer-aided learning was also governed by
these stimulus-response precepts. Papert,
affected by his years spent with Jean Piaget in

Geneva, decided he wanted to go in the opposite
direction. Papert maintained that programming
the computer was a fundamentally different way
of interacting with a computer than traditional
CAL. He suggested that the child who
programmed the computer would have a far
greater knowledge and understanding of the
computer itself. He would develop problem
solving abilities and insight into his own thinking.

This begs several questions. Firstly, what do
we mean by the ‘child in control of the
computer rather than the computer in control
of the child? The computer in control of the
child suggests a package that limits the element
of choice the child has with respect to the events
affecting him. In a drill and practice program the
child has no control over the general flow of the
program or the information presented. These
decisions have already been made by the teacher

16 LOGO SPECIAL

in consultation with a programmer. Within
simulations children have more control over the
information, but their control over the flow of
the program and the consequences of any action
on their part is again limited. Within an
information retrieval program children have
control over the data available to the program,
and the questions they wish to ask of that data:
they have no control over the structure of the
program or the way it presents information.
Using a programming language the child has no
control over the structure, syntax or semantics
of the language but has considerable control
over the way he wishes to use the language. The
parallel with regard to the use the child makes of
his natural language is obvious. Thus it is more a
question of degree of control rather than
absolute control. Possibly the word ‘control’ is
the wrong one to use in this context — rather we
should consider how meaningful the conversation
with the computer is in the different modes.
What is perhaps more important is the qualitative
aspects of the child’s interaction. What is certain
is that in suggesting the child program the
computer one has to examine carefully what the
objectives of the activity are.

‘LOGO has its roots in Artificial Intelligence.
Artificial Intelligence is not the study of
computers, but of intelligence in thought and
action. Computers are its tools, because its
theories are expressed as computer programs
that enable machines to do things that would
require intelligence if done by people’ (Boden
1977, preface)

It is perhaps here we might search for reasonable
objectives. Simplistically, Artificial Intelligence
seeks to model a portion of reality on the
computer. In Papert’s terms, it seeks to create a
micro world. To take the creation of microworlds
as our prime objective suggests several
sub-objectives. These sub-objectives include the
computer skills that are needed to model a
micro-world. Procedures, sub-procedures, super
procedures, variables, iteration and control are
part of these.

Traditionally, education has been concerned
with the introduction of certain skills with scant
regard for their final application. Here, in con
trast, skills are introduced as they are needed
by the child to continue with his learning. These
skills are the ones needed for the child to
develop micro-worlds of his own. The danger is
apparent of taking Papert’s phrase ‘education
without curriculum’ too literally. The same
danger was apparent in the 1960s over the
‘readiness’ criterion. It was argued that it was
pointless to try to teach a child something
before he was ready to learn. What was over
looked was the need to structure a learning
environment to promote readiness. It was also

suggested that acceleration through the Piagetian
stages was not possible. This was disproved by
Bryant (1974). The same thing applies to
programming in the primary school. The child is
not going to use procedures or variables meaning
fully until he has assimilated these concepts into
his established schemata. It is also true to say
that the majority of children will not spon
taneously realise that a program can be con
structed from procedures. The parallel of the
use of zero in mathematics is obvious. It took
humanity thousands of years to evolve the
concept of zero, so to expect a child to ‘discover’
this for himself is asking rather a lot of the
child.

The Edinburgh and Brookline Projects
Examination of the two main LOGO projects to
date would seem to indicate a differing approach
to introducing programming to children. With
the Edinburgh Project (Howe et al. 1979 and
1982), the objective was to examine the use of
LOGO in the normal classroom, and to this end
a methodology was evolved that included the
use of worksheets in a structured approach. In
the Brookline project (Papert et al. 1982), a
different approach was used. This could be
called a free expression programme that allowed
children to develop their own projects and so to
assimilate the computer skills outlined above.
The Edinburgh project used 18 children who
had on average 4 hours a week with LOGO on
an individualised basis. The usual situation in
the primary classroom is one computer between
thirty children, and invariably that computer
will have to be shared with the rest of the school!

There are considerable similarities between
the projects. For instance both are Piagetian in
their outlook. The teaching in the Edinburgh
project was influenced by the following guide
lines.

1. Learning should be built on existing know
ledge.

2. The use of familiar concrete objects as models
or metaphors makes teaching and learning
more manageable.

3. Classroom teaching should be a partnership
between teacher and child, with the child
being given as much responsibility as possible
for choosing, formulating and solving problems
within the broad aims and objectives laid
down by the teacher.

4. Feedback to the learner is crucial (Howe et al.
1979).

The main objectives of the Brookline project
were the computer programming skills of
sequential process, procedures, editing, de
bugging, variables, conditionals, loops, recursion

LOGO SPECIAL 17

and interactive programs. As was pointed out it
was in the methodology that the difference
occurred. Again however, in the Brookline
Project the children came four at a time to work
on four computers, and had a teacher whose
sole job was to interact with these children. A
ratio of one to four is pretty good.

The main question to be answered is — should
there be an overall structure within which the
child can operate, or should there be a laissez-
faire situation where the development of the
requisite skills is a matter of hopeful conjecture?
I am much persuaded by the former, where I as
the teacher structure the environment in such a
way that the objectives can be reached. Within
this environment the children are able to choose
from a set of projects devised by me or, if they
wish, to develop their own projects. At all
times we as teachers need to be evaluating the
learning the children are achieving. I am much
persuaded by Scriven’s view (Scriven 1967),
dividing evaluation into ‘formative’ that assists
in the development of the curriculum and
‘summative’ in order to assess the merits of the
curriculum after development. Papert is more
revolutionary — in fact his criterion for failure
is that the statisticians have to check for signifi
cance! We cannot ignore, as Papert would like
to, constraints of economics and of parental and
professional viewpoints. I am also aware that
other teachers who do not have the knowledge

and experience may wish to embark on an
exploration of LOGO. These teachers are more
likely to do so with a methodology that is not
too dissimilar from that which they practise in
their present duties.

St Maurice School
With the above ideas in mind the methodology I
developed was structured to the extent that
children had choice but the choices were
directed towards the objectives of the project.
I want children to gain the ability to write non
trivial programs. For instance, older children
could write CAL software for the use of younger
or less able children. I do not see turtle graphics
as the beginning and the end of programming in
the primary school. There are areas of mathe
matical modelling to be explored, not ignoring
the possibilities of textual manipulation, etc. To
do this, children need programming tools, a
knowledge of the virtual machine of LOGO
(O’Shea et al. 1981) and pertinent metaphors to
relate this learning to other learning and schemata
already present. The function of teaching in the
primary school is to facilitate the transfer of
intuitive learning into a symbol system capable
of abstract manipulation. In this case the
abstract symbol system we are aiming for is the

If you ask me, it’s dyslexic!’

18 LOGO SPECIAL

computer program, and the reason we are aim
ing for it holds its rationale in Artificial Intelli
gence in that the child will possibly understand
some aspect of reality in greater detail through
modelling that reality on a computer.

The methodology I employed therefore was
flexibly structured. The aims of the project were
to develop an ability to write proceduralised
programs, and to introduce the concept and
develop the use of variables.

The following ten stages of development were
built into the structure, children transferring
from one activity to another as their need
became apparent.

1. Introduction to the turtle and free explora
tion of the turtle commands in immediate mode.

2. Introduction to procedures and the evolution
of the ‘Turtle Dictionary’ as a metaphor for
thinking about procedures.

3. Understanding the connection between the
name of a procedure and the instructions
that define that name.

4. Introduction to subprocedures and their
meaningful use in a program.
5. Introduction to variables and the develop

ment of a metaphor to think about variables in
computational terms.

6. Writing simple procedures using variables.
7. Use of variables in procedures and sub

procedures. This needs further development of
the virtual machine to accommodate the transfer
of variable values from the calling procedure to
the subprocedure.

8. Using variables in superprocedures by declar
ing constants as variable values.

9. Using arithmetic operations on variables.
10. Introduction to the idea of stop rules and
simple ideas in program control.

Graph to show number of children in identified stages.

The graph above gives my evaluation of the
stages reached by the 36 children in the
project.

The worksheet example gives an indication of
the type of material the children had available.
They include geometric and environmental
projects. However, the children were free to
develop their own projects. These invariably
contributed to the overall aims of the project.

Conclusion

Space precludes my describing the project in
detail. The draft report runs to 25 pages!
Generally throughout the project the motivation
level of the children was high. They all made
significant advances both in their learning
regarding programming and in attitudes to
school work.

LOGO SPECIAL 19

Some of the evaluative comments of external
observers may be pertinent to this discussion.

‘The children not only handled the ideas put
before them confidently but they also showed
considerable confidence in using the micro
computer and the associated worksheets.’ -
David Owen, Primary Maths Adviser.

‘The more able children were obviously
deriving a tremendous benefit from this work
for it involved theoretical and practical problem
solving, and required discussion and co-operation.
The less able were proceeding at a slower pace,
as with any other form of school work.’ —
R. Butler, Headteacher, Laira Green Primary
School.

Regardless whether my argument regarding
structure is right or wrong, it is apparent that
the children are learning, and learning in a
meaningful way.

Bibliography

1. Papert, S. (1980) Mindstorms - Children, Computers
and Powerful Ideas (Harvester Press)
2. Papert, S., Wall, D„ DiSessa, A., Weir S. (1979)
Final Report of the Brookline LOGO Project, Logo
Memo 53 (MIT)
3. Howe, J., Ross, P., Johnson, K., Plane, F., Inglis, R.
(1982) Learning Mathematics through LOGO program
ming; the Transition from the Laboratory to the Class
room (University of Edinburgh)
4. Howe, J., O’Shea, T., Plane, F. (1979) Teaching
mathematics through LOGO programming: An Evalua
tion Study (University of Edinburgh)
5. Bryant, P. (1974) Perception and Understanding in
Young Children (Methuen)
6. O’Shea, T„ Du Boulay, B„ Monk, J. (1981) ‘The
Black Box inside the Glass Box: Presenting computing
concepts to Novices’, International Journal Man-Machine
Studies 14 pp. 237—249
7. Boden, M. (1977) Artificial Intelligence and Natural
Man (Harvester Press)
8. Scriven, M. (1967) The Methodology of Evaluation in
Perspectives on Curriculum Evaluation

Laye. Project 3

otkess jjok to dc<w cr <o/n^6Ai^ Ccice it.

Tk\S is df\ - yn may to adcL
ot QM\ ■

koiV yoiA ^OiAjj to S=oi\JQ tte. pfohLgNX
of- n’ri.tiAj £Ais pcoyramx.

20.LOGO SPECIAL

But what’s the use of asking kids to
have the computer draw a house!
Catherine Berdonneau
University of Paris VI

This is a dialogue between a parent (P) whose
child is working with LOGO at school, and a
member (L) of the French LOGO Research
Group.

The LOGO Project came from a common
concern of researchers in Artificial Intelligence
and in Education about what could be expected
of computers in education. The work started in
Cambridge, Massachusetts. Since the late 1960s
the Project grew, including various disciplines
(mainly mathematics, music, physics, biology,
grammar . . .), and extending to various
countries (Canada, Scotland, Australia, Germany,
France . . .). The word LOGO denotes at the
same time a theory of learning, a programming
language, and a set of computer-controlled
pedagogical devices.

The children talk a lot about LOGO when
they come home, but not always in a very
understandable manner to their parents. For
instance, they refer to the turtle, which can
either be a robot crawling on the floor
(protected by a dome), or a small triangle on a
television screen. One makes this ‘turtle’ move
with very simple orders: FORWARD, BACK,
RIGHT, LEFT: the turtle has a pen which can
be in an upward position (so that moving the
turtle does not leave a trail) or in a downward
position (so that one can make the turtle draw
designs).

One of the favourite projects of the children —
be it in the States or in France — is to have the
turtle draw a house. Hence the question:

(P) But what’s the use of asking kids to have
the computer draw a house?

(L) First of all, they are not asked to draw a
house, they are completely free when they make
up their project.

(P) What is a project?
(L) It is ‘something’ a group of children

decide to realise with the computer. They are
responsible for the choice of the subject. To find
an idea is seldom a problem: they generally have
too many ideas, and one of the first difficulties
is coming to an agreement, either by making a
synthesis of each child’s suggestion or by a
subtle negotiation among the group. The way
they carry out their project also is up to them.
And last but not least, they take the decision to
consider the project as completed at some time.

What I find particularly interesting is that
there is a very large variety of houses. Just in

one second grade class I observed this year, we
find a flat, a terrace-roofed house as in hot
countries, and a very traditional house with a
pointed roof. None of these houses looks like
the ones we had last year with fifth graders.
Not only do the shapes differ but also the
strategy for drawing the design. For the terrace
roofed house, kids respect the chronological
order, building the walls first — a square - and
then doing some carpentry for the roof. Fixing
the pointed roof on top of the house is not at
all simple. On the contrary, the building defies
all gravitation laws, since the roof is attached to
the first wall before the opposite wall comes
back to the ground level, where the floor is
drawn at last!

(P) Anyway, it would be much simpler to use
a sheet of paper and a pencil to draw a house!

(L) Neither for us nor for the kids is the goal
to draw a house. Our objective is to provide the
pupils with an environment and a tool which
allows them to be responsible for what they
learn. The adult is not the one who possesses and
transmits knowledge, but a pedagogue in the
etymological sense of the word, the one who
leads the child, in order to help him follow the
most fruitful path in his travel toward
knowledge. Children do somehow feel this, and
above all intend to make the machine obey them.
They are thus brought to think about what their
reasoning produces, as the machine shows it, the
computer being a kind of ‘mirror of their
thinking’.

(P) But do they learn anything?
(L) Let us analyse a few specific projects, all

dealing with houses.

The Orange Flat*

Starting on an idea suggested by one’s usual
surroundings, the first task is to come to a
simpler figure.
This means making choices among a multitude
of details, keeping only the most important ones
and forgetting all those which are not really
meaningful (Figs. 1 and 2).

Then one has to determine a scale and use some
technique for counting. Do not forget that these

*Groups keep their work in coloured folders, and
projects get referred to by the colour of the folder.

LOGO SPECIAL 21

Fig. 1

children are second graders, a level where multi
plication is still unknown.

Thus they use a translation method, reciting
the rhyme on two tones: one, two (in a whisper)
three (with a louder voice), four, five, six, . . .

This results in a very tiny figure. They change
their scale and also adopt a new technique
(which is a very good preparation for
multiplication). Instead of iterating a translation,
they use a repeated addition: five (for the first
square), plus five is ten plus five . . . (Figs. 3, 4.)

Since reciting the rhyme and adding are not
completely mastered at this level, it often results
in discussion, or even strong disputes, regarding
the results (be they right or wrong).

Mixing up right and left causes unpredictable
shapes for the building, which provide occasions
for laughter. The chimney, especially, is very
hard. So what satisfaction when the desired
pattern is obtained! (Fig. 5.)

The Red House
In contrast to the previous building, which was
described sequentially, the red house is from the
very beginning thought through to the end
product in a structured way.

In fact, this group chose as their first project
to draw a square with a side of 100 turtle steps.
They decided, for their second project, to use
this object. The reason for the odd shape of the
roof is the instruction we gave the class for their
first projects (the only restriction imposed on
their imagination): ‘Choose a design which
follows the lines of your grid paper’. (Fig. 6.)

Putting the roof on top of the walls requires
several attempts. The logic of adult builders does
not necessarily match the children’s logic and
after having separately prepared stone-work and

fD 4S
lt a#
PD 3
PIT W
P0 6
LT 30
po b
KT 30
PO $0

Fig. 3

PV so
LT ^0
FD S
£T 9C
FO 10
LT ao
FD 10
ft 30
P0 10
LT ^0

1 swe = S twtte tteps
Fig. 4

FD SO
i-T 30
p0 5
£T 10
P0 10
LT 90
P0 W
LT 30
ft) 10

3o
to so
LT 30
PO 30

Fig. 5

22 LOGO SPECIAL

Fig. 8

During the next class, they only stay a very
short time at the computer, just to try:

SQUARE
LEFT 90 FORWARD 100
ROOF

Fig. 6
carpentry (pre-fab is useful here too!), they try

ROOF
SQUARE

but the turtle doesn’t have enough room on the
screen to draw the second side of the square,
and returns the message:

OUT OF BOUNDS
So they try the reverse order. (One of the girls
warns the group, ‘This is going to cause a
massacre!’)

Fig. 7

Fig. 9

No doubt, it’s improving! Next week, the
girls notice that the square is smaller than the
roof. They consequently build a new square
with side of 150 steps. But again they get an
‘out of bounds’ message. This time, a boy makes
the group move ahead, suggesting that they start
the square backwards. He therefore obtains one
wall and the floor with

BACK 150 RIGHT 90 FORWARD 150
but the command RIGHT 90 they typed faces
the turtle in the wrong direction. He balances
this with LEFT 180, thus denoting a real
mastery of some properties of the rotation
group. At that point, he is the only one having
such mastery of this topic, and the others will
need many more sessions watching how this
works before they will be able to do the same.

The Pointed Roof House
The same group now skips to a pointed roof
house. A first problem is overstepped with the
determination of the value which puts the turtle
in the right position for the roof pitch. One of
the boys explains, using his hands to express his
thoughts: ‘For the roof, it’s like thatZ A, so
you just need half of this I__ I. Since this I__ I
is 90, then thisZ. Ais going to be 45.’ (Fig. 10.)

Meanwhile they also enriched the masonry
with a door. The roof will bring new problems
to solve, such as angles in a triangle, side length
in a triangle . .. They generally solve these kinds
of problems in a successive approximations way,
which is a general method widely and fruitfully
used in mathematics and often not used in
schools.

(P) Then, it is useful to let them have a
computer draw houses?

(L) Yes, indeed: instead of contemplating
mathematics, they make it.

We are grateful to Thomas O’Brien of Southern Illinois
University, Edwardsville, for permission to reprint the
above article, which first appeared in his project journal
‘SEEDBED’.

LOGO SPECIAL 23

What do children think about turtles!

Beryl Maxwell
Crabtree Primary School

I am now into my third school year using a floor
turtle with junior children in a Hertfordshire
school. Often asked by teachers and others my
views on LOGO and floor turtles, I thought it
was time the children themselves had a say. On
various occasions I have asked children to write
about their thoughts, and here are some of their
feelings about turtling!

My first experience was a short three-week
spell, and when the turtle had to be returned I
asked some fourth-years to tell me what they
felt they had got out of the turtle.
Paul ‘What I got out of turtle. I did not get very
much out of turtle because we did not get
enough time. But on the turtle I learned about
angles, because to draw the picture you had to
get the angles right. You did not just get fun in
drawing the pictures. It was much more fun
watching other people drawing their ideas with
the turtle and also watching them make mistakes.’
Here are other points they made.
Richard S. ‘It also taught me to be methodical
in my instructions.’
James ‘If you get one degree wrong it puts
your whole drawing wrong.’
Barry ‘With turtle I learned quite a bit about
angles because instead of an angle being
it was sometimes —•’
Richard W. ‘I learned much more looking at it
than being taught by voice.’
Bobbie ‘The turtle was a lot of fun mixed with
education. It is much more fun than normal
school work though it was still hard work.’

The following school year the turtle returned
for a whole term. In daily use, the children had
much more experience. Here are some comments
made by the third-year juniors on ‘What I
thought about turtle’, after six weeks.
Paul A. ‘On the turtle you can’t say I’ll do this,
you have to think about it. The turtle is very
good because it gets you thinking.
David ‘I think the turtle was fantastic. Because
we did not have to do no work.’
Matthew ‘I thought the turtle was a great
success. I liked it because it stopped us from
having our maths lessons.’
Paul R. ‘It is not easy to use, in fact it is hard
because you have to think which way you want
it to go and you have to use your brain.’
Daren ‘When we were using the turtle I didn’t
get bored at all. I enjoyed every second of it.’
Charles ‘If there was a lesson I would not like
to miss it.’
Richard ‘I enjoyed looking and learning about
turtles. I have seen the BASIC language and I
found that boring.’

Alison summed their views up by saying ‘I
thought the turtle was a fascinating machine
with many educational and interesting possi
bilities. Because I enjoyed the turtle so much I
would like to find out more about it and explore
its many possibilities.’

This school year saw us with our own floor
turtle. Now, after four months of turtle
experience, my present fourth-year junior class
expressed their views.

24 LOGO SPECIAL

David ‘I think we get a lot out of the turtle
because it helps us learn about degrees and
angles. My cousin has a ZX81 and the language
we use is BASIC, but I find the language we use
with turtle (LOGO) is much easier to understand.
The turtle also makes you think about what you
are going to do. I have already made one pro
cedure called goalie. It has taken us a very long
time and his legs were a problem but it works
now.’
Karen ‘At first I thought it was a load of rubbish
but now I have changed my mind completely.
It is easy to learn and does not confuse me.’
Chris ‘I think LOGO is a very good computer
language because it does not all have to be
learned, because it is made up of the English
language. The turtle enables you to have control
over what you are doing.’
Peter ‘I feel myself that the turtle is not just a
geometrical robot that draws but it helps children
get on with each other as in using turtle group
decisions are vital.’
Rosamund ‘It helps me learn things in an
interesting way. I don’t think anyone could not
learn things from the turtle. Just sitting at a desk
doing sums is not nearly as inspired as the turtle.
If we just had a screen turtle I don’t think I
would enjoy it nearly as much as I enjoy having
both the screen and floor turtle.’
Linda ‘It is good fun, but you also have to do
quite a bit of mathematical thinking, so you
learn a lot.’
Jonathan ‘Turtle LOGO is excellent. I find it
much easier to use than normal BASIC language.
My favourite part of turtle work is simulating
how our planning will work before seeing it
on the screen and floor. The turtle is very
rewarding and when all plans are perfected the
excitement builds up and if you could hear the
shouts of delight when everything comes out
right! To sum this up: (a) maths isn’t just using
abacus and cards; (b) the turtle is a precise,
intricate machine for our age group.’

Philippa ‘I get a lot of fun out of working out
what we are going to draw on the turtle when it
is our turn. It is also fun trying to find out
where you have made mistakes (if you do).
When you finally get your picture right it is very
pleasing and satisfying. I would recommend the
turtle to any junior school. Many people may
think the turtle is a toy but it is not at all. It is
designed to make learning a little pleasanter. The
turtle is a very good name for the turtle because
if it was called a robot many girls would not use
it and if it was called a doll many boys would
not use it. Personally I think the turtle is a good
buy.’

Jonathan W. ‘I think that the turtle and the
language LOGO is fun but it also teaches you
how to do proceedurs and how to use computers.
If you plan the day before, you have a longer go
the next day and also if you get it wrong you
have time to change.’
Kirstie ‘From the turtle I have had great
enjoyment and interest. The turtle is not all that
easy to control, because when the command is
entered, it is final. Also it is quite difficult to
know what command to put in, and how far to
move or turn.’
Mary ‘LOGO is a good language and easy to
understand. Recentlyl’ve been having extra fun
with the turtle, taping my own procedures.
When we make procedures we draw our picture
on graph paper. We then give our instructions to
the turtle. Our picture often goes wrong. It is
great fun and a challenge to find the mistakes.
So far our group has made an elephant, monkey,
giraffe and a lion. I think that the turtle has
helped me with my maths. It has also helped me
to get used to computers. I can now understand
how a computer can store things in its memory
and use tapes, etc.’

Andrew C. ‘LOGO is a computer language
designed specifically for learning. In Crabtree we
are very fortunate to be able to use the turtle,
and I know most schools would die to have one.
Although there are thousands of programs for
computers I prefer LOGO. I have learned a lot
from it.’
Paul H. The turtle is great to use because you
have more freedom than when you work in a
book.’
Tim ‘I think the turtle is FAB. We are put in
groups of four to experiment on this com
puterised turtle. To draw a simple square all you
have to do is this:

Pen on. Repeat 4: FOR 20
RIGHT 90
LIMIT Pen off.

and as if by magic you will have a square!’

Jane ‘I think the turtle is very useful. It helps
to improve skill in both design and mathematics,
and is a good start towards using more com
plicated computers. It has helped me to under
stand degrees. The turtle uses a very simple
language called LOGO. This language includes
the easiest of words, that are not difficult to
remember when you are using the computer. It
teaches you how to use more advanced
computer terms, at the same time. I have
enjoyed the turtle very much. It is fun to make
procedures, and ‘de-bug’ them afterwards. It
provides an atmosphere of enjoyment and
excitement.’

LOGO SPECIAL 25

Turtle graphics in the secondary school

Kim O'Driscoll
MEP South West

The initial experience of using a microcomputer
is an important one, especially for the older
learner whose confidence in approaching a new
learning situation has been diminished by little
success. My first experiences of using LOGO
turtle graphics with teachers who had never used
a micro before promoted the idea of using it as
a medium for computer familiarisation with
lower secondary school pupils.

A local secondary school teacher is presently
teaching a course, Introduction to Computing,
to the lower school. The course consists of ten
once-weekly half-hour periods. He was enthusia
stic to try out Apple LOGO, and so was lent a
complete system for a two-week period.

The tentative conclusions we can draw after
such a short period are that the pupils (coming
to him in groups of thirty) responded well to
turtle graphics. The good response extended
right across the ability range. Turtle graphics was
introduced using Bigtrak, and also by consider
ing the possible ways in which a person, blind
folded, could be given instructions to move
around a classroom avoiding obstacles.

The most important point seemed to be that
the pupils developed well at their own rate on
their individual programming projects. In
practice the problem of having only one micro
to thirty pupils presented fewer difficulties than
had been envisaged. Each child had sufficient

time to test out a particular piece of programm
ing whilst the others tentatively drew out on
squared paper what they thought might happen
to the turtle, or rewrote their programs, discussing
their work with others.

Perhaps the most encouraging sign is that
pupils of all abilities developed sufficient
enthusiasm to carry on working out of school
time and those who had progressed quickly were
not held back by others. It would certainly seem
that LOGO could be an important tool for a
brief computer familiarisation course. A final
observation is that primary school children who
had already met LOGO would without difficulty
move to the level at which they had been
previously working. In this way, the transference
of activities from primary to secondary schools
could be made less problematical.

The ideas raised only tentatively in this note
will be explored in more detail throughout the
next term, together with an attempt to use some
of LOGO’S list processing facilities. Significant
findings will be documented.

I would be very interested in hearing from
anyone who has been using LOGO in a similar
way, as an exchange and comparison of
experience can only be of value. I can be
contacted at:

Computer Centre
Plymouth Polytechnic
Drake Circus
Plymouth PL4 8AA
Tel. (0572)21089

26 LOGO SPECIAL

Languages for young programmes

Tim O'Shea
Director of the Microelectronics in Schools
Project, Open University

Introduction
In this paper I shall briefly discuss five criteria
(viz. syntax, semantics, mechanism, culture and
practicality) which should be applied to any
programming language that is being considered
for use by young or novice programmers. I shall
apply these criteria to four programming language
families - BASIC, Prolog, Smalltalk and versions
of LOGO that are often touted for school use.
In this short paper I cannot properly explain
these languages: further details can be found in
O’Shea and Self, 1983. None of these languages
is a ‘best buy’: the given criteria are helpful if
you are making a choice to fit some particular
educational context.

Some properties that it is reasonable to expect
of any first programming language include
simplicity, transparency, consistency and
visibility. That is to say, the language should be
simple to use and read and it should be possible
to ‘see the works’ whilst programs are running.
There should be a simple conceptual model on
which the language is based that relates to the
events that occur when programs are run. There
should be a reasonable level of user aids pro
vided, including some degree of prompting and
spelling correction. Finally, the names of the
constructs provided in the language should be
very carefully chosen and the error message
should be carefully worded and relate directly
to a simple conceptual model for the language.

Five criteria
The first important issue is what syntactic rules
you have to use. The syntax is reflected in the
rules for putting together statements and in the
punctuation of the language. The syntax should
be simple and expressive, and different things
should look different. It is important to check
the relationship of the syntax to that of school
mathematics, and also its ease of teaching and
being checked. One good test of syntax is to see
how easy it is to implement a spelling corrector.

The second important issue, which relates
closely to the first, is the semantics of the

language. This depends on the rules for deter
mining the meaning of programs. Considerations
under this heading include the degree of ambi
guity in the language and the availability of
simple conceptual models. One should check
how easy it is to read other peoples’ programs,
and regard a need for extensive commenting as
an indication of deficiencies in the language.
Another important question is whether the
editor and filing system follow the same general
rules as programs in the language itself.

The third issue is what mechanisms are avail
able to explain what is happening while a program
is running. In particular, it should be possible
for you to put yourself in the place of the com
puter and run a program in your head or on
paper.

The fourth issue to be considered is the culture
from which the language developed. Is it pri
marily scientific, technological, commercial,
psychological or educational? What are programs
in this language in general written for?

The final issue is that of practicality. The
most elegant programming language is useless
in the classroom without textbooks, a reasonable
response time and a reasonably-sized implement
ation that can be used with the actual micro
computers found in schools.

1. BASIC
The syntax of BASIC is surprisingly complex.
There are lots of idiosyncratic rules and some
times the same symbol (e.g. -’) means different
things in different contexts. Quite often the
space character is used as a delimiter. This of
course is problematic as (unlike other symbols
such as or *:=’) it is not printed. The semantics
of the commonly available BASICs are very
unclear and depend on particular implement
ations. Some of the structured BASICs are even
more of a problem, as they combine the sort of
jump or GOTO statements that turn programs
into spaghetti with procedure-defining facilities
that do not relate easily to mathematical functions
or predicates. The simplest mechanism to use for
BASIC is assignment to variables. To explain the
execution of BASIC programs a useful analogy
is pigeon-holes or letterboxes.

BASIC is essentially a teaching version of
Fortran, a language which nowadays is recognised
as having serious design errors. One important

LOGO SPECIAL 27

aspect of BASIC’s culture is the teletype (rather
than the screen, keyboard and pointing devices)
as the means of creating and running programs:
this has had a bad effect on the design of BASIC
editors. Another important aspect is a view of
learning where the emphasis is on activities which
are easy to achieve rather than on mastering
important concepts. The practicability of BASIC
cannot be challenged. It is available on all the
common microcomputers and there are some
quite good textbooks. Better editors are becom
ing available but in general the error messages
are obscure and unrelated to any simple con
ceptual model of the ‘BASIC machine’.

2. Prolog
Prolog has a simple consistent syntax which
requires the use of parentheses. Some dialects
of Prolog distinguish variables and literals by
the use of lower and upper case leading letters.
This obviously confuses beginning programmers.
Prolog clauses do not have to be ordered, which
makes it possible to have a comparatively
simple syntax. The semantics of Prolog are also
very sound and the meaning of individual clauses
can be read off in a straightforward way. But the
mechanism by which a Prolog interpreter handles
a set of clauses of any size is very hard to follow.
If any device (e.g. the ‘c t’) is used to control the
search through a set of Prolog clauses then it
requires a high degree of technical sophistication
to understand or explain what is happening.

Prolog stems from an old-fashioned sixties
Artificial Intelligence approach, based on the
use of automatic theorem proving. It is currently
undergoing a great revival as a result of Japan’s
declared intentions to use Prolog in its fifth
generation project. Other aspects of the Prolog
culture include an emphasis on uniform methods
and notations and explicit attempts to teach
logical reasoning techniques. In education
Prolog has started to be applied to a variety of
database-related topics in the humanities.
Prolog is now available on a variety of micro
computers. However, the existing user interfaces
are very poor and there is a shortage of good
textbooks.

3. Smalltalk
This sophisticated simulation system is not
generally available but is worth following as it
represents a very high standard of graphics
facilities and user interface design. It has a
baroque syntax with very many markers, con
ventions and icons. The semantics of Smalltalk
include general objects whose properties can be
inherited by more particular objects and message
passing between objects. It is difficult to explain

the mechanism by which Smalltalk programs
run. One explanatory device is to use an ‘infinite’
number of actors communicating via a blackboard
in the sky.

Smalltalk comes from a high technology
culture with a strong emphasis on aesthetics, so
Smalltalk screens are attractive to look at, and
the computing facilities are the most powerful
that it has ever been suggested should be available
to the individual user. An important aspect of
the Smalltalk culture is the concept of the
computer as ‘dynabook’ — that’s to say, a
portable device which can be used for music,
drawing and writing as well as the conventional
applications of computers. Smalltalk is not likely
to be available for school computers in the next
few years so it cannot score any points for
immediate practicality.

4. LOGO
This language has a quite simple syntax parti
cularly when infix operators (such as ‘+’) are
avoided. Prefix operators (e.g. Add 34) make it
possible to avoid the need for extra syntactic
markers. The semantics of LOGO procedures are
made straightforward by the way that user-
defined procedures obey exactly the same rules
as primitive procedures already available in the
system. The main difficulty with the semantics
of LOGO is that drawings or tunes generated
by procedures are side-effects and therefore
not directly manipulable after creation. The
mechanism used for drawing — the ‘turtle’ — is
self-explanatory. However, to explain procedure
execution it is necessary to appeal to the regular
stage army of little men.

The LOGO culture is part Artificial Intelligence
Programming (the Lisp language) and part
Piagetian developmental psychology (body
schemata leading to the turtle). This combination
of one of the best programming languages with a
line of educational thinking that is orientated to
helping children to learn by doing has resulted
in a very healthy culture which has generated a
range of pleasing educational applications in
mathematics, language, problem-solving and
many other topics. There are now some good
implementations of LOGO (for example, for the
Apple II and Research Machines 380Z) and
some good textbooks.

Language families
It is important to realise that there is no ‘British
Standard Prolog’. All four languages discussed
come in related families whose individual
members can vary considerably. For example
there are ‘structured’ BASICs and there are
Prologs with turtle graphics. There are also

28 LOGO SPECIAL

impostors lurking on the sidelines of any success
ful language. These can usually be distinguished
by their use of prefixes (e.g. RosettaXafk) or
postfixes (e.g. LOGO Challenge).

For example, to qualify as a member of the
LOGO family we should expect a language to
have (amongst other features) turtle graphics;
list-processing; procedures that obey the same
rules as system primitives; facilities for defining
recursive sub-procedures; and logical predicates.
It is important to ensure that you are dealing
with a genuine member of the family because
otherwise your pupils will not have access to
other aspects of its culture. For example, using
a fake LOGO makes it impossible to follow the
problem-solving strategy of breaking a problem
into sub-problems (via procedure definition)
that is the basis of so much LOGO work.

However, even within a family there is varia
tion. My personal list for good LOGO qualities
includes requirements for a good screen editor,
preservation of the name value distinction in
procedure titles (e.g. TO ‘POLY’ SIZE and not
TO POLY SIZE), error messages that relate to
a simple conceptual model for LOGO, the
ability to pass procedure names as arguments,
no English noise words (e.g. ‘AND’ or ‘THEN’),
real (i.e. multi-level) lists, no infix operators and
genuine extensibility (so that the editor or filing
system can be augmented). But features like the
above are matters of taste and my main motiva
tion is teaching and explanation. Accordingly I
value consistency (say in procedure titles) and
simplicity (say in banning infix) as it then
becomes easier for the learner to read programs
and predict their behaviour. Obviously if you

If you want it to move, try the on/off switch.’

LOGO SPECIAL 29

wished to reduce typing load or make LOGO
similar to some aspects of school mathematics
you might wish to make other choices.

Cheese metaphor
LOGO and BASIC are both mid-sixties pro
gramming languages and they took over ten
years to ‘mature’ into languages that could
develop reasonable user interfaces and be taught.
Smalltalk and Prolog are comparative youngsters
from the seventies and so we should expect them
to become easier to use in the future. Following
a cheese-maturation metaphor we have:
(a) BASIC — ‘processed cheese slices’, easy to

use, synthetic and unpleasant taste.
(b) LOGO — ‘mature farmhouse Cheddar’, old-

fashioned, reliable, keeps well and tasty.
(c) Prolog — ‘smelly goat’s cheese’, acquired taste,

growing market, admired by connoisseurs
and French.

(d) Smalltalk — ‘Lymeswold’, produced by best
cheese makers, combines features of other
popular cheeses, looks promising and experts
waiting for it to be mature enough to eat.

Returning to our original five criteria, BASIC
scores best for practicality but I would avoid it
because its impoverished syntax and semantics
lead to bad and clumsy programming habits, its
mechanism is hard to explain and it is associated
with an educationally impoverished culture.
Prolog wins easily on syntax and semantics and
obviously has potential for many applications in
the humanities and languages. Smalltalk must be
our hope for the future — a very expressive
language designed for interactive uses via and
with computer graphics. Versions of LOGO vary
but the real ones are closely associated with an
educational philosophy which will please many
primary school teachers. Its sophistication as a
computer programming language (as exhibited
in its Lisp-based semantics) makes it appropriate
for computer science teaching to older children.
One way of expressing what is wrong with
BASIC is to note that it obscures what happens
‘in the computer’ when programs are run, but
does not offer any high-level expressive power.
The other three languages are both more power
ful and more transparent. In general, attempts
to graft features from one programming language
to another (e.g. BASIC + procedures, LOGO +
databases, or Prolog + turtle graphics) lead to a
hybrid mutant with a great loss of simplicity and
consistency. Grafting languages together has
very bad effects on the syntax, semantics and
mechanisms.

Conclusions
Choosing programming languages is an important
and difficult task. A language limits or expands
what you and your pupils can express and reason
about. It also connects you to an educational
philosophy which will be expressed in work
sheets, textbooks and future extensions to the
language.

The syntax and mechanism affect the learn
ability of a language and must be examined
carefully. One standard error is to add a sugaring
of English words (e.g. ‘IS’, ‘THEN’, ‘AND’) to
improve readability, which (while offering
apparent readability) confuses the user by
obscuring the real syntax and mechanism and
may lead a user to add his own English words
and be confused when they are not understood
by the computer.

The culture will condition the amount of
experience of different teaching applications
and the quality of educational thinking. From
this point of view LOGO is the clear winner.
The semantics affect what is easy to express
and understand; from this point of view BASIC
is useless (except for a subset of old-fashioned
computer science teaching), and the other
languages offer different advantages.

As far as practicability goes, there is no
doubt that BASIC scores best on this now and
we can reasonably expect Smalltalk to become
the best (perhaps ten years from now) because
of the quality of its user interface design and
graphics. If I were a teacher I would want to
work with LOGO or Prolog depending on the
teaching task, and I would agitate for real LOGOs
to be available for commonly available micro
computers and for the implementation of
Prolog to be cleaned up from an educational
point of view. As a very rough rule I would hope
to use LOGO with younger children (3—7 years)
for problem solving and languages, Prolog with
middle-school children for humanities and
LOGO with older children (14—18 years) for
mathematics and computer science.

Reference
Tim O’Shea and John Self (1983) Learning and.
Teaching with Computers, Harvester Press.

30 LOGO SPECIAL

LOGO implementations

The following list describes full LOGO
implementations available, or shortly to be, as
at October 1983.

Apple 11+ and Apple He
Apple/LCSI LOGO
64K machine, disc based, about 14K user
memory available.
Cost c. £122.
Apple (UK) Ltd, Eastman Way, Hemel
Hempstead, Herts HP2 7HQ. Available
through Apple dealers.

Terrapin LOGO
64K machine, disc based, about 11.5K user
memory available. (Synonymous with Kreil
LOGO, almost.)
Cost c. £95.
Terrapin Inc., 380 Green Street, Cambridge,
Mass. 02139, USA. Available through some
Apple dealers.

Atari 400 and 800
Atari LOGO, 48K machine, ROM cartridge
based, 18K+ user memory available (Atari 800).
Cost possibly c. £60, available late 1983.
Atari International (UK) Inc, PO Box 407,
Blackhorse Road, London SE8 5JH. Available
through Atari dealers.

Commodore 64
CBM/Terrapin LOGO, 64K machine, disc
based, 14K user memory available.
Cost unknown, due early 1984.
Commodore Business Machines (UK) Ltd,
675 Ajax Avenue, Trading Estate, Slough,
Berks SL1 4BG. Available through
Commodore dealers.

IBM PC
IBM/LCSI LOGO
128K machine, disc based, amount of user
memory unknown but large.
Cost unknown, available late 1983.
IBM retail centres around the country.
Available through IBM retail centres and
IBM dealers.

DR LOGO
256K machine, disc based, 192K user memory
available on 25 6K machine (can be 1 megabyte
on fully expanded PC).
Cost c. £100.
Digital Research (UK) Ltd, Oxford House,
Oxford Street, Newbury, Berks RG13 1JB.

Waterloo LOGO
128K machine, disc based, amount of user
memory unknown but large.
Cost £145.
University of Waterloo, Ontario, Canada.
Available in UK through Roundhill
Computer Systems Ltd, Axholme, London
Road, Marlborough, Wilts SN8 1LR.

Mattel Aquarius
Aquarius LOGO, 48K machine, ROM
cartridge based, amount of user memory
unknown.
Cost £30, available early 1984.
Mattel Electronics (UK). Available
through Mattel dealers.

RML 380Z
RML LOGO, 56K machine with high
resolution graphics board, disc based
(can be a server to a network of
480Z with special version), 20K of
user memory.
Cost £60.
Research Machines Ltd, PO Box 75,
Oxford OX2 0BW. Available from
manufacturer.

RML 480Z
RML LOGO, 64K machine, ROM
cartridge based — possibly disc based
also, amount of user memory unknown.
Cost c. £60, available late 1983.
RML address above.

Sinclair Spectrum
Sinclair LOGO, 48K machine, tape based
or ROM based, 8K user memory available.
Cost c. £30, expected early 1984.
Sinclair Research Ltd, 25 Willis Road,
Cambridge CB1 2AQ. Available through
Sinclair and Sinclair dealers.

LOGO SPECIAL 31

Texas Instruments 99/4A
TI LOGO II, 48K machine, ROM
cartridge based, amount of user memory
unknown.
Cost unknown, new LOGO II version
available November 1983.
Texas Instruments Ltd, Manton Lane,
Bedford MK41 7PU. Available through TI
dealers.

but is based on list processing. Full LOGOs
have a high degree of consistency in the
way in which they work.

There is no full LOGO presently available for
the BBC computer; a recommended surrogate
until full LOGO is available is the DART
program, available form AUCBE, Endymion
Road, Hatfield, Herts ALIO 8AU, at cost of
£ 13 (or £6.50 to members of BLUG).

Note: by full LOGO is meant an
implementation which includes turtle graphics, Derek Radburn, BLUG

32 LOGO SPECIAL

Books
The following books, all currently available in
this country, say more about LOGO.

Firstly, the original classic and a compulsive
read:

Mindstorms: Children, Computers and Powerful
Ideas
Papert, S. (Harvester Press, Brighton, 1980)
£9.95 hardback (ISBN 0 85527 163 9)
£3.95 paperback (ISBN 0 71080 472 5)
Arguably the most important source of informa
tion about the rationale underlying LOGO —
why it goes beyond being just another program
ming language.

LOGO for the Apple II
Abelson, H. (BYTE Books — McGraw Hill,
Peterborough, N.H., 1982)
914.95 paperback (ISBN 0 07 000426 9)
A book providing a grounding in LOGO (the
MIT version used on the Apple II computer).

LOGO Programming
Ross, P. (Addison Wesley, London, 1983)
£7.95 paperback (ISBN 0 201 14637 1)
The first British book on LOGO, written by a
member of the Artificial Intelligence Depart
ment at Edinburgh University.

Discovering Apple LOGO
Thornburg, D. (Addison Wesley, Reading, Ma.,
1983)
£9.95 paperback (ISBN 0 201 07769 8)
Deals with turtle graphics.

Learning with LOGO
Watt, D. (BYTE Books - McGraw Hill,
Peterborough, N.H., 1982)
$14.95 paperback (ISBN 0 07 068570 3)
Deals fully with LOGO, and with American
classroom usage.

Learning LOGO on the Apple II
McDougall, A., Adams, T. and P.
(Prentice Hall of Australia, Sydney, 1983)
About £11.00 (ISBN 0 7248 0732 2)
An excellent introduction.

Jointly published by

Ginn and Company Ltd
Prebendal House
Parson's Fee
Aylesbury
Bucks, HP20 2QZ

Heinemann Computers in Education
22 Bedford Square
London WC1B3HH.

£1.95

ISBN 0 602 22692 9 ISSN 0264-3847

