HP-15C USER PROGRAM

PROGRAM TITLE

AIR-CORED SINGLE LAYER INDUCTOR CALCULATIONS

AUTHOR(S)

John Dale

DATE

9 June 2019

Program description, equations, variables:

The program will calculate the self-inductance of a single-layered air-cored coil given the total number of turns in the coil, the radius of the coil and the length of the coil. The length and radius units are in imperial inches and the self-inductance is given in microHenries.

For the coil shown in Figure (i) the self-inductance, L, is given by $=\frac{r^2N^2}{(9r+10A)}$, where N is the number of turns of wire in the coil.

The program will also calculate any one of the four variables if the other three are known.

Registers R.0 to R.3 inclusive are used to hold the values used by the equation above;

R.0	А
R.1	L
R.2	r
R.3	Ν

To use the program store the three known variables in the appropriate registers.

The label keys A - D inclusive are used to calculate the missing value;

А	L
В	Ν
С	А
D	r

Operating limits and warnings:

If measurements are made in cm for A and r, divide by 2.54 before storing the values in the registers.

References:

USER INSTRUCTIONS

TITLE

AIR-CORED INDUCTOR CALCULATIONS PAGE 2 OF

OF 4

PROGRAI	John Dale	DATE	9 June 2019									
STEP	PROCEDURE		ENTER		PR	ESS		DISPLAY				
	To calculate the self-inductance of a 1" coil of 101 turns of 31AWG enar	nelled wire										
	wound onto a 4" diameter former											
1	Enter the value for A (1") and store in Register .0		А	STO	.0		1.0000					
2	Enter the value for N (101) and store in Register .3		Ν	101 STO .3				101.0000				
3	Enter the value for r (2") and store in Register .2		r	2 STO .2				2.0000				
4	Calculate the self-inductance, L, by using label key A			f	А			1,457.2857				
	To calculate the number of turns needed for a self-inductance of 200 mic	roHenries										
	store the value 200 in Register .1 and then use label key B.											
	The result should be 37.4166											
	To calculate the length of coil needed for a self-inductance of 50 microHe	enries										
	store the value 50 in Register .1, do step 2 and then use label key C.											
	The result should be 79.8080											
	To calculate the coil diameter needed for a self-inductance of 1000 micro	Henries										
	store the value 1000 in Register .1, do steps 1 and 2 and then use label ke	ey D.										
	Multiply the result by two to get the diameter of the coil. The result shou	ld be 3.0501										

TITLE	AIR-0	CORED INDUCT	OR CALCULATIONS PAGE	<u>3</u> OF _	4				EF
PRO	GRAMMER		John Dale	DATE		June 2019			ÐL
LOC	Key Codes	Instruction	Comments	LOC	Key Codes	Instruction	Comments		Registers
00	42 21 11	LBL A	Press key A to calculate L	25	43 11	X ²	r ²	0	
01	45 .2	RCL .2	r	26	10	÷	L(9r+10A)/ r ²	1	
02	43 11	X ²	r ²	27	11	√x	Evaluate N	2	
03	45 .3	RCL .3	Ν	28	44 .3	STO .3	Save N in Register 3	3	
04	43 11	X ²	N ²	29	43 32	RTN	Finish with N in the display.	4	
05	20	x	r ² N ²	30	42 21 13	LBL C	Press key C to calculate A	5	
06	32 .0	GSB .0	Get (9r+10A)	31	45 .2	RCL .2	r	6	
07	10	÷	Evaluate L	32	43 11	X ²	r ²	7	
08	44 .1	STO .1	Save L in Register .1	33	45 .3	RCL.3	Ν	8	
09	43 32	RTN	Finish with L in display	34	43 11	X ²	N ²	9	
10	42 21 .0	LBL .0	Subroutine to calculate (9r+10A)	35	20	x	r ² N ²		
11	45 .2	RCL .2	r	36	45 .1	RCL .1	L	.0	А
12	9	9		37	10	÷	r ² N ² /L	.1	L
13	20	x	9r	38	45 .2	RCL .2	r	.2	r
14	45 .0	RCL .0	А	39	9	9		.3	N
15	1	1		40	20	x	9r	.4	
16	0	0		41	30	-	r ² N ² /L-9r	.5	
17	20	x	10A	42	1	1		.6	
18	40	+	9r + 10A	43	0	0		.7	
19	43 32	RTN	Return the result	44	10	÷	A=(r ² N ² /L-9r)/10	.8	
20	42 21 12	LBL B	Press key B to calculate N	45	44 .0	STO .0	Save A in Register 0	.9	
21	32 .0	GSB .0	Get (9r+10A)	46	43 32	RTN	Finish with A in the display		
22	45 .1	RCL .1	L	47	42 21 14	LBL D	Press key D to calculate r		
23	20	x	L(9r+10A)	48	45 .1	RCL .1	L		-
24	45 .2	RCL.2	r	49	9	9			

CODING FORM

TITLE	AIR-0	CORED INDUCT	CODING FORMOR CALCULATIONSPAGE4	OF	4				
PROC	GRAMMER		John Dale	DATE	ç	9 June 2019			
LOC	Key Codes	Instruction	Comments	LOC	Key Codes	Instruction	Comments		Registers
50	20	x	9L	75				0	
51		X ²	(9L) ²	76				1	
52		RCL .3	N	77				2	
53		X ²	N ²	78				3	
54		RCL .1	L	79				4	
55		x	N ² L	80				5	
56		RCL .0	А	81				6	
57		x	N ² LA	82				7	
58		4		83				8	
59		0		84				9	
60		x	40N ² LA	85					•
61		+	(9L) ² + 40N ² LA	86				.0	
62		√x	$\sqrt{((9L)^2 + 40N^2LA)}$	87				.1	
63		RCL .1	L	88				.2	
64		9		89				.3	
65		x	9L	90				.4	
66		+	$9L + \sqrt{((9L)^2 + 40N^2LA)}$	91				.5	
67		RCL .3	N	92				.6	
68		X ²	N ²	93				.7	
69		2		94				.8	
70		x	2N ²	95				.9	
71		÷	$r=(9L + \sqrt{((9L)^2 + 40N^2LA))/2N^2}$	96					
72		STO .2	Save r in Register 2	97					
73		RTN	Finish with r in the display	98					
74				99					