. -‘
0‘,3‘

THE BBC MICROI

:

X

0
B O
L

Aids to more efficient programming

THE BBC MICRO

1

B/ O X

0
0
L

Aids to more efficient programming

lan Trackman

BRITISH BROADCASTING CORPORATION

CONTENTS

Introduction %
Using the Programming Utilities 6
The Programs Name BASIC or
machine-code

Character generator CHARGEN B 13
Circle fill CIRCLE B 26
Cross-referencer XREF ™M 30
Disassembler DISASS B 43
Double-size characters GIANT ! and GIANT2 B/M 51
Graphics dump GRAFPRT M 59
Packer PACKER ™M 65
RAM test RAMTEST ™M 76
REM stripper REMSTRP ™M 80
Replacer REPLACE ™ 93
Resequencer RESEQ ™ 107
Shape maker SHAPER B 126
Sideways characters TWIST B/M 132
Sorting routines

Bubble sort BUBLSRT B 145
Selection sort SLCTSRT B 148
Index sort INDXSRT 8 150
Shell sort SHELSRT and SHL2SRT B 152
Quick sort QUIKSRT B |57
Heap sort HEAPSRT B 160
Spacer SPACER M 164
Space remover CRUNCH M 176
Speech chip number generator SPEAK B i85
Unpacker UNPACK ™M 188
Variable dump VARDUMP ™ 202

INTRODUCTION

The BBC Microcomputer Programmer's Toolbox is a collection of 25 utility
routines, divided into two main groups.

The first group consists of routines, either written in BASIC or as assembly
language listings, which are intended to be incorporated into your own programs
in order to make them more efficient or versatile. The routines are:

Circle draw and fill

Couble-size characters

Graphics dump

Shape maker

Sideways characters

Sorting routines

Speech chip number generator.

The second group of utilities are complete programs in their own right. They will
help you to write, test and debug your own application programs. Most of them
are loaded into the computer independently of any BASIC program which is
already installed. The programs are:

Character generator

Cross referencer

Disassembler

Global replacer

Packer

RAM test

REM stripper

Resequencer

Spacer

Space remover

Unpacker

Variable dump

Al of the utilities are recorded on the accompanying tape. Machine-code
programs are in the form of object code. This manual describes how to load and
use all of the routines. In addition, an annotated and commented source listing is
printed at the end of each section so that you can relate the operating
instructions to the code itself.

This manual is not intended to be a ‘How to Write Programs’ guide. We
assume that you are reasonably competent in BASIC, so that we do not go into
explanations of elementary principles, nor do we repeat information which is set

4

out in detail in the User Guide. On the other hand, we do not expect you to be
able to program in assembly language. You can use all of the routines in the
Toolbox knowing only BASIC.,

Nevertheless, we have included the assembly language source listings for a
number of reasons. If you can write in machine-code, we hope that you will be
interested in studying how we have used the computer's facilities to produce the
desired results. The programs also contain some subroutines which may be
useful to you in their own right.

Murphy's Third Law of computer programming - ‘There's always one more
bug’ - probably also applies to the Toolbox. Although we've tested the
programs extensively, there's always one situation that we may have
overlooked and which will cause a program to fail. If this happens to you, please
accept our apologies in advance, However, we hope that after you have
roundly cursed us, you might care to spend a few moments in trying to identify
and cure the bug by examining the listings. If you do, we'd be very grateful to
hear from you. Please write to:

The Software Editor

BBC Publications

35 Marylebone High Street

London WIM 4AA
and he will forward your comments to the author.

One other reason for giving you the source listings is that you might want to use
more than one of the programming utilities at the same time. For those of you
who can already program in assembly language, all we need say is that you
should use the disassembler to create a source listing from the object code,
re-set the origin address and re-assemble it. For those of you for whom the last
sentence might just as well have been written in Mongolian, there is a step-by-
step explanaticn in the ‘Using the Programming Utilities’ section,

Finally, a few words about copyright. All of the programs in the Toolbox are
copyrighted. However, we have no objection to your including the first group of
programs (listed above) in your own programs. If your programs are distributed
commercially, all that we require is for you to credit the source of the routines.
The programs in the second group are another matter. Since they are not
intended to be incorporated into larger programs, if you copy and re-distribute
any of them, you are in breach of copyright. Just as ‘shop-lifting’ is sometimes
used as a euphemism for stealing, ‘software piracy’ perhaps suggests that there
is something daring and swashbuckling about it. There isn't - it is just plain theft
and we will have no hesitation in bringing legal proceedings against anyone
discovered committing the crime.

And after the heavyweight warning - a request. A second Toolbox is already in
the planning stage. If you can suggest ways in which the present utifities could be
enhanced or some further utilities which you would like us to include or if you
have already written a utility that you would like us to consider for publication as
part of a future Toolbox, please write to us c/o the Software Editor (address as
before).

Some of the programs make calls to the Operating System and make use of
facilities available from O.S. 1.0 and above,

USING THE PROGRAMMING UTILITIES

The Programming Utilities are:

Tape name Size (bytes)
Cross referencer XREF &200
Packer PACKER &200
REM stripper REMSTRP &300
Replacer REPLACE &200
Resequencer RESEQ &300
Spacer SPACER &200
Space remaover CRUNCH &100
Unpacker UNPACK &300
Variable dump VARDUMP &100

INSTALLING THE PROGRAMMING UTILITIES

The Programming Ultilities are the programs in the Toolbox which, in some way,
operate on a BASIC program or its variables but remain independent of it.
XREF and VARDUMP simply scan the memory and report on what has been
found, whereas the others make actual changes to the BASIC program. All of
them are in machine-code.

Since the BASIC program must be in the computer's memory (‘co-resident') in
order for the utilities to work, they cannot be loaded into the area of RAM
normally occupied by the BASIC program. We have to find some other space
for them,

Tape-based Systems

In a tape-based system, there are 128 free bytes between locations &D00 and
&D7F, which, regrettably, are not enough for our utilities. On a 32K computer,
that really only leaves the BASIC workspace between &EQO and the bottom of
the display area (HIMEM). You can move HIMEM down and BASIC will then not
use the area of memory above it. However, HIMEM is reset whenever the
Mode is changed. If you change from a low-resolution Mode to a higher-
resolution Mode (e.g. Mode 5 to Mode), you will also over-write anything that
was stored in the memory which now forms part of the enlarged screen display
RAM (e .g. between locations &3000 and &57FF). It is therefore impractical to
store a co-resident utility above HIMEM.

The alternative is to store it where the BASIC program would normally reside
and force the BASIC program to move elsewhere. PAGE is the pseudo-variable
which controls where a BASIC program is loaded and is normally automatically
set by a tape-based system to location &EQO.

The utilities need & 100, &200 or &300 bytes of memory - the table above and
the utility's instruction notes will tell you its particular memory requirements. If
you set PAGE = &F00, you can use the &100-byte utilities. PAGE = &1 000 will
give you room for both the &I00- and 8200-byte utilities and PAGE =&| 100
will let you use all of them.

You must set PAGE before you load or enter a BASIC program. If you set it
after the program is in memory, you'll get a 'Bad program’ error message.
Once set, PAGE remains fixed until you alter it or until you press the Break
key, even if youload, run or save several BASIC programs. Therefore, set PAGE
to the required value at the very start of a programming session. Of course,
you'll lose &100 to &300 bytes of otherwise free memory, but this should not
be too much of a problem unless you are running a very big program with many
variables or large arrays in a high-resolution Mode.

Disk-based Systems

We explain below how to transfer the programs from tape to disk. The tape
includes versions of all the programming utilities suitable for use with disk-based
systems.

The Disk Filing System has already grabbed a large chunk of memory from &EQO
to &I8FF but we can, with care, borrow some of it back.

There are five file buffers between &1400 and & I8FF. Provided that your
program doesn't open any files, this area should be a reasonably safe place to
install one or more Toolbox utilities. We have assembled the disk versions of

the &300-byte programs at &600, the &200-byte programs at & (700 and the
&100 programs at &I800. Disk-users will be only too well aware of the
problems of the additional memory constraints imposed by the DFS. You may
already have been forced to write or run programs which borrow the disk
buffers for variable storage (e.g. LOMEM = &1400 : HIMEM = &1900).
Running such a program will, of course, over-write any utility stored in the same
work-space.

Since we are not using the cassette filing system, we can also take over the two
&100-byte buffers that are normally reserved for it. The two pages of memory
from &900 to &AFF can be used to store all of the &100- and &200-byte
programs. These buffers are also the RS423 input and output buffers and if, for
instance, you use a serial printer, you should be aware that you will over-write
any utilities stored there. It would be convenient to take over the next &100
bytes for our &300-byte utilities but the next page at &B0O contains the function
key definitions and putting bytes in there creates unexpected results.

In fact, when using the utilities ourselves, we keep more than one in memory at
the same time by moving one of them into the tape buffers, moving another to
&1400 and loading a third utility at &1600. For example, a most useful
combination when working on a BASIC program is XREF at &900, REPLACE at
&1400 and RESEQ at &1600. We explain below how to move the programs
around in the computer’s memory.

As you now appreciate that we are taking over Operating System buffers for
the utilities, you will see why we cannot unconditionally guarantee that they will
work there properly. If you want to be absolutely safe, you must relocate the
programs to &1900 (as described below), change PAGE and move your BASIC
programs even higher up the memory.

BACK-UP COPIES AND TAPE-TO-DISK TRANSFERS

You should always make back-up copies of your programs.

First, we remind you that most of the programming utilities alter your BASIC
programs. Always save a copy of your own program before you start making
changes to it, in case you want to back-track or in the unlikely (we hopel!) event
of the utility crashing and damaging your program.

Secondly, you should make back-up copies of the Toolbox programs - as we
said in the Introduction, not so that you can start up an illegal software factory,
but to protect yourself against accidental damage to your tapes.

8

To copy a machine-code program, you need to know its size. You can find this
out by using the *OPT 1,2 command. (See page 398 of the User Guide.) When
you load the program (as described in the next section), the computer will
display the start and end addresses of the program. You can then re-save it,
using these addresses, in accordance with the details on page 392 of the User
Guide.

To transfer the programs to disk, change to tape with a *TAPE command, load
the programs as described in the next section, change back to disk with «DISK,
then save the programs with the *SAVE command as detailed on page 53 of the
Disk System User Guide. Do not re-define the redoad or execution addresses.
You will also need to use short file names - the tape names will usually do. For
example, here are the steps that you would follow to transfer XREFDISK from
tape to disk:

«TAPE

«OPT 1,2

+LOAD XREFDISK (the display will inform you that the start address is &1700
and the length is &|E4)

+Press BREAK (to reset to DISK and to clear the Disk Control Block)

«SAVE XREF 1700 |8E4

LOADING THE UTILITIES

With tape-based systems, remember to set PAGE as necessary - see above.

If you are loading a program from tape in order to copy or disassemble it, type
«OPT 1,2

The command to load a machine-code program (for both tape- and disk-based
systems) is

+LOAD filename

If you want to load-and-run it, type

+RUN filename

(Don't try CHAIN - it won't work and it will splatter the utility all over your
BASIC program.)

With disk-based systems instead of «RUN filename, you can type

+filename

provided that, with two drives, the utility is on the library disk (see page 45 of
the Disk System User Guide).

Also with disks, you can make use of the *EXEC command. For example, you

could create a SQUEEZE file which contains the commands:

*REMSTRP

Y

+*CRUNCH

«PACKER

REN.

This would give you an automated link between the three program-squeezing
utilities. (Please refer further to page 30 of the DFS Manual.)

RE-LOCATING THE PROGRAMS

You may decide that you would like to have two (or more) of the utilities in
memory at the same time, so that you can use them together on a BASIC
program, instead of having to use one, then load the second, use it, and so on.

This section assumes that even if you cannot program fluently in assembly
language, you have at least read the relevant section of the User Guide (pages
442-9) and understand the principles of the use of the BBC assembler.

As mentioned above and subject to the limitations referred to there, disk users
can put the re-ocated utilities into the areas of memory between &900 and
&AFF and between &1400 and &I8FF. Tape users will have to raise the position
of PAGE to give themselves more memory for the extra utilities, as will disk
users who want to install, say, two &300-byte programs.

Unless a machine-code program is written in what is known as 'relocatable’
code, it must be loaded into the same addresses in memory for which it was
written. This means that if you want to load one of the utilities somewhere
other than at its original location, you will need to re-assemble it with a new
starting address.

Begin by resetting PAGE if necessary. Otherwise, when you re-assemble the
machine-code program, you could find it writing all over your source code!

Secondly, disassemble the object code (the actual program on tape), using the
Toolbox Disassembler. You should now have an assembly language listing in the
form of a BASIC program. It should resemble the source listing printed in this
manual, but without the variable names. Add these with the help of Replacer,
You needn’t add anything starting with a reverse oblique ("\"), since those are
only comment statements,

Next, add the FOR . . . NEXT loop commands and, if applicable, the
procedures for adding strings to the end of the programs. You can test the

10

assembly at this stage by running the BASIC program. It should assemble
without error messages, simply displaying the start address twice on the screen.
Now find the line near the start of the listing:

org=&. ...
This is where to set the new starting address of your program. If you re-run the
program with a new address assigned to the variable org, the machine-code
will be assembled there. For example, if you want to locate the program at
&1100, you would change the line to:

org=&1 100

All that remains is to save the new object code with the *SAVE command. The
starting address is, of course, set by org and the end address is the value of the
variable P% after assembly. (Remember to use hexadecimal numbers - PRINT
~“P%.)

Here are the steps that you would go through in order to re-iocate the tape
version of VARDUMP to a new location at &1000:

PAGE = &1 100 (&000+ &100 bytes for the machine-code program)

+OPT 1,2 (to display the start address and length of the machine-code)

RUN “DISASS" (with the "SPOOL’ option on - see DISASS instructions) and
disassemble the machine-code

NEW

«EXEC DUMP

Add assembly instructions and variable names (copy them from VARDUMP'’s
source listing)

Edit ‘org=&1000’

RUN (to assemble the code)

PRINT ™ P%

+SAVE VARDUMP 1000 aaaa (where aaaa is the address obtained from the last

step)

‘TACKED-ON’BYTES

All of the utilities which scan BASIC programs check whether they have reached
the end by looking for the ‘end-of-program’ byte &FF. There are techniques for
adding extra bytes to the end of a BASIC program to hold, perhaps, a machine-
code subroutine or some data. These involve moving the &FF byte to beyond
the extra items to be added to the BASIC program. When the Toolbox utilities
reach these extra bytes, they are treated just as if they are lines of a BASIC
program. Since they aren't, the utilities will be unable to interpret them properly
and will probably crash.

Unless you understand how to decode the raw bytes of a BASIC program, we
are sorry that we cannot offer you much help if you are trying to cope with such
a BASIC program.

HIDDEN CONTROL CHARACTERS

A BASIC program, in the form that is stored in the computer’s memory,
contains single ‘token’ bytes which correspond to the BASIC keywords. There is
a table of the keywords and tokens in the SPACER utility instructions.

Normally, these tokens are unique and do not appear elsewhere in a BASIC
program, For example, line-number references are encoded into three bytes,
preceded by the token &8D (141 in decimal). In order to check line-references,
some of the utilities scan the BASIC program, looking for &8D tokens. You may
recognise CHR$ 141 as the Mode 7 control code for double-height characters.
There will not be a problem with a line containing 2 command such as:

PRINT CHR$141 “HELLO™

However, if you include the actual code within a string, as in :

PRINT "‘cHELLO"

where ¢ represents the (invisible) ASCIl character |41, the utilities will be unable
to decode the following three bytes and might crash.

ESCAPE AND BREAK

You cannot interrupt the programming utilities with the Escape key, only the
Break key. If you do stop, say, PACKER in the middle of its run, you will
probably corrupt the BASIC program on which it is working. That is another
reason why we recommend that you should always make back-up copies of
your BASIC programs before using the programming utilities on them.

THE INSTRUCTIONS

When you read through the instructions, you'll notice that we keep repeating
sections of the notes. We make no excuse for failing to be creatively original!
Our aim was to try to make the method of using the Toolbox utilities as similar
as possible, so you can move easily from one to the other.

Character generator

USER-DEFINABLE CHARACTER GENERATOR

The purpose of this program is to provide you with a simple way of creating
your own character set and to edit individual character shapes without the need
to carry out any of the calculations described on pages 170-1 of the User Guide.

The program is called CHARGEN. It is written in BASIC, so CHAIN or LOAD-
and-RUN it.

When the program starts, you'll see a grid on the left of the screen. This is used
to display an enlarged 8 X 8 pattern of your selected character.

Below it is the prompt CHR$ 2.

Type in the ASCII number (in decimal) of the character that you want to create
or edit. The program will only accept numbers in the range 32 to 255.

When you enter a number, the program will display a ‘magnified’ view of the
corresponding character in the large grid. It will also display the character, at
normal size, in the small red box below the prompt line. The normal-sized
character is re-displayed whenever you make an editing change in the large grid
50 that you can constantly review the effect of the alterations that you are
making.

In the bottom left-hand corner of the screen are the eight hexadecimal double-
byte numbers which represent the bit pattern of the current shape, preceded
by 'VDU 23’ and the character’s ASCIl number. This command line is what you
will need to insert into your own program in order to re-create the character.

On the right-hand half of the screen is a display of 48 characters as currently
defined together with their ASCIl numbers. When the program starts, ASCII
characters 208 to 255 will be shown.

Characters 224 to 255 will probably be the characters that you will use the
most, since they are not pre-defined within the Operating System. Furthermore,
you do not need any extra memory to use them.

With Operating System |.0 and above, if you re-define characters 32 to 127,
you will change the characters which you can type on the keyboard. You can
also re-define characters 128 to 223. If you want to do so, you'll first need to
reset PAGE in order to make room for the new character definitions. You
should refer to pages 427 and 428 of the User Guide for full details. Note,
however, that there is a printing error at the beginning of the seventh paragraph
on page 427. It should read 'After a +FX 20,6 command’ instead of 'After a xFX
20,1 command'. The second parameter of the *FX 20 command depends on
how many extra character blocks you want to use. The table, which you could

13

Character generator

incorporate into the table at the bottom of page 427, is as follows:

ASCli code

&80to &9F +«FX 20,0
&A0to &BF *FX 20,1
&C0to &DF +FX 20,2
&EOto &FF +FX 20,3
82010 83F «FX 20,4
&40to &5F +FX 20,5
&60to &7F *FX 20,6

Remember that if you leave the character set in its normal, ‘imploded’ form,
any new characters created by you will be automatically mapped on to four
other characters at 32-byte intervals below it (please see the preceding
paragraph on page 427 of the User Guide).

Here are the editing and other commands that the program uses:

The cursor move keys (up, down, left and right) will move the cursor around
the grid. The cursor wraps around at the end of each line and at the top and
bottom of the grid.

The space bar fills one small square in the grid at the current position of the
cursor.

X clears the bit at the cursor’s position.

N signifies acceptance of the current shape and the start of a new character
definition.

C cancels any editing done on the current character and restores the bit pattern
as it was when the character was first loaded into the grid, even if another
character has been subsequently ‘copied’ into the grid (as explained below).

I inverts the bit pattern of the character. It effectively transforms the character
from white-on-black to black-on-white.

R rotates the character shape 90 degrees in a clockwise direction.
M creates a mirror image of the character.

F causes the ASCIl character display on the right of the screen to scroll forward.
B causes it to scroll back. These two commands will not work until you have
specified an ASCIl number in response to the command line prompt. You
cannot scroll below 32 or above 255.

14

Character generator

The COPY key will copy the next character typed into the editing grid. For
example, if you wanted to make up, say, a lower-ase ‘a’ with a German umlaut
(two dots) over it as ASCI| character 224, you would first enter 224 in response
to the CHR$? prompt. Then press the COPY key followed by a lower-case
letter ‘a’. You can now add the dots. The original lower-case ‘a’ will not be
affected.

You can also use the COPY key facility to create a whole series of similar
characters. On Operating System 1.0, the command *FX 225,224 in the
program causes the red function keys, when pressed at the same time as the
CTRL key, to produce ASCII characters 224 to 233. So, you can create
character 224, type N for a new character, specify 225 as the next character to
be defined, then press COPY followed by CNTRL and red key fO (pressed
together). In that way, you can bring copies of characters 224 to 233 back into
the editing grid without re-defining the original shape.

P causes the VDU 23 . . . command displayed in the bottom left-hand corner of
the screen to be sent to a printer (as a single line). The program assumes that a
parallel printer is connected. You will need to insert appropriate commands into
the program for a serial printer (+FX 5 and «FX 8) or to enable line-feeds

(«FX 6). There is a bug in some early versions of the Operating System. VDU 21,
which causes output to be sent to the printer without being echoed on the
screen, inhibits line-feeds on the bugged versions. If you have this problem, you'll
need to patch PROCvdu23 and use the VDU | command inside of the printing
loop to send output, one character at a time, to the printer.

Exit the program by pressing Escape. The effect of your editing will remain in
memory. However, you should now type into your program the VDU 23
cormmands to re-create the new character shapes, in case they get over-written
by another program. You can try the shapes out in your program and then
return to CHARGEN to edit them further.

There are several techniques that you can use to join characters together in
order to make up larger shapes for animation. Some of these ideas are
contained in programs which form part of the ‘Making the Most of the Micro’
package.

Character generator

16 REM USER-DEFINABLE CHARACTER
SENERATOR

20 3

30 REM (o) Tanm Traclkmsn 1982

40 3

90 ON ERROR GOTO 940

&0 8

Z0 MODE 1

g0 ¢

20 REM Shift-function keys for

CHR$Z224/7233 (08 14

100 xFX 225,874

in ¢

20 REM Cursor—-move keys off

L300 ®xFX 4,1

L4 3

IS0 @% = &304 ¢ REM Frint Tield widbh

140 2

170 DIM

BETHCT 2 7Y s HOLDX 7, Z2Y , TEMPWMCZ .7y,

BYTEX (7))

180 3

120 REM Set up &4,X,Y registers for
naworc. call

200 A% = 10

210 DIM X#%8

220 Y4 o= Xu DIV &i00

230 ¢

40 TR = 24 3 REM Table pointer

250 1@

260 REFEAT

270 FROCTr ame

280 FROCtable (TEL-L14)

290 VDL Z318&7083050508 ¢ KEM Normasl

CLIT B0
a0a VDU 23,1 ,15030503
310 ¥EX 15,1

320 :

Character generator

REFEAT
FRINT TaAB(1l1,21) SFC3 I REM
Wipe previous number
FRINT TaAE(4,21) "CHR$ 2 "3
N = FNinput
IF N = 31 AND N < 256 THEN OK =
TRUE ELSE 0K = FALSE ¢ VDU 7
UNTIL OK

FRINT TAEB(?,21) "1 "IN

VDU 23,1,050303:0:

FROCohar (N)
FROCvadLZ3 (TRUE)

KREM Save starting pattern
FOR I% = 0 TO 7
FOR J% = 0 TO 7
HOLDA (X%, J%) = BITH(IZ,J%)
NEXT
NEXT

X 0
Y = 0
v 23,1,1305030%

FRINT TAR(XX2 + 1,YXZ + 4)3
VDU 2338650430303 07 ¢ REM Fat
cuUrsor

XFX 15,1

{ = GET

DU 23,1,05030303

IF K = &87 THEN PROCchar (GET)?
t FROCoreate § REM Copy

IF K = 888 THEN X = X-1 { REM
Left

IF K = &89 THEN X = X+1 { REM
Rianht

Character generator

&70
&80

620
700

710

720
730
740
750
740
770

780
790

&soo
810
Bea

630

a840
850
840
870
880
Heo
oo
Y10
wZn
P30
240
@
&0
Q@7

-

IF K
Dowr
IF K = &8B THEN Y = Y-1 { REM
Up

+

&8A THEN Y = Y+1 ¢ REM

IF K = 32 THEN FROChit_on $ REM

Space

K¢ = CHR$ (K AND EDF) ¢ REM Mask

input to wpper-case

IF K% = "X" THEN PFROChit_off
IF K¢ = """ THEN FROCcancel
IF K$ = "I" THEN PROCinvert
IF K% = "M" THEN FROCmirror
IF K4 = "R" THEN PROCrotate
IF K4 = “F" aND TgEL < 224 THEN
FROCtabhle (TEL)

IF K& = “E" AND TEL > 63 THEN
FROGLable (TRL -~ 32

IF K& = "P" THEN FROCvdWES
(FaLSE)

FROCwvEZ3 CTRUED

IF X & 7 THEM X = 0 ¢ Y = Y +
1 -

IF X < 0 THEN X = 7 § Y = Y ~
1
IF Y = 7 THEN ¥ = 0
IF Y < 0 THEN Y = 7
LUNTIL K$ = "'NY

UNTIL FALSE

s e T ow

ME

FEM Ervor brap
MORE &

@

XF X
KE X

= E0A
4

e

PR) 1

EASR

(.‘,) (:) E}
Loan
IR
LOZ
1030
1040
1050
1040
LO70
Logn
tn7n
Tlog
1110
LilEn
1120
1140
L0

1140
LL70
1180

1200
1210
1320

il
1240

1250
LE&N
1370
12690
194
1360
1a10

1320

1
1Le
I
1

Character generator

TR ERRF > L7 THEN REFPORT & FRINT M
l Wine e ERL

W FROCsLter
VDL E3, N

FOR X% = 0 TO 7
VDU BYTEXCLZ)
MNEXT

ENDPROC

s wa IT7 a0

DEF FPROCOLE _ofT

BITH(A: YY) = FaLSE

FROCOIock (X;Y)

EYTEXRCY) BEYTEZ(Y)Y AND (&FF
ZACT-XYY 1 OREM Mask bit off
FROCs L Ler

b HEE T ¥ !

i)

it

o

Ml!fN

v as IT

DEF FROCRLL on

BXT#HOX, Y)Y = TRUE

FROCHIook (X, Y)

FYTEXRIYY = BYTEX(Y) OR Z24(7-X) 1
REM Mask it on

FPROCaLLar

¥ o= X+

ENDFROG

+
+
+
+

DEF FROCHlock (X,Y)

IF BITACL, Yy THEM GLOL 0,131 ELSE
GCOL 0,128

VDL 24, X840 -YxEADIXXEAD + &3BE3L
- YHEAD§

Character generator

1330 CLG
1340 COLOUR 128
1350 ENDFROC

1360 ¢
1370 ¢
1380 DEF FROCeancel
1390 3

1400 FOR I% = 0 TO 7

1410 FOR J%X = 0 TO 7

1420 BELTHCLN %)

1430 NEXT

1440 NEXT

1450 3

14460 F

1470 F

1480 F

1490 E

1500 3

1510 3

1520 REM Explode the character’s bits

irnto an array

1330 DEF FROCchar (N)

L1540 X% = N

1LE50 CALL &FFF1

1540 4

1570 FOR X% = 0 TO 7

1580 BYTEXZ (LX) = XX?P(IX%+1)

13590 MZ% = &80

1400 FOR JX = 0 TOQ 7

1610 IF (XZP(LZ+1)Y AND MZ) THEN
BITZCJZ,I%) = TRUE ELSE
BITAC(JIE,TZ) = FALSE

1420 M# = MZ DIV 2

14630 NEXT

14640 MNEXT

1650

1640

1470

1480

14690

HOLDZ CTH, J%)

‘ROCcreate
ROCFLLL
ROCVaia23 (TRUED
NDFROC

F

T 4+

FROCFi11
CNDFROCG

rt

- e

20

Character generator

1700 REM Create VDU 23 line from array
1710 DEF PROCoreats
L1780 VDL 23, N
1730 3
1740 FOR X% = 0 TO 7
1750 Ba o= 0
1760 M# = &80
1770 FOR J% = 0 TO 7
1780 IF BYTZCIZ,T%) THEN BY = BEY +

M
1790 M#Z o= M% DIV 2
1800 NEXT
1610 VDU B
1820 BYTEZ (TS = (¥
1830 MEXT
1840 3
1850 ENDFROC
18460 3
1870 ¢
1880 DEF FROCHLLL
1890 ¢
1900 FOR X% = 0 TO 7
1910 FOR J% = 0 TO 7
1920 FROCOlock (I%,d%)
1930 NEXT
1940 MNEXT
1950 12
19460 ENDPROC
170 ¢
19680 ¢
1290 DEF FROCTr ame
2000 VDU Z23,1,0303030
2010 CLS
2020
2030 REM Big bo
2040 COLOUR 179
2050 VDU 28,0,2,17,2
2060 CLS
2070 VDU 28,17,19,17,2
2080 LS

24

Character generator

22

2090
2100
2110
il BRL
2130
2140
2151
2160
2170
2180
2190
2200
2210
2220
2230
2290
2250
2260
2270
2280
2290
2300
2310
2320
2331
2340
2350
28360
2370
2380
2390
24010
2410
2420
2430
g o
2450
2460

UbDu 28,0,19,17,19
CLS

Wou 28,0,19,0,2
CL.S

VBl 26

COLOUR 128
GCOL 0,2

Upl 29,0;-R403;

REM Moriz. arid

FOR I% = &40 TO &1E0
MOVE TI%, &30OF
DRAW IX,&1E0
NEXT

+
+

RiiM Vert., qrid

FOR T% = K220 TO &3A0
MOVE &Z0,1%
DRAW &21F,I%
NEXT

+
+

REM Small box
GCOL 0,1

MOVE &110,&8130
FLOT 1,840,0
FL.OT 1,0,-&40
FLOT 1,-840,0
FLOT 1,0,840
VDL 29,8243 8364}
ENDFROC

DEF FNirput
IN$ = "
SIZE = 0

+

STEF

STER

&40

&40

Character generator

2470 REFEAT

Z480 Ke = GET®

2490 0K = FalSE

2500 IF INSTROU0123456789",K$) AND
SIZE < 8 THEN GIZE = BIZE + 1 1§
INg = IN$ + K$ I OK = TRUE

2910 IF K¢ = CHR$1Z7 AND SIZE > 0 THEN
SIZE = STZE -~ 1 1 IN$ =
LEFT$(IN$,5IZE) ¢ OK = TRUE

2520 IF STZE AND K$ = CHR¢13 THEN OK =
TRUE _

2530 IF OK THEN FRINT K$: ELSE VDU 7

2540 UMTXL K$ = CHR$13

20460 = VAl TN%

PERD

2590 DEF FPROGCinvert
2600 13

ZHELD FOR IZ% = 0 TO 7
FH20 FOR J% = 0 TO 7
2630 EXTZ T %, J%) = NOT BITACIR %2
2640 NEXT

2650 NEXT

26460 3

2670 FROCoreate

480 FPROCTLLL

2490 ENDFROC

700 ¢

710 ¢

2730 DEF PROCmirror
L2730 PROCtLemp

2740 13

ZE0 OFOR X% = 0 TO 7
2740 T4 = 7 - 1%
2770 FOR J2 = 0 TO 7
27810 BITH(LH, %) = TEMPL(TZ,J%)
2790 NEXT

2800 HMEXT

2810 3

Character generator

2820 PROCcreate

2830 FROCTiL11

2840 ENDFROC

2850 ¢

28460 ¢

2870 DEF PROCrotate
2880 PROCtemp

2890 @

2900 FOR I% = 0 TOQ 7
2910 T# = 7 - I%
2920 FOR J% = 0 TO 7

2930 BITZCLZ, J%) = TEMPZ(JZ,TZ)
2940 NEXT

2950 NEXT

2960 3

2970 PROCcreste

2980 FROCTill

2990 ENDFROC

3000 ¢

3010 ¢

3020 DEF FPROCtable (N)

3030 REM Show 48 characters
3040 ¢

30350 FOR I%-= 0 TO 18 STEF 8
30460 FOR J% = 0 TO 30 STEF 2

3070 FRINT TAE(18 + IZ,J%) N ¢
CHREN

3080 N =N+ 1

3090 NEXT

3100 NEXT

3110 3

3120 TEL = N - 32
3130 ENDFPROC

3140
3150 ¢
3160 DEF FPROCtemp
3170 ¢

24

2180
3190
3200
a210
IE20
3230
3240
e
FZAED
3270
3280

3290
3300
2310
3320
3330

3350

ARE0
A_T0
3380
3390
3400
3410

220

3430

FOR X% = 0 TQ 7
FOR J% = 0 TOQ 7

Character generator

TEMPR(TIZ, JX) = BITACLL,J4)

NEXT
MEXT

ENDFROC

DEF FROCvoZ23 (SCRN)

IF SCRN THEN FRINT TaB{(?,20) CHR$N

Tak(D, 280 ELSE VDU 2
FRINT "UDL 23,"iN ", "3
TIF SURN THEM FRINT

FOR IZ = 0 TO 7 &TEF 2
FRINT "&"3
FOR J% = 1 TO 0 STEF
TF BYTEZ(LZ+JIR)
FRINTS 03

FRINT: ~EYTEX(IX+J%) 3

NEXT
FRINT "3"3

IF T% = 2 AND SCRN THEN FRINT

MEXT
T OMNOT SORN THEN FRINT
Ul 3
ENDFEROC

+
+

=
: 810 THEN

+
4

voDu 21

VOt &

*
+

25

Circle fill

CIRCLE DRAW AND FILL

This is a short BASIC program which demonstrates two ways in which to draw
circles quickly and then fill them with solid colour.

So as not to slow the program down unnecessarily, we have not added any
REM statements to the code itself and we have used one- and two-character
integer variable names.

The radius of the circles is set by the variable R% in line 80.

PROCcircle | uses trigonometry to calculate the x,y co-ordinates of one
quadrant of the circle. If the x,y graphics origin is set to the centre of the circle
with a VDU 29.command, it is very easy to plot the other three quadrants at
the same time, since they are all reflected images of the first quadrant.

PROCcircle2 uses Pythagoras to calculate the circumference. Again, the idea of
mirroring the quadrants is used. Notice that R% * R% only needs to be
evaluated once and so a new variable R2% is created outside of the drawing
loop.

Sines and cosines produce the best-shaped circles, but the calculation time is
longer than with the Pythagoras algorithm. (Compare the displayed times and
the circumference lines, particularly around the ends of the horizontal diameter.)
One way of reducing the drawing time is to carry out the calculations in advance
of the drawing. Create two arrays X%() and Y %() and store the values of the
X,y co-ordinates in them. Then, when it is time to draw the circles, a loop
containing the single command DRAW X %(1%),Y %(1%) will show a noticeable
increase in speed. As before, you could use the ‘mirror’ idea to save having to
calculate more than one quadrant. It would also cut down the amount of
memory that you would need for the array, although it will mean that you will
still need the two nested loops for the plus and minus multiplications,

What you are effectively doing is creating a so-called ‘look-up table'. BBC
BASIC, in common with almost all other microcomputer BASICs, calculates
trigonometric values whenever they are called for by the user's program.
However, if you know that you are going to use a limited number of such values
(such as for angles between 0 and 90 degrees in 5-degree steps) several times
over in your program, you could effect a significant saving in drawing time by
creating a look-up table. If your circles (or arcs or quadrants for that matter)
have different radii, only store the sine and cosine values in the arrays. Since the
values will be floating point numbers, you mustn’t use integer arrays in this
instance. When the program needs to do the drawing, do a simple multiplication
of the radius against the array values inside of your drawing loop, e.g. DRAW

26

Circle fill

R% + X(1%), R% = Y(1%). If you experiment with a series of concentric circles,
you'll soon see the improvement! We have used this technique in the SHAPER
utility.

Both of our circle-drawing procedures end with a call to PROCHill. It utilises a
facility available in O.S 1.2, the line-fill PLOT option. PLOT commands in the
range 72 to 79 will cause a horizontal line to be drawn outwards in both
directions from the x,y co-ordinate specified until there is a collision with a pixel
of a different colour. One special requirement of the command is that the
current foreground and background colours set by GCOL must be different,
even if the area to be filled is already a different colour from the filling colour.
The seven variations in the command are the same as for other PLOT
commands (see page 319 of the User Guide).

10 REM xxxx CIRCLE FILL XXX

20 ¢
20 REM (o) Ian Trackman 1983
40 3

S50 MODE 1

&0 VDU 23,1,03030503

70 3

80 R% = K100

?0 3

100 TIME = 0

110 FROCeircle.l (RZ,&140,8200,1)
120 FRINT TAE(?,0)3 TIME

130 3

140 TIME = 0

150 FROCeircle 2 (RZ,&3C0,_&200,2)
160 FRINT TAE(Z8,0)3 TIME

170 END
180 ¢
1?0 3

200 DEF FROCcivele.l (RZ,X%,YZ,C4)
210 LOCAL A, xZ,uZ

220 3

230 VDU ZF.XELIYXS

£40 GCOL 0,C%

250 wa = 0

27

Circle fill

260 yX = RX

270 ¢

280 FOR A = 0 TO RAD ?1 STEF RAD 2
290 XX = RX x SIN A

300 YX = RX x COS A

310 FOR QX% = -1 TO 1 STEF 2

320 FOR QYZ = -1 TO 1 STEF 2
330 MOVE »xZ x QXX,9Z x QYX
340 DRAW XZ x QXZ,YZ x QYX
350 NEXT

360 NEXT

370 wh = X%

380 yt = Y%

390 NEXT

400 ¢

410 FROCTill

420 ENDFROC

430 3

440 3

450 DEF FROCeircle. 2 (RXL,XZ,YZ,C%)
460 LOCAL xZ,9%,R2Z%
470 3

480 VDU 29,X%3Y%3
490 GCOL 0,C%

200 R2%Z = R% x RX%

510 % .= 0
920 yx = RZ%Z
530 ¢

940 FOR XZ = 0 TO RXZ STEF 4
990 YZ = SAR(RZ2X - XAxXZX)

560 FOR QX% = -1 TO 1 STEF 2
G970 FOR QYZ = -1 TO 1 STEF 2
580 MOVE =% x QXZ,9Z * QYZ
590 DRAW XZ x QXZ,YZ x QYZ
4600 NEXT

610 NEXT

620 wE = X4
630 wh o= Y%
640 NEXT
&50 @

28

660
6710
680
690
700
710
720
730
740
750
760

FROCFill
ENDFROC

DEF FROCTill

FOR YX = -R%Z TO RX
FLOT 77,0,Y%
NEXT

+

ENDFROC

STEF 4

Circle fill

29

Cross referencer

PROGRAM CROSS-REFERENCER

XREF is a machine-code utility which wili produce a list of all the line-numbers of
lines in a BASIC program which contain a variable, a keyword or text designated
by you. Alternatively, instead of displaying the line numbers, it will list out the
lines themselves.

There are two versions of the program on the tape, XREF is the version for use
with tape-based computers. It resides between &E00 and &FFF. XREFDISK is
for use with disks and is loaded between &1700 and &|8FF. Please refer to
‘Using the Programming Ultilities’ for installation instructions. Other than the
addresses at which, the tape and disk versions of the programs operate identically.

The utility is co-resident, that is, it will remain in the computer's memory whilst
you load, run and save BASIC programs, until you over-write it.

Before you use XREF, you'll need to set up three function keys -any keys will do.

Program the keys:

+KEY | OiHFind?

+KEY 2 CALL&EOO|K{KIM

+KEY 3 CALL&EO6/KiM

If you like, you can add a space after the question mark at the end of the first
key's string. If you want to use keys other than |, 2 and 3, you'll obviously use
different key numbers when setting them up. If you are using the disk version of
the program, the second and third key strings will be

+KEY 2 CALL&I700}KiKiM

+KEY 3 CALL&1706|K|M

The utility temporarily adds a new line 0 to your BASIC program (which it
subsequently deletes) and so your program must not already contain a line 0. If
it does, it will be lost.

To use the utility, press the first function key and the message Find ? will appear
on the screen. Type in what you want to find (let’s call it the 'target’ from now
on) followed by Return. Subject to what we have to say below about specifying
numbers and keywords, you can enter whatever you want - variable names,
keywords, text or any combination of them. The target is stored by the utility in
half of the computer's keyboard input buffer, so don't enter more than 127
characters at a time or you'll start to over-write other buffers with undefined
results.

What you have done at this point is to cause a new line O to be added to the
program in memory, containing the target. (If you wonder why this is necessary,

30

Cross-referencer

the reason is in order to use the parser in ROM to create tokens from BASIC
keywords.)

There are a number of points to bear in mind from this process.

Be careful if your target might appear in different contexts in the program. For
example, if you want to find the variable ABZ, and you give just the letter A as
your target, every occurrence of that character in your program will be listed.

If you do not proceed to the second stage of the utility (by pressing the second
function key), you will be left with an unwanted line 0, which will probably cause
a syntax error unless you delete it before running the program.

The utility will search for the target in the exact form in which you have typed it.
Therefore, be accurate - particularly with spaces.

One advantage of using the parser is that you can type in the truncated form of
BASIC keywords. If you are looking for, say, PRINT “*HELLO’, you can type:
P. “HELLO™

Because your target is tokenised, you must include the full word (don't type
SUB 1000 instead of GOSUB 1000) and all necessary brackets in accordance
with the list of tokens on pages 483-4 of the User Guide. For instance, if you
want to find LEFT$, you must type LEFT$(and not just LEFT$.

The final point is that you must not begin your target with a number, since it wilt
be parsed as part of the line number and you will add a new and unwanted line
somewhere else in the program! Since numbers within a line can almost always
be related to another command, e.g. GOSUB, or a mathematical symbol,
include that as the start of the target.

Having entered your target, press the second function key if you want a ‘full’
listing or the third function key if you only want a line-number list.

If the utility cannot find your target anywhere in the BASIC program, it will
respond with Not Found. (It will also give this message if you don't enter a
target in the first place.) Otherwise, it will either list out the individual lines or
produce a single list of line-numbers in which your target occurs.

If you are using the full listing option, XREF will stop after every line and wait for
a key-press. We suggest that you use the space-bar. Do not use the function
keys for these key-presses, since they wil send a command line into the input
buffer and create havoc. If you incorrectly use the function keys, you may see
the message Mistake on the screen. However, a few more key-presses will
make XREF crash and you'll have to press the Break key to recover,

31

Crossreferencer

XREF is not intended to be used with a printer, The reason is that it generates
BASIC commands (which you may see flash on to the screen before a reverse
line-feed obscures them) and these would be displayed in a print-out.

Please refer to “Using the Programming Ultilities’ for notes on tacked-on bytes,
hidden control characters and other general hints.

The utility contains routines which demonstrate how to generate BASIC
commands from within a machine-code program. We decided to take this
approach rather than to access the BASIC ROM directly, so that the utility
would not be dependent on the existence of code at specific addresses in the
BASIC ROM. There are also useful routines in XREF for hex to decimal number
conversion and string searching.

10 REM LISTER & CROSS REFERENCER
20 3

30 REM (¢) Ian Trackman 1282

40

S50 DIM msq(4),05CL 21

60 firmd$ = "Find ? "

70 PROCoscli ("KEY 1 0|H" + find$)

80 ¢

20 page = K18

ioo

110 memloc = &70 : REM &71

120 lirmenum = &72 : REM &73

130 rnumber = &74 ! REM &79

140 modl0 = &76 ! REM &77

150 temp = &78 § REM &79

160 lerngth = &80

170 lenfake = &81

180 size = RB2

1920 4ysave = R83

200 flaa = &84

210 chars = &85

220 ¢

230 buffer = 780 ¢ REM In kegboard
buffer

240

32

250
260
270
280
290
300
310
320

330
340
330

360

370
380
390
400
410
420
430
440
4540
460
470
480
490

a00
a10
a0
w30
540
Ha0
560
az70
980
G590
600

Cross referencer

asrdceh = &FFED

nsnewl = &FFE7

oswrch = &FFEE

osbyte = &FFF4

eol = &0OD

space = ASC " "

mumsize = B 1 REM For output

formatting

*
+

org = KEO0

FROCoscli ("KEY 2 CALLE&" + STR$~ora
+ "IKIKIM")

FROCoscli ("KEY 3 CALL&" +
STRe~(arg + &) + "|K(IM")

opt = 2
+

FOR IZ = 0 TO opt STEF opt
F% = org

[

OFT I%

+

JMF entryl N List uref

JMF entry2 N~ Y - pre-rentty
JMF entrvy3d N Number xref

+

servtryl LDY #4SC "0 N Delete line
0

JSR bwfohar

LDY #eol

JOHR buafcohar

JER osniewl

:

JSR o setup

EBCC look N OK

ECS fimish N Null string
N End of first entry routine

%

33

Cross referencer

610 N\ Subsequent passes start here

H20 .sermtry?2 LDY #0

630 .msqlloop LDA mse(l),Y \ Delete
"CaLL

&40 EBEQ look

430 JSR oswroh

660 INY
670 BENE msqlloop
680 ¢

490 look JSR search

700 ECS fimdish N\ End of proaram
710 ¢

720 JSBR mateh N If mo carry from

sesarch

730 RTS N\ Temporary exit to Basic
interpreter

740

730 Jfimish LDY flag \ Tarqget ever
found ?

760 EBEQ exit \ If rot

770 RTS

780 ¢

7920 .exit JSR nmotfound

800 JMF exit3

810

820

830 N xxxx Line rumber
cross—referencer

a840 ¢
830 .emntryld JSR setup
8&s0 3
870 .xref JSR search
880 BCS fimish2 N No match
890 ¢
00 LDY flag \ Firgt find 7
P10 EBNE msafdorne N\ Else Y = 0
@Z0 ¢
30 «msgdloop LDA msal{d4);Y \ "Line"
240 BEQ mseddone
@50 JSRKR oswroh

34

Crossreferencer

Q60 INY
P70 ENE msg4loop
980 ¢

990 .msqidone LDA #0 N eol delimiter
1000 FHA

1010 LDX #numsize

1020 STX chars N ASCIT digit counter
1030 DEC flag N Set it

1040 ¢
1080 JSFE convert
1060 ¢

1070 LDX chars
1080 EBEQ display N\ No padding needed
1090 ¢
1100 N\ Fad to right justify
1110 LDA #space
1120 blank FHA
11230 DEX
1140 ENE blank
1150 2
1160 .oiisplay FLA N Unstack ASCII
1170 EBEQ xref N Contirmnus looking after
eof
1180 JSR oswroh
1190 JMP display
1290 ¢
1210 .Finmishd LDY flag \ SHuccess ?
122 EBNE exit?
1230 JSR rotfound
1240 3
1250 sexit? LDA 21 N VDU off
1260 JSKH oswrch
1270 LDY #A8C 0" N Delete line 0
1280 JSR bufochar
1890 3
1300 cexit3 LDY #6 N VDU on
1310 JSKR bufeohar
1320 LDY $eol
1330 JUMF bufehar N Exit to Basic
1340 ¢
35

Cross referencer

1350 3

1360 N xxxX Sub-routines XXXX

1370 3

1380 \ xx¥x Fut Y into kegbosrd
buffer

1390 ¢

1400 bufcochar LDA $884A

1410 LDX #0

1420 JMF osbyte

1430

1440

1450 N X¥XX Convert Z-byte hex
line-rmumber to decimal ASCIIT

14460 ¢

1470 .convert FLA N\ Save return

v 2o

address
1480 STA temp
14920 FLA
1500 STéa temp+l

1510
1520 LDA linernum
1530 S8TA number
1540 LDA linenum+l
1350 STA rnumber+l
1560
1570

-

o

convert? DEC chars N Only used in

Number xref

1580 LDA #0

1590 STA modlDd

1600 STA modli+l

1610 LDX #&10 N\ Double bhuyte

1620 CL.C

1630 3

1640 +divlioop ROL number N\ Eit O
(carry) becomes quotient

1650 ROL romber+l

1660 ROL moddl0

1670 ROL modl(+1

14680 3

-

36

Crossreferencer

16920 LDA modld

1700 SEC

1710 SBEC #10

1720 TAHAY N\ Low byte

1730 LDA mocli+]

1740 SEC 40

1750 EBECL deccount N if dividend =

divisor

1760 ¢

1770 STY wmodi0 N Next bit of dividend =
1.

1780 STA modli+l N\ Dividend = Dividend
- divisor

1790 ¢

1800 .deccournt DEX

1810 ENE divloop

1820

1830 ROL number N Shift i last carry
for quotient

1840 ROL romber+l

1850

1860 LDA moddll

1870 ORA #ASC 0" N ASCII mashk

1880 FHA N\ Stack it (starts at
right~hand digit)

>

-

1890

1900 LDA number N\ Continwe if value <
]

1910 ORA rnumbertl

1220 BNE convert?2

1930

1940 LDA temp+l N\ Restore stachk

1950 FHA

1940 LDA temp

>

-

1970 FHA

1980 RTS

1990 ¢

2000 ¢

2010 N xxxX Update line pointers
2020 ¢

37

Cross referencer

2030
2040
2050
2060
2070
2080
2090
2100
2110
2120
2130
21940
2150
21460
2170

soncdline LDA memloc
cLC

ADC length

STHA memloco

BCC noadd

INC memloctl
snoadd RTS

XXXX Match found

e L s ae

smateh BIT flag
EMI qgetkey

+
+

N\ Frepare for deleted line 0 on
gsecond entry (shorter program)
L.DA memloc

SEC

SEC lenfake

STA memloc

1.DA memloc+l

SEC %0

STA memloc+l

DEC flag \ Set it

ENE kevydone

aethey JSR osrdoh

CHF #&1E \ escape ?

ENE kevydone

FLA N Fop the stack

FLa

TS N and exit to BASIC

Jkevydone LDA #11 N\ Reverse
line~feed

JSR oswroh

LDA #21 N VDU off
JSR o oswroh

2410
2420
2430
2440
2450
2460
2470
2480
2490
2500
2510
2520
2530
2540
255

259460
2570
2580
2590
2600
£610
2620
2630
2640
2650
2660
2670
24680

24690
2700
2710
2720
2730
2740
2756
2760
2770
2780
2790

¥
L]

Cross+referencer

N Set up end of "LISTY command

LDA 20

FHA

L.DA #eol

FHA

LDA 6 N VDU on
FH&

JSR convert

+
L]

LD& #ABC UTY

FHA
LA #ABC "GY
FHA
LDA #ASC "IV
FHa
L.DA #ASC "L"
FHA

*
+

soutnum FLA N\ Unstack ASCIT
BEEQ numdone

TaY

JSR bufohar

JMF outiiam

*
+

smmdone LDY &0

+Mmea3loop LDA msgl(3),Y N CALL
CLISTER>

BEQ msq3done

STY wysave

TaY

JSR bufeohar

LY wsave

INY

BENE masqg3loop

Mmeaddone RTS

e BE 2 *e

39

Cross referencer

2800 N\ XXXX Not found messaqe

2810
2820
2830
2840
2850
2860
2870
2880
2890
2900
2910
2920
2930
29410
2950
2960
2970
2980
2990
3000
3010
3020
3030
3040
30540

3060
3070
3080
3090
3100
3110
3120
3130
3140
3150
3160
3170
3180

40

+
*

smotfound LDA msg(Z),Y

BEQ
JER
INY

msqZodone
OBWrCh

ENE motfound

3
W
s

D i

]

done RTS

XKKKX Mzain search loop

ssearch JSR endline

LDY
L.DA
CMF
EEQ
S5TA
INY
L.DA
STA
INY
L.DA
STA

%0
(memloc),Y
F#RFF N\ End of program flag

erddprog
lineroimt]

(memloc),Y
Limenum

(memloc),Y
lerngth N\ Offset to start of

mext line

aTY

+
<

Yasave

sthrysaain LDX size

INC
LDY

ysave
Heave

sty te LDA (memloc),Y

CHMF
EBEQ

CMF
EiNE
INY

feol
search

huffer,X
tryagain

Crossreferencer

3190 DEX

3200 ENE nextbyte

3210 3

3220 CLC N As “"match" flag

3230 RTH

3240

2250 .endprog SEC N As flag

3260 RTS

3270 3

3280 ¢

3290 \ xxx¥% Transfer user’s input to
our buffer

3300 3

3210 .setup LDA £3 + LEN find$

3320 STA memloc

3330 LDA page

3340 STA memlootl

3350 2

3360 LDY #*0

3370 8TY flag

3380 DEY

3390 .loop INY

3400 LDA (memloc),Y

3410 OCMF #eol

3420 EBNE loop

3430 &

3440 STY gize

3450 TYaA N For Z-flag

3440 BEQ rull N Null input

3470 DEC size

3480 3

34920 LDX #0 N\ Buffer,0 is never reached
s0 drop el in it

3500 «oswap LDA (memloc),Y

3510 87A buffer,X

3920 TINX

3930 DEY

3540 BNE swap

as50 ¢

35460 INY

4|

Cross referencer

3570
3580
3590
3600
3610
3620
34630
3640
3650
36610
3670
3680
34690
3700

3710
3zzo

2730
3740
3750
3760
3770
3780
3790
3800
3810
a8zo
383

3840
2850
3860
3870
3880
3890
3900
35710
3920
3930

42

STY memloc

INY N Always skip fake line 0
LDA& (memloc),¥Y

ST lengtn

5TH lenftake

CLC N OK flag

RTS

+
+

+sll SEC N As Tlag

RTS

1

FROCtext (1,CHR$11 + STRINGS(10D,"
") 4+ CHR$eol)

FROCLext (Z2,"Not found " + CHR%21)
FROCtext (3,"CA." + STR%(orqe+3) +
CHR$eol)

FROCtext (4,"Line ')

NEXT

END

DEF FROCoscli (A%)
X% = (08SCL mMOoD &100
Y4 = 08CL DIV &£100
$05CL = A%

CaALlL &FFF7

ENDFROC

*
+

DEF FROCtext (N,A%)
mag(iN) = FX%

FmasalN) (=%

FZ = PZ + LEN(A%) + 1
Fr?-1 = 0

ENDFROC

i

Disassembler

DISASSEMBLER

The program, called DISASS on the tape, is written in BASIC, so CHAIN or
LOAD-and-RUN it.

The program sets the screen to Mode 6 with a blue background. (If you prefer a
different Mode or a different background colour, you can easily make the
changes at the beginning of the program and at the start of PROCsetup.)

The program asks you to enter the start and end addresses of the area of
memory that you want disassembled. The addresses must be given in
hexadecimal and may be anywhere in the range O to &FFFF (use upper-case
letters for A to F). You can - but don’t have to - type in leading zeros (&E00 is
as valid as &0EQ0). The program will reject invalid addresses.

You can find out the start and end addresses of a machine-code program by
using the +OPT 1,2 option when loading it from tape (see page 398 of the User
Guide) or with the *INFO command for disk (see page 44 of the Disk System
User Guide).

Bear in mind that the I/O areas are located between addresses &FC00 and
&FEQQ. If you have certain input/output devices connected to your computer,
accessing these addresses by disassembling their contents may cause unexpected
results.

The disassembler will decode the contents of the memory, starting at the
address that you have specified, and will display the results in up to five columns
across the screen. The first column is the address (in hex) and the second
column contains one, two or three bytes making up an opcode and any
associated operand. The third column holds the opcode itself and any operand is
shown in the fourth column. These columns correspond to the four columns
that will be displayed if you assemble a listing with OPT set to | or 3 (see page
314 of the User Guide). For example:

1000 20 EE FF JSR &FFEE
Column | Column 2 Column 3 Column 4
Address Hex bytes Opcode Operand

Relative addresses are resolved and shown as absolute, not offset, addresses.

If an address contains a byte that cannot be decoded - it may be data or an
invalid opcode - the third column will contain three question marks. If the byte
is in the range 820 to &7F, its ASCIl character will also be printed out in the fifth
column of the display.

43

Disassembler

The display is set to ‘page mode' with a VDU 14 command and so will stop and
wait for the Shift key to be pressed at the end of each screen page. Disassembly
will continue until your specified end address is reached or until you leave the
program by pressing Escape. You can re-start simply by typing RUN.

If you want to print out the results of the disassembly on your printer, enable
the printer with the usual VDU 2 (or Control B) command before you run the
program. You may also want to delete the Page Mode command which appears
at the start of PROCsetup.

At the start of the program is a variable SPOOL, which is normally set to
FALSE. If you set it to TRUE, the program will make use of the Operating
System’s +SPOOL facility in order to save the disassembly to disk or to tape in
a file called DUMP. This time, the disassembly will start with the word AUTO in
order to generate line-numbers when the listing is subsequently EXEC'd. The
first two columns of the disassembly will not be saved.

Once the disassembly has been saved, you can create a BASIC program from it,
ready for you to examine and/or edit, with the following steps:

Type NEW (to remove the Disassembler)

Rewind the tape

Type «EXEC “DUMP”’

When no more lines appear on the screen, press Escape to leave AUTO Mode.
Add the usual square brackets around the listing and save the new program.

You can now start to addlabels to the listings and to convert the absolute
addresses to symbolic addresses by using the REPLACE program in the
Toolbox.

Please refer to pages 402-3 and pages 442-9 of the User Guide for further
details of the «+SPOOL and +EXEC commands and of the creation of assembly
language listings.

If you are using disks, remember that you need at least 64 free sectors on your
disk (see page 64 of the Disk System User Guide). We suggest that you delete
the DUMP file as soon as you have created the BASIC program in order to
avoid any subsequent Can't extend errors.

10

20

11

Disassembler

REM xxXxX 4502 DISASSEMELER xXxxX
REM (o) ITIan Traclkman 1982

REM A% address pointer

REM BY = address contents (byte)
REM D% = dinmput digit counter

REM N%Z = opcode index

REM T% = opcode addressing type
SFOOL. = FALSE

MODE &

FROCsatup

FPROCzddress § REM Get valid hex
address
ON ERROR GOTO 280

IF SFOOL THEN xXSFOOL "DUMF"
IF SFOOL THEN FRINT "AUTO"

REFEAT
FROCdecode
IF T% < 3 THEN AZ = A% + 1
IF T% > 2 AND TZ < 9 OR T# = 13
THEN A% = A% + 2
IF T% = 8 AND T% < 13 THEN A% =
AZ + 3
UNTIL FALSE
ON ERROR QFF
IF SPOOL THEN xSFO0L
REFORT
FRINT " at lime "} ERL
END

+

+
+
+

45

Disassembler

350
360
370
3810
390
400
410
420

430

440

4460

470

480

490

500
Sl0
S20
B30
G40
G50
H60
G70
G8e
590
&00
&10
620
630

DEF FROCaddress

ax = 0

D = 0

FRINT "Start address ¢ &"3

REFEAT
HKe = GET%
IF DZ < 1 AND (K$ = CHR%13 OR K%
= CHR$127) THEN VDU 7
IF D% = 4 AND H% <> CHR%$13 AND K%
= CHR% 127 THEN VDU 7
IF K% = CHR$127 AND DX > 0 THEN
FRINT H$: ¢ A% = A% DIV &10 1 DX
= D% - 1
ITF K$ < CHR% 13 AND K¢ < "0©
THEN VDU 7
IF K% <> CHR$ 127 AND K$ > "F"
THEN VDU 7
IF K$ > "2'" AND K% < "A" THEN VDU
7
IF D% < 4 AND K% == "0" AND K% <=
“oUn THEN A% = AZXKL0 + Val. K$ ¢
FRINT EK$; : D#n = DX + 1
IF D% < 4 AaND K$ »= "a4" aND K$ <=
"E'OTHEMN A% = AZXR10 + aASC(K$)Y -
S99 08 PRINT K$: ¢ D% = D%+ 1
UNTIL AaX aND K% = CHR$13

FRINT

EMDFROC

DEF PROCHecode

By o= ?A%

N o= OPZOEZY DIV 100

Tz = QFZCEZ) MOD 100

A% = RIGHTS"000Y + STR&MAX 4D
Bt = RIGHT®("0" + STR&~EX,Z2)
Al = RIGHTH("0" + STR$~AXTL,2)

AZE = RIGHTH("0" + STREAAXPZ,2)

640
650
460
470
680
AH90
700

7 10
720

730

740

750

760

770

780

720

800

810

830

LO$ = Al$
HI$ = AZ$
ALH = ALg + ¢

IF SFOOL THEN Al% = "" 3 AZ$ =

ELSE FRINT A$ “
0 THEN FRINT TAE(XX)

IF NX =

OF$(NZ) 3

IF N& =

THEN FRINT,

IF NZ =
IF T4 =
OF$ (NX)
IF T# =
OF$(NZ)
IF T# =
OF$ (N
IF TZ =
OF&(NZ)
IF TZ =
OF%(N%)
IF T# =
OF%(N%)
IF T# =
OF${NZ)
IF T#% =
OF%{NX)
IF T% =
TAER(XX)
ENMDFROC
IF T# =
TAB{(XZ)
ENDFROC
IF T% =
THE (X%}
ENDFROC
IF T#% =
TAR(X%)
ENDFROC

0 AND EBZ =
CHR$EZ:
0 THEN FRINT @

Disassembler

: i E=$ 12

"na
¥

&20 AND EZX

ENDFROC

1 THEN FRINT TAE(XZ)
¢+ ENDFROC
2 THEN FRINT TaE(XZ)

1] All :

ENDFROC

3 THEN FRINT Al$ TAE(XZ)

"OER" LO% 3

ENDFROC

4 THEN FPRINT Al$ TAE(XX)

"&" LO%

¢+ ENDFROC

5 THEN FRINT Al$¢ TAE(XX)

(1} &ll

LO%

ENDFROC

6, %% §

4 THEN FRINT Al$ TAE(XZ)

"ogY LO$ MY,Y" ¢
FRINT Al$ TAEBXX)

7 THEN

R LO%

ENDFROC

"LX)" 1 ENDFROC

8 THEN PRINT Al$ TaEXX)

114 (&Il

? THEN FRINT;S

OF& (NZ)

10 THEN
OF$ (NZ)

11 THEN
OF$ (NZ)

12 THEN
OF$ (NX)

LO% "),Y" 3

ENDFROC
AlE AZS
"OR" HI$ LO$
FRINT A1$ A2%
"M HI$ LO$ M, X"

FRINT Al% AZ%
"O&" HI$ LO$ ",Y"

FRINT Als AZS$

0 (&" HIS Lag 3™

£ &80

-

*y

>

47

Disassembler

840 FRINT Al% TAB(XX) OP${NZ)Y " &"}

850 IF AXZ7?1 < &80 THEN FRINT
RIGHT®("000" + STR$~(AY + AZL?1 +
2),:4) ELSE FRINT RKIGHT®("000" +
STR&~(AX + AZ?L ~ &FE),4) 3 REM
Relative addressing

8460 ENDFROC

g70

aso

820 DEF FROCsetup

200 VDU 19,0,4307

210 VDU 14

20 DIM OF$(56),0FZ(255)

@30 IF SPODL THEN X% = 0 ELSE X% = 18 3
REM Opcode column tasb setting

40 3

@50 FOR IZ = 0 TO 56

60 READ OF&(X%)

970 NEXT

o8B0 ¢

920 FOR I7Z = 0 TO 255

1000 READ OFX% (T4

1010 NEXT

1020

1030 ENDFROC

1040 @

1050 3

1060 DATA 2?77, ADC, aAND, ASL, EBCC, BCS,
BEEQ, BIT, BMI, ENE, EPL, BRK, BVYC,
BEvs, CLC, CLD, CLI, CLV, CMP, CFX,
CFPY, DEC, DEX, DEY, EOR, INC

1070 DATA INX, INY, JMF, JSR, LDA, LDX,
LDY, LSKR, NOF, ORA, FHA, FHF, PLA,
FLF, ROL, ROR, RTI, RTS, SEC, SEC,
SED, SEX, 5TaA, STX, S5TY, TaX,; TaY,

TSX, TXA, TXS, TYA

1080 3

48

1090
1100

1110
1120

1130

1140

1150

1160

1170

1180

Disassembler

REM Opcode index
REM m DIV 100 = opcode index & n
MOD 100 = opcodde addressing mode

DATA 1101, 3507, 0, 0, 0, 3504,
0R04, 0, 3701, 3503, 0302, O, O,
3509, 0309, 0, 1013, 3308, 0, 0, O,
3505, 0305, 0, 1401, 3511, 0, O, O,
3510, 0310, O

DATA 2909, 0207, 0, 0, 0704, 0204,
4004, 0, 3901, 0203, 4002, 0, 0709,
0209, 4009, 0, 0813, 0208, 0, 0, O,
0205, 4005, 0, 4501, 0211, 0, 0,0,
0210, 4010, 0

DﬁTf-\l 4201, 2407, 0, 0, 0, 2404,
3304, 0, 3601, 2403, 3302, 0, 2809,
2409, 3309, 0, 1213, 2408, 0, 0, 0,
2410, 3310, 0, 1601, 2411, 0, 0, 0,
2410, 3310, 0

DATA 4301, 0107, 0, 0, 0, 0104,
4104, 0, 3801, 0103, 4102, 0, 2812,
0109, 4109, 0, 1313, 0108, 0, 0, O,
0105, 410%, 0, 4701, 0114, 0O, 0, O,
0110, 4110, 0O

DATA 0, 4807, 6, 0, 5004, 4804,
4904, 0, 2301, 0, 5401, 0, 5009,
4809, 4909, 0, 0413, 4808, 0, 0,
5005, 480%, 49046, 0, 5401, 4811,
%50, 0, 0, 4810, 0, O

DATA 3203, 4807, 3103, 0, 3204,
3004, 3104, 0, 5201, 3003, S101, O,
3209, 3009, 3109, 0, 03513, 3008, 0,
0, 3205, 3005, 3106, 0, 1701, 3011,
DATA 2003, iB07, 0, 0, 2004, 1804,
2104, 0, 2701, 1803, 2201, 0, 2009,
1809, 2109; ﬂ’ 091:3; 1808’ 0’ 09 0'
1805, 210%, 0, 1501, 1811, 0, O, O,
1810, 2110, 0

49

Disassembler

1190 DATA 1903, 4407, 0, 0, 1904, 4404,
2504, 0, 2601, 4403, 3401, 0, 1909,
4409, 2509, 0, 04613, 4408, 0, 0, 0,
4405, 2%50%, 0, 4601, 4411, 0, 0, O,
4410, 2510, 0, 0O

50

Doublesize characters

DOUBLE-SIZE CHARACTERS

Twao routines give you the ability to print double-height characters in Modes | to
5in the same way as you cah in Teletext Mode 7 by using CHR$141. You can't
usefully use them in Modes 3 or 6, since there will be a horizontal gap in the
middle of each enlarged letter.

The routines themselves are in machine-code, but they are embodied in two
demonstration programs which are written in BASIC. The idea is for you to be
able to see how the routines operate and then incorporate them intc your own
programs.

The first program is called GIANT | and is intended for use with Modes 0, | and 4.

It needs four user-definable characters. In the demonstration, we have selected
characters 224 to 227, but you can set the variable ascii at the beginning of the
program to use any four free characters.

100 bytes are reserved for the machine-code. (It actually assembles in 94 bytes.)
The routine uses a number of locations in zero-page as detailed at the start of
the assembly language listing.

The character to be printed could be passed to the machine-code in the form of
a parameter to the CALL but, since it is a single byte, we think that it is just as
easy to ‘poke’ it into a defined location, char, which is set up during the
assembly process.

We imagine that you will want to use the routine most of the time to display
strings which are pre-defined in your program and sc the demonstration begins
by doing just that.

We call the machine-code subroutine to set up the new user-definable
characters which we then print out, with connecting cursor-move control
characters, by using BASIC's VDU command. We could have added the printing
commands into the machine-code, but we thought that by leaving the four
‘quarter’ characters defined (but not yet printed), this would give you more
flexibility, e.g. to change colours between each quarter,

Notice in particular that the first item in the YDU string moves the cursor up a
line. The reason for this is that we want to leave the cursor in its ‘correct’
position after printing, which is one line too low for the next character. That
means that you must always start at the top of the screen with a line-feed or
PRINT command (see line 140)in order to cancel out the effect of the very first
VDU I1.

51

Double-size characters

In case you should want to print double-size characters in response to keyboard
input, the demonstration continues by taking individual characters from the
keyboard and displaying them in double size on the screen. Since GET is used
for this, we need to deal specially with Return (CHR$13). We have also partly
simulated the ‘Delete’ key, although you will have to develop the demonstration
routine further to handle back-spacing beyond the left-hand edge of a lire. If you
want to use double-size characters for a full display of keyboard entry, you will
also have to add program lines to handle the cursor-move and copy keys, since
they do not work at double-spaced line intervals.

The second program, which is called GIANT2, works in Modes 2 and 5 on the
same principles as the first program.

Since characters in these Modes are already double-width, only two characters
are needed in order to make up a new double-height character and so the
machine-code and VDU commands are correspondingly different. The machine-
code is shorter and takes up only 45 bytes.

As before, if you want to use the routine in response to keyboard input, you'l
have to write code to cope with the cursor-move and edit keys.

Of course, there is no reason why you shouldn't use either of the two routines
in the ‘wrong’ Mode to produce extra-fat or tall, thin characters.

10 REM DOUBLE HEIGHT CHarRaCTERS

20 3

30 REM (o2 Xan Trackeman 1983

40 3

50 REM FPrants double heiaght characters
i Modes 0 ~ 5

60 ¢

70 MODE 1

80 ¢

Q0 ascii = 224 § REM Any four free

SCIT characters
100 C = ascii

110 ¢
120 FROCassemble
130 ¢

140 FRINT TAE(&,2)3

150 FROCdemo ("BIG CHARACTERS"™)
160 FRINT 77

170 3

52

128
150
200

210

A0
230

240

250
260

270
280
290
300
310
3720
33

340
350
340
370
380
390
400
410
4210
430
441
450
4410
470

480

Double size characters

REFEAT
Moo= GET
TF K o= 13 THEN PRINT § K = FALSE
I REM Retuwrn
TF K o= 127 THEN VDU 8,8 § K = ASC
o DEL o= TRUE ELSE DEL = FALSE
! REM delete
Tohar = K
Call. Moode
IF E THEN VDL
11,C,042,8,8,10,C0+1,C+3 3 REM
Frimt the 4 charvacters wilth
CUT 0T MOVES
ITF REL THEN VDU 8,8
TF FOS = 0 THEN FPRINT ¢t REM New
double line
UNTIL FALSE

BN

DEF FROCassemble

DIM Moode 100

char = E70 { REM to K78
taemp = &79 + REM to &80
v ohar = &81

aoswroh = &F
oswora = &

+
+

apt = 2 3 REM No display
FOR I% = 0 TO oplt STEF opt
F% o= Moode
LOFT T

N Gall 08 ‘read character
definition’ routine with ASCIIX
im ‘ohar’
LDA #&A
53

Double size characters

54

490
Hon
510
524
Haa
544
550
&0
370
580
590
&0 0
4&10
&0
630
&40
650
660
6710
480

AP0
700
710

720
730
£
750
760
770
780
790
800
810
820
830
840
850

'
+

+
$

L4
+

LDX
LDY
JER

L.DA
aTa

JER
JER
INC
JOR
INC
SER
JER
INCG
JHR
RTS

fohar
fohar
OswWwoTd

fasoiil
vl otar
create
Vvelndd
viduochar
vidnd 3
vilu__chanr
creste
vijdd
vilt_ochar
vidu2 3

N First

DIV &L00

soreste LDX 8 N 8 bhytes

s loopl

Pasnes

LOD& &0

LDY #4 X\

L]

i bwo

+ ¢

+

ocharscter

*

+loopd ROL char,X \ Examine each

it

BCS carreryg N 1L bt v

RQOL A
CLC N Repeast 0 bit

*
¢

Bec

mext N

sCarry ROL A
N\ Repeat 1 bit

*
*

emest. ROL.

SEC

DEY

BENE loopZ2
*

+

STA temp—-1:X N\

temp

arvay (X

AN Save

Alwavs

it

1 to 8 so0

Store rew byte

MI)

ir

860
870
&880
890
?oo
910
9L0
gal
P40
Yol
P60

970

fa0

P90
1000
1010
1020
1030
1040
1050
1060
1070
1080
1090
1100
1110
1120
1130
1140
1150
1140

1170
1180

1190
1200
1210

Double-size characters

DEX
ENE loopl
RTS

+
+*

s 23 LDA #HE2

JOSH oswroh

LDA vidu_char

JER oswroh

LDY #2 N Frint 8 bytes ..
JER print

LDY 2 N Fall in for second
print

&
L

«print LDA temp,X

JSR oswreh N double each byte
JER oswreh

TINX

DEY

BENE print

RTS

*
¢

+

NEXT

ENDPROC

DEF FROCdemo (A%)

FOR IZ2 = 1 TO LEN A%
Pohar = ASC MIDS(A$,I%,1) § REM
Fasss ASCII to the machine code
viag this bhyle
Call. Moode
UDU 11,C,0+2,8,8,10,C+1,C+3 ¢ REM
Frint the 4 charascters with
CUTSOT MOVEeSs

NEXT
ENDFROC

55

Doublesize characters

56

10
20
30
40

50

60
70
80
90

100
110
120
130
140
150
1460
170
180
190
200

210
220
230
240

ERV AN]

S0
0

270
280
290
300
310
320
330
340

REM xxxX CHARACTER EXFANDER XXXX

REM () Iarn Trackman 1983

+

REM Frints double height characters

in Modes 2?2 and 9

MODE 2
ascii = 224 ! REM Any two free
ASCTTI characters

FROCassemhle

FRINT TAE(3)3
FROCdemo ("EIG CHARACTERS™)
FRINT ‘7

REFEAT
{ = GET
IF K = 13 THEN FRINT ! K = FALSE
IF K = 127 THEN FRINT CHR$8; ! K
= ASC " " { DEL = TRUE ELSE DEL =
Fal.SE
Pochar = K
CaALl Mcode
COLOUR RND(Z)
IF K THEN VDU
ll,ascii,B8,10,8scii+l
IF DEL THEN FRINT CHR$8:
IF POS = 0 THEN FRINT ! REM New
double line
UNTIL FALSE

+
L4

END

*
4

DEF FROCzssemble
DIM Mecode 50
char = &70 § REM to &78

350
360
370
380
390
400
410
420
430
440
450
4610

470
480
490
500
G510
yAl
a30
540
950
560
370

580
S?0
600
610
620
630
640
6350
4660
670
680
690
700
710

Double size characters

vidu_char = &79

oswrch = &FFEE
osword = &FFF1
opt = 2 ¢ REM No display

+
+

FOR I% = 0 TO opt STEF opt
P% = Mcode
COFT I%

N Call 05 ‘resad character
definitiorn’ routine with ASCII
in ‘char’

LDa £&A

LDX #char

LDY #Fchar DIV &100

JSR osword

IL.DA #*ascii \ First character
STA vdu_char

LDX #1

JSR vdui3

INC vdu_char \ Fall through on
second pass

*
*

vcdu2d LDA %23
JEKR oswrch
LDA vdu_char
JSR oswreh
LDY #4

+
+

+print LDA char,X
JSR oswrcech N\ double each byte
JSKR oswrch \ double each byte
INX
DEY
ENE print
RTS
57

Doublesize characters

58

720
730
740
750
760
770
780
790
800
810
820

830
840
850
840
az7o

&
*

]
NEXT
ENDFROC

DEF FROCdemo (A%)

+
+

FOR X% = 1 TO LEN A$

?ehar = ASC MIDS(AS,TX, 12
Fass ASCII to the machine
via this bhyte
CaLl. Mcode
VDU 1lsascii;B,:10,8sciivl
NEXT

ENDFROC

+ REM
code

Graphics dump

GRAPHICS DUMP

GRAFPRT is a machine-code utility which enables you to ‘dump’ the contents of
the screen to a graphics printer. As written, it works with the Epson MX80, but
if you can program reasonably well in assembly language, you should have little
difficulty in adapting the program to work with a different printer.

The program resides at &E00 and takes up less than &100 bytes. Once you have
loaded it into memory (xLOAD GRAFPRT), a CALL &E00 command will start
it working, assuming, of course, that your printer is connected and running and
that you have already set up any necessary output protocols (e.g. *FX 6 to
enable line-feeds).

GRAFPRTDSK is the disk version of the program and loads at &1800.

Since the program copies whatever is on the screen, you cannot produce your
picture then type CALL &E00, since the command line will appear on the
screen. There are a number of ways around this. The simplest is to call the
routine from within the program which creates the screen image, immediately
after it has been drawn. Another idea is to add something like ON ERROR
CALL &E00 to your program so that, by pressing Escape, you can take a
‘snapshot’ of the screen when you want. However, you might not want a
graphics dump every time that you press Escape and a slightly more
sophisticated approach would be to create an error trap, to which the program
is directed by an ON ERROR command. Having jumped to the error trap, you
could then test whether a graphics dump is really required with a line like:

IF GET$ = "“G" THEN CALL &E00

So that you can adapt the program, here is a description of how it works. The
program starts by calling OSBYTE &8A. This is ‘officially” intended to return the
position of the text cursor, but it also has the very useful side effect of setting
the Y register to the Mode number. The Y register is tested to see whether we
are in a non-text Mode (3, 6 or 7), in which case the routine exits with a ‘beep’.

If we have a graphics Mode, we do a VDU 2 to send output to the printer.

Our next task is to differentiate between Mode 0 and all of the other Modes,
since the printer must be set to 'double-density’ in order to handle Mode O's
high resolution. We also have to work out the pixel spacing of the different
Modes. Both conversions are done by machine-code ‘compares’ and using the
carry bit to set appropriate flag bytes.

We next send set-up commands to the printer and this is where you might need
to start making changes for other printers.

59

Graphics dump

The body of the program consists of a loop, in which the program reads the
screen pixels one at a time, starting at co-ordinate 0,0 and working its way
through to co-ordinate &4FF, &3FF.

Any pixel which is not black (i.e. 0) is added to an eight-bit byte for transmission
to the printer. You could easily change the test in order to print dots of only one
screen colour.

At the end of each line, we send a line-feed followed by the commands to reset
graphics Mode on the printer. Here again, you will need to make changes for
other printers.

At the end of the dump, the printer is disconnected with a VDU 3 command
and the routine ends. If you want to stop the print-out before it has been
completed, you'll have to press Break, since the routine does not slow down to
test whether Escape has been pressed.

10 REM xxxx SCREEN GRAFHICS DUMF xxsx
20 REM FOR EFPSON MX 80 FRINTER

an ¢
40 REM () XTan Trackmarn 19873
50 ¢

60 REM Next 9 buytes are zlso the blook
for aswordg call
70 xloo = &Z70 O REM &71

80 yloco = &% &+ REM 8723
PO pixval = &74
oo ¢

110 mode = &80
120 step = &8Il
120 bhitg = &{Z
140 byte = RE3
150 3

1460 ese = 27

170 ¢

180 oswroh
190 osword
200 oshyte
210 3

220 wytop = E3FF
230 3

60

RFFEE
RFFF 1
RFFF4

LEIN B 11

Graphics dump

240 ovg = E1E00

250 3

260 opt = 2

270 %

ZEO OFOR I¥= 0 TO opt STEP opt

2910 Fo = org

300 [

310 OFT XX

320 :

as0 Jodump LDA FE87 N (et text cursor
position «..

340 JSE oshyte

350 TYA N s+ then Y has Mode
FMiner

340 CRrY #3 N Text only Mode 3 7

370 EEQ error N I 0, error

3aq 1

390 CRY #6 \ Mode & or 7 7

400 BECC setup N\ Carry on if less
410 :

420 Lerror LA #£7 N BEeep and «e.

430 JMF oswroehn N oexit

4410 :

450 ssetup LDA %0

460 8Ta mode \ Assume Mode 0

470 L.DA %2
480 STa step

490 JSR oswrcoch N\ VDU 2

500 CFY #1 N\ Clears carry if Mode 0

510 BECC save_mode N\ Yes, really Mode
0

Hen :

530 A5l step \ Otherwise, doubles
step value to 4

410 SEC N\ and reset the carry

550 H

560 save_mode ROR mode \ Save the

carry status as Mode flaqg

6l

Graphics dump

62

w7
sen
5910
400
410
L2100
&30
4410
&S0
ha
&70
&80
&5 0
200
710
7Zu
730
740

750
760
770
780
790
goo
810
azo
830
240
850

840

870
880
890
200
?l0
920

L
NoGet lime spacing
LA Hesc

JER primt

LA #FASC A"

JER print

LDé 8

JER print

N oStart at top of scoreen
LA dwtop MOD &L00

STh vyloo

LDA fFuytop DIV &100

STA wloo+d

Main loop starts here

/»4/@0

Send printer agraphics
command

snewline LDA& fkesc

JER print

EBIT mode

EMI over 0

L]

N Mode 0 only

LDA £#£645C "L N Dusl density
LDX &80 N\ Characters per line
ENE setlen N Always

N FPrinter commands for other
Modes

sover 0 LDAa #ASC "K" N Single
dernsity

LDX #8840 N Characters per line

+

«setlen JSR print

TXA N Characters (840 or &80)
JER print

+
+

P30
el
eEo
Q4HO
@70
@80
Vol
1000
1010
1020
1030
1040
1050
1040

1070
1080
1090
1100
1110

ra

1120
1130

Py

RS

1534
1150
1160
1170
1180
1190
1200
1210
1220
1230
1240
1250
1260
1270
1280

Graphics dump

N Reset bto left-hand edoe
LD 1

STé wloo

STé wloeel

+
*

srewealuvn LDA $7 N Bits 0 to 7
8Té bhits N Counter

+
)

sraeadpivel LDA &9 N Read pisxel
LOX #xloc N Foint to 4 XY bhates
LDY £#0

JEE osword

LA pixvsal

CMF #1 N Sets carry 1f not 0
(hlack)

ssetbyte ROL byte

LA vwloo

SELC

GEC #4 N All modes descend 4
pivels

STéy »wloo

BECS dechits N Test page
roll—-over

NEC ylooc+l

3

Jodechits DEC hits N Counter -~ 1
BEL readpixel N Done 8 bhitsg 7
LDA byte N Frint 8 bits

JSR print

N Next column
L.DA xloc

ADC step
STh xloce
LDA #loc+l
ARC #0

63

Graphics dump

1290 STéH wloc+l
1300 CHMF #35 N QOver &4FF ?
1310 BEQ endline N If so, end of

line
1320 H

133 N Move along to mewt column
1340 scolumntop LDA 4loo

1350 CLO

1360 ADC BRZ0 N 4 steps ¥ 8 bhits
1370 STA vyloo

1380 ECC mewcolumn

1390 ING wloo+l

1400 ECS mewcolumn \ Always

1410 :

1420 eBncdline LDA #10 N\ Line-feed
1430 JSKE o primt

1440 EIT wyloc+l N Test msh

1450 BFL newline \ Under 0000 7
1440 :

1470 N\ Switceh off primter

1480 LDAa 3 N VDU 3

1490 JMF oswreh N oand emit

15040 :

1510 N Frint subrouwtine

1520 +pPrint PHA N\ Save value sent
here

1530 LDA #1 N VDU 1

1540 JER oswroh

1850 FLA N Recover oriqQinal byte

1560 JMP oswroh N JSR + RTS

1570 1

1580 H
1590 NEXT
1600 3

1610 END

Packer

MULTI-STATEMENT LINE PACKER

This is one of the three 'squeeze’ utilities which will help to shorten a BASIC
program and so make it run faster. It packs as many statements as possible on
to multi-statement lines, whilst ensuring that the program remains grammatically
correct.

There are two versions of the program on the tape. PACKER is the version for
use with tape-based computers and resides between &E00 and &FFF.
PACKERDISK is for use with disks and is loaded between &1700 and &I 8FF,
Please refer to ‘Using the Programming Ultilities’ for installation instructions.
Other than the addresses at which they start, the two programs operate
identically,

As the utility is co-resident, you can load it before or after you get your BASIC
program into memory. Once the utility is in memory, start it working with
CALL &E0O (tape version) or CALL &1700 (disk version). On disk-based
systems, it is the last of the utilities used in the *EXEC SQUEEZE routine.

The routine begins by setting Mode 7 and displaying the message Packing
After a short while - just how long depends on the length of your program and
how much packing needs to be done - the prompt will return, leaving the
packed BASIC program in memory.

If you are squeezing a program to its smallest size, PACKER should be the last
utility that you use, following after REMSTRP and CRUNCH. When you use
REMSTRP, remove single-colon lines, otherwise they will be included in the
packing process,

PACKER will put a maximum of 237 bytes into a line of BASIC. It calculates the
length of the first line, adds the length of the next line to it, and tests whether
the limit has been reached. If not, it adds the two lines together and tries to add
on another line, progressing in this way through the program. Since it deals in
complete lines, rather than in statements separated by colons, it will achieve the
optimum result if you start off with a fully unpacked program, consisting of
single-statement lines {except for multiple statements following an IF or ELSE).
We recommend that you should always program this way, for ease of editing
and debugging. If your program does contain multi-statement lines, use
UNPACK before you use PACKER.

There are certain situations when lines must not be packed and PACKER
handles these properly. Nothing further will be added to a line after an IF, REM,
DATA or ON ERROR statement. DEF statements will always be retained at
the start of a new line.

65

Packer

PACKER will start a new line after a line starting with an asterisk (indicating a call
to the Operating System). To prevent packing, the asterisk must be the first
byte of the line (with no spaces in front of it). If you start with a multi-statement
line, such as:

VDU 7 : «FX I5,1

(beep and clear the keyboard buffer), the asterisk will not be at the start of the
line and another line could be added, so causing a syntax error when the
program is run.

Line-references are also checked. If the program refers to a line-number (e.g.
with a GOTO, GOSUB or THEN), PACKER will ensure that the line in
question is not joined up into an earlier line, as this would otherwise cause a No
such line error. Of course, if you write well-structured programs using
procedures, you won't have GOTOs and GOSUBs in your programs in the first
place, will you? One case which PACKER cannot handle is that of the computed
line-reference - GOTO line - where line is a variable computed at run-time. If
you use computed line-references, you are asking for trouble!

Please refer to 'Using the Programming Ultilities’ for notes on tacked-on bytes,
hidden control codes and other general hints,

10 REM x%xxx FPACKER XXXX

20 1}

30 REM () Ian Trackman 1982

40 3

60 REM Re-referencing fails on
untokenized line number e.q. ON A
GOTO 10,X,20

70 REM Assumes no hidden R8Ds embedded

i text
80 3
110 DIM msq(l)
120 ¢

66

Packer

130 REM BHasic pointers
140 lomem = &0

1%0 himem = &é

160 vartop = &2

170 top = &12

180 page = K18

190 3

200 memloc = &70 ¢ REM + &71
210 linmernum = &72 § REM + &73
220 srchloc = &74 | REM + &75
290 binrmm = &76 + REM + &77, &78
240 souwrce = &7C ¢ REM + &7D
250 destin = &7E ¢ REM + &7F
260 flaa = &80

270 length = &81

280 srenhlen = &82

290 newlenagth = &83

300 count = &84

310 wysave = R8G5

320 offset = &84

330 ¢

340 oswreh = &FFEE

350 osnewl = &FFE7

360 ¢

3470 REM Constants

380 sol = KOD

390 space = ASC " "

400 colon = ASC "

410 star = ASC "x"

420 rem = &F4 1 REM Easic tokens
430 if = &E7

440 data = &DO

450 error = &85

4460 def = KDD

470 maxsize = &7C {1 REM for Mode 7
480 3

4920 org = EEO0

495 3

500 opt = 2

510 3

67

Packer

=520 FOR IY% = 0 TO opt STEF opt
=530 P4 o= ard

540 O
550 QFT IZ

560 3

570 LDY #0

580 Jmeglloop LDA msa(l),Y N\ Mode 7
arnd title

520 EBEQ msgldone

400 JSR osuwreh

610 TINY

&20 ENE msaglloop

&30 3

4640 N\ Himem under Mode 7

650 .msoeldorne LDA #maxsize

460 S5TA himemtl

670 LDX #0

680 STX himem

690

700 INX N\ Start at FAGE + 1

710 STX memloco

720 LDA paqe

730 S5TA memloct+l

740

750 .nextline LDY %0

760 LDA (memloc),Y

770 CMF #&FF \ End of program flag

780 ENE morelines

790 JMF fimish

800

810 smorelirnes INY

820 INY

830 8TY offset

840 LDA (memloc).Y

as0 STa leneth N\ Offset to start of
next line

*e

-

*

e

-

860

-

870
880
890
f00
?10
220
?30
P40
P50
P60
?70
280
290
1000
10610
1020
1030
1040
1050
1060
1070
1080
1090
1100

1110
11290
1130
1140
1150
1160
1170
1180
1120
1200
1210

1220

ety te INY
LDA (memloc),Y
CMF fFeol

BEQ measure

CMF #if

BEQ endline
CHF #Frem
BEQ endline
CMF ¥data
BEQ endline
CHP %#error
EBEQ endline

CMF Estar

ENE mextbwyte
N Is it 085 call 7

8TY ysave

«testatar DEY

CFY offset N Start of
lirme

EEQ endline

DA (Memloo),Y
CMFP #space
EEQ teststar

CMF #colon

BEQ teststar

LDY ysave

ENE nexthyte N Always

+
?

original

Packer

69

Packer

70

1230
1240
1250
1260
1270
1280
1290
1300
1310
1320
1330
1340
1350
1340
13798
1380
1390
1400

1410
1420
1430
1440
1450
14460
1470
1480
1490
1500
15610
1520
1530
1540
1550
1560
1570

580
1590

«endline LDA memloc

CLC

ADC length

STA memloc

LDA memloc+l

ADC ¥0

8STA memloct+l

ENE nextline \ Always
«measure LDY length

LDA (memloc),Y

CMF #&FF

BENE measure?Z

JMF finish

measure INY

INY

LDAa (memloc?),Y N\ Next line’s
length

CLC

ADC lenath

ECS endline \ Too big to pachk
CMF #&F0

ECS endline \ Too big to pachk
SEC

SEC #3 N\ Lose start of rext line
STA newlenqgth

N Is mext line DEF or DATA 7
sdefohebk. INY

LDA (memloc),Y

CMF ¥space

BEQ defchelk

CHMF #colon

EEQ defchek

*

14600
1610
14620
1430
14640
14650
146460
1470
1480
14690
1700
1710
1720
1730
1740
1750
17460
1770
1780
1790
1800
1810
1820
1830
1840
1850
18460
1870
1680
1820
1200
1910
1920
1930
1940
1950

1960
1970
1980

CMF
EBEQ
CMF
BEEQ

N Is
LDY
L.DA
8TA
INY
L.DA
STaA

*
+

Packer

¥def
endline \ Mustn’t pachk

Fddats
endlime \ Mustrn’t pachk

next line referred to ?
length

(memloc),Y

linenum+l

{(memloc),Y
linenum

N Conmvert limnernum to 3-byte code
sconvert LDA linenum+tl

ORA
5TA
L.DA
AND
OrRA
STaA
L.DA
AND
5TaA
L.DA
AND
L.SR
L.SR
ORA
LSRR
LSk
EOR
85ThA

+
+

&40
Dinrmwm+?
linenum
*#&3F
¥8410
birmamtl
limernum
E&CO
Lirmerum
Linermm+l
E&CO

A

(&}
Lirnermm
A

[

854

Dl mroam

N Look for that rnumber in
proaram

L.DA
8TA
LDA

%1
srchloc
page
71

Packer

1990
2000
2010
2020
2030
2040
20050
2060
2070
2080
2090
2100
2110
2120
2130
2140
2150
2160
Z170
2180
2190
2200
2210
2220
2230
2240
2250
2260
2270
2280
2290
2300
2310
2320

2330

72

STh srchloc+l

*
¢

mextsren LDY #0

LDA (srchloc),Y

CMF #&FF

ENE skipnum

JMF pack N Not referred to
«slkiprivum INY

INY

LDA (srchloc),Y

STA srohlen

+
+

smoresroch INY
LDA (srchloc),Y
CMF #eol

EEQ srohline

CHMF #&8D N\ Lime number token
BENE moresrch

\ Compare with 3 coded bgtes
L.DX #0

STX flagq

sbrymatoh INY

LDA (srchloc),Y

CHP bimmume X

EBEEQ morematch

DEC flag

*
+

«Mmorematch INX
CPX #3
ENE trymatch

+
+

Packer

2340 LDA flaq

2350 BNE srohline

2360 JMF endline \ Match, so can’t
pachk

2370 3

2380 .erchline LDA srchloce

2390 CLC

2400 ADC srohlen

2410 STaA srchloc

2420 LDA srohloc+l

2430 ADC #0

2440 STA srchloc+i

2450 EBENE mextsroh \ Always

24460

2470

2480 \ Facking routine

24920 .pack LDY lenath \ Overlay eol
with colon

2500 DEY

2510 DA #colon

2520 STA (memloc),Y

2530 ¢

2340 LDA memloco

29%0 CLC

29460 ADC lenath

2570 8STA destin

2580 LDA memlocot+l

2590 ADC #0

2600 STA destin+l

2610 ¢

2620 LDA destin

2630 CLC

2640 ADC 13

2650 STA source

2660 LDA destintl

2670 ADC #0

2680 STAH source+l

2690 ¢

e+

73

Packer

2700 LDA top

2710 SEC

2720 SEC sowurce

2730 S8TA count

2740 LDA top+l

2750 SEC

2760 SBC sourcetl

2770 LDY #0

2780 TAX N\ Fages to move

2790 EEQ shift?

2800 3

2810 +shiftl LDA (source),Y

2820 S5Ta (destir),Y

2830 INY

2840 EBNE shiftl

2850 INC source+l

284680 INC destintl

2870 DEX

2880 EBENE shiftil

2890 1

2900 .shift2 LDX count \ Move oddg
bytes

29210 EEQ shiftdone

2920 ¢

2930 .shift3 LDA (source),Y

2940 STA (destir),Y

2950 INY

2960 DEX

2970 ENE shift3

2980

2990 N\ Reset pointers

3000 .shiftcdorne LDY #2

3010 LDA rnewlernath

2020 5TaA (memloc),Y

3030 LDY length N\ Foint where we
stopped

3040 DEY N Look at first new byte

3050 STY offset

74

3060

3070
3080
3090
3100
3110
3120
3130
3140
3150
31460
3170
3180
3190
3200
3210
3220
3230
3240

3250
3260
3270
3280
3290
3291
3300
3310
3320
3330
2240

3350

Packer

85TA length N\ Now wpdate length for
endline’s wse
LDA top

SEC

SEC ¥3

STA top

STA lomem

STA vartop
.Da top+i

SEC #0

STA topt+l

8Ta lomemtl
STA wvartop+t+l
JMF rextbyte

*
*

Finish JER osnewl

JME osmewl N & exit to caller

1

FROCtext (1, CHR$ZZ + CHR$7 +
CHR$31 + CHR$13 + CHR$13 + "Packing

LB B A ”)
*

NEXT

END

DEF FROCtext (N A%F)
moa(N) = F¥

gmealiN) = A%

Py o= PY o+ LEN(AS) + 1
PA?=-1 = 0

ENDFROC

75

RAM test

RAM TEST

The program is written in machine-code.

It is less than &I00 bytes long and so there is room for it in the stack! Although
that is a most unusual place to store a program, we have done so in order that
the program can test as much RAM as possible without over-writing itself.

Call the program either by «LOAD RAMTEST followed by CALL &100 or by
+RUN RAMTEST. On disk-based systems, you can type «RAMTEST.

Mode 7 will be set and you will see an asterisk progressing across the screen. In
a short while, small coloured squares will appear and then the whole screen will
fill with changing characters in ASCIl order. The display will continue to cycle in

this manner until you stop the program by pressing Break (Escape won't work).

What is happening is that the entire RAM from &%00 to &7FFF is being filled by
bytes from O to &FF. After each new number is used, the entire memory is
checked to see whether the contents of any byte have changed. What you are
seeing on the screen is the Mode 7 display area (between &7C00 and &7FFF)
being filled with these values, some of which correspond to control codes and
some to ASCII characters.

At the end of every complete cycle, the speaker will beep to indicate that all
256 different bit patterns have been successfully tested.

Should a failure occur, the program will stop with a beep and the prompt will
return. The address of the bad byte is in locations &70 and &71.

PRINT ~&70 + &71 +» &100

will put it on to the screen. The value which caused the failure is held in location
&72.

It is not possible to test the memory below &900 with this program, since that
area is used by the Operating System to store its control variables, vectoring
addresses and the like. If you fill it with different byte values, the computer tends
to crash to a sudden halt!

Since various buffers are tested, it is best to clear the system completely with a
CNTRL BREAK when you have finished with the test.

76

10

20

30

40

o0

&0

70

g0

20
100
110
120
130
140
150
140
170
180
190
200
210
220
230
240
250
2610
270
2810
290
300
310
320
330
340
asg
3460
370
380
390
400

RAM test
REM xxxX RAM TEST XXXX

REM () Tarm Trackman 1983

e

loc = &70 ¢ REM + &71

hwte = &7%

oswreh = &FFEE

oshyte = &FFF4

astart = 9 3 REM Start at &900

pages = &80 - start
opt = 2
FOR I7Z = 0 TO opt STEF opt
7= K100
[
orT I%
LDX #&FF
TS N Reset stack
N Flush function key buffer
LDA #18
JOR oshyte
N\ Mode 7
L.DA #&16
JSE oswroh
L.DA %7
JESR oswroeh
N\ Cursor off
LDA #27
JER oswroh
LDa 1
JSR oswrch
LDA £#0
LDX #8

RAM test

410 3

420 zero JSR oswreh
430 DEX

440 EBENE zero

450 3

460 \ Set up to start
470 LDA #0

480 8TA loco
490 STA hyte N\ Test bhyte
500 TAY
510 ¢
520 Jbheqgin LDA #Fstart
930 STA loo+l
340 LDX #pages
350 3
340 N Store 8 byte throuwghout memory
570 Jloopl LDA byte
580 8STA (loc),Y
590 INY
400 EBNE loopil
410 ¢
620 INC loo+l
$30 DEX N\ Decrement page counter
&40 ENE leoopl N All paces done 7
650 3
460 N Now cheek the byte
&70 LDA #start
480 8TaA loo+l
4920 LDX #pages
700 3
710 LDA byte
720 +loopZ OCMF (loc),Y
730 ENE error
740 INY
730 EBNE loopZ
7460 1
770 INC looc+l
780 DEX N Decrement pzage counter
790 ENE loopZ N All pages dorne 7
a6a ¢
78

RAM test

a10N Ermag of one pass

820 Lha a4t "=xv

830 JSR oswreh

840 INC bute

Q50 FNE begin N Undless bhyte = 0

846013

870 LDA &7 N Beep

#8580 JER azswroh

290 JMP bheqin

2003

Yi0.error STY loc N Ervor sddress now
i loo, looc+ld

70 LDA &7 N Bell and exit

@30 M oswroh

Q40

QUONEXT

R I

OFOEM

79

REM stripper

REM STRIPPER

This is one of the three ‘squeeze’ utilities which will help to shorten a BASIC
program and so make it run faster. It removes REM statements and, optionally,
lines containing only colons and spaces (used, for example, to highlight the
boundaries of block structures).

There are two versions of the program on the tape. REMSTRP is the version for
use with tape-based computers and resides between &E00 and &I OFF.
RMSTRPDISK is for use with disks and is loaded between &1600 and & |8FF.
Please refer to ‘Using the Programming Utilities’ for installation instructions.
Other than the addresses at which they start, the two programs operate
identically.

As the utility is co-resident, you can load it before or after you get your BASIC
program into memory. Once the utility is in memory, start it working with
CALL &EQ0 (tape version) or CALL &1600 (disk version). On disk-based
systemns, it is the first of the utilities used in the + EXEC SQUEEZE routine.

The routine begins by setting Mode 7 and displaying the message

Do you want to remove single-colon and single-space lines ?

If you type Y, all such lines will be removed. Otherwise, type N. If, instead, you
want to stop the routine at this point, press Escape.

The next message to be displayed is Stripping in progress . . . After a short
while - just how long depends on the length of your program and how much
stripping needs to be done - the prompt will return, leaving the stripped BASIC
program in memory.,

If you are squeezing a program to its smallest size, REMSTRP should be the first
utility that you use, before CRUNCH and PACKER.

In case your program contains a reference to a line which is actually a REM
statement line, such as:
100 GOSUB 1000

1000 REM Print-out subroutine

1010:

1020 PRINT . . .

REMSTRP will automatically adjust the line reference to the next ‘live’ line. In
this case, line 100 will be changed to GOSUB 1010 - if you have not opted to
remove single-colon lines - or to GOSUB 1020 if you have.

80

REM stripper

If you want to keep one or two REMEs (the program title for instance), you can
either re-enter them after using REMSTRP or you can temporarily alter the REM
to, say, RME so that it will not be recognised by the utility.

REMSTRP will not remove comments from an assembly language listing (i.e. text
preceded by a reverse oblique).

Please refer to 'Using the Programming Utilities’ for notes on tacked-on bytes,
embedded control codes and other general hints.

10 REM xxXXX REM STRIFFER %XXXX

20 3

30 REM () Tan Trackman 1982

40 3

50 REM Re-referencing fails if
reference to REM etc. 88 last line
of program

60 REM Assumes no hidden &8Ds embedded

i text

70 @
80 DIM msq(2)
90

100 REM Easic pointers

110 lomem = &0

120 himem = &é

130 vartop = &2

140 top = &12

150 paae = K18

160 2

170 menmloe = &70 3 REM + &71

180 linenum = &72 ¢ REM + &73

120 syenloe = 749 3 REM + &75

200 bvirmuam = 876 1 REM + &77, R78
210 temp = &7%9 1 REM + &74, &7
220 source = &7C § REM + &7D

230 destin = &7E § REM + &7F

240 colonflag = &840

2590 flaaq = &1

260 lemnath = &82

270 srohlen = &83

8l

REM stripper

82

280
290
300
310
320
330
340
350
360
370
380
390
400
410
420
430
440
450
440
470
480
490
S00
910
w20
530
a340

S50
G560
570
580
w90
&00
610
620
630
640
650

offset = &84

Ysave = &BY
count = &84
osrdech = &KFFEQ
oswrch = &FFEE
osnewl = &FFE7
REM Constants

eol = &0D
ese = &1
space = ASC "
colon = ASC "1
rem = &F4 1

maxsize = K70
H

org = KE00

:

opt = 2

*

FOR IZ = 0 TO

F%4 = org
(N

OFT Ix
L.DY %0

«masglloop LDA
and title
BEQ msqaldone
JER oswrch
INY
ENE mzsglloop

*
L]

\ Himem under
smsglcdone LDA
STA himem+il

LDX %0
8TX himem

+

REM Easic tolken
! REM for Mode 7

opt STEF opt

ms(l),Y \ Mode 7

Mode 7
¥mausize

660
670
680
690
700
710
720
730
740
750
760
770
780
790
800
810
820

830
840
850
860
870
880
890

200
910
229
730
240
P50
260
?70
980
290

1000

REM stripper

N\ Strip sinegle colons 7
sask JSR osrdeh
AND #&DF N\ Mask to upper-—-case
CHMF $ASCUN"
EEQ no
CMF #ASC"Y"
BEQ yes
CMF #esc
EINE aahk
JHMFP fimdish

+
+

+ges DEX N To &FF

10 STX colonflag

JER oswrohh N Frint Y or N
LDY 240

sMeaZloop LDA msa(2),Y N\
Stripping

BEQ msqgZdone

JSKR oswroh

INY

BNE msaZloop

+

+

N\ Adjust cross-references

smsafdone LDA #1 N Start at FAGE -

1

S5TA memloo

LA page

STH memlootl
N Fimd an opening REM eto.
et line LDY #0

LDA (memloc),Y

CMP #&FF N End of program flag
ENE morelines

JMP o strip N Re-referencing
comp leted

*
+

83

REM stripper

1010 +morelines INY

1020 INY

1030 LDA (memloc).Y

1040 STaA length N\ Offset to start of
next line

1050 ¢

1060 nextbyte INY

1070 LDA (memloc),Y

1080 OUMF #rem

1090 EBEQ refchek

1100 3

1110 CMF feol

1120 BEQ flagltest

1130 3

1140 CMF #Fcolon

1150 EBEQ nextbhyte

11460 ¢

1170 CMFP #space

1180 BE® nextbyte

11920 +notcolon JMP endline

1200 3

1210 .flagtest BIT colonflag

1220 EFL notcolon

1230 3

1240 X Is this line referred to ?

1250 .refchek LDY #0

1260 LDA (memloc),Y

1270 STA lirmeram+l

1280 INY

1290 LDA (memloc),Y

1300 STA linernum

1310 JSE convert \ Convert linernum to
J-byte code

1320 3

1330 N “temp’ will be re-used, so =~

1340 LDX #2

1350 +transfer LDA temp,X

13460 STA binnum, X

13706 DEX

1380 EBFL transfer

1390
1400

1410
1420
1430
1440
1450
14460
1470
1480
1490
1500
1510

G20
1530
1540
1530
1560
1570
1580
15920
14600
1610
1620
1630
1640
1650
1660
1670
1680
1690
1700
1710
1720
1730
17940
1750
1760
1770

*
+

\ Look for that romber in
BErOQram

LDA #1

STé srochloc

L.DAé page

STA srohloc+l

4
+

smextasroh LDY ¥0

LDA (srchloc),Y

CMF #&FF

BEQ encline \ End of this pass
INY

TINY

LDA (srohloc),Y

STa srohlen

*
+

smorgsroh INY

LDA (srchloc),Y

CMF #eo0l

BER srohline

CMF 288D N\ Line number token
BENE moresrch

+
¢

N Compare with 3 coded bytes
LDX %0
8TX flag

+
+

Jhrymatonh INY
LDA (srchloc),Y
CHMF birmum, X
BEEQ morematoh
DEC flaq
smorematoh INX
CPX #3

ENE trymatch

+

REM stripper

85

REM stripper

1780 LDA flag

1790 ENE moresrch N\ No matech if < 0

1800 3

1810 N Alter this reference to coded
next line

1820 N Code wup nmext line number

1830 LDA memloco

1840 CLC

1850 ADC lenath

1840 &TA source

1870 LDA memlooc+l

1880 ADC #0

18920 STA source+l

1200 STY ysave

1210 LDY #0

1920 LDA (source),Y

19230 STA linernum+l

1940 INY

19250 LDA (source),Y

12460 STA linenum

1970 JSR convert

1980 LDY ysave

1990 ¢

2000 N\ Alter the &8D reference

2010 LDX #2

2020 .swap LDA temp,X

2030 8TA (srchloe),Y

2040 DEY

2050 DEX

2060 EFL swap

2070

2080 LDY ysave \ HWhere we were looking

2090 ENE moresrch \ Always

2100

2110 .sreohline LDA srohloc

2120 CLC

2130 ADC srohlen

2140 STA srchloc

2150 LDA sroehloc+l

2160 ADC *0

86

*d

REM stripper

2170 8TA srchloctl

2180 EBNE memxtsrch \ Always

2190 @

2200 \ Set up Tor next line

2210 ,endline LDA memloc

2220 CLC

2230 ADC lenath

2240 STA memloc

2250 LDA memloo+i

2260 ADC #0

2270 S5TA memloctl

2280 JMF nmextline

2290

2300 3

2310 \ Cornvert limernum to 3-byte code
2320 .convert LDA linernumtl

2330 0ORA #&40

2340 STH temp+2

2350 LDA linenum

2360 AND #R3F

2370 ORA #8840

2380 STa temp+l

2390 LDA linerwm

2400 AND #8C0

2410 STA linenum

2420 LDA linenumt+l

2430 AND #&C0

2440 LSRR A

2450 LSRR A

2460 ORéA linenom

2470 LBK A

2480 LSRR A

2490 EOR #8354

2500 STa temp

29510 RTS

2520
230
25410

2550

Actuzl stripping starlts here

e S 44 22

87

REM stripper

23460 .strip LDA #1
2570 STH memloc

2580 LDA paqge
2590 STA memloot+l
2600 ¢
2610 +lookrem LDY %0
2620 LDA (memloc).,Y
2630 CMF #&FF
2640 ENE lookrem?
2650 JMP findsh
2660 %
2670 JlookremZ INY N\ Skip line-number
byte 2
2680 INY
2690 LDA (memloc).,Y
2700 STA length
2710 INY
2720 LDA (memloc),Y
2730 CMF #rem \ Opening REM 7
2740 BEQ limeout
2750 1
2760 EBEIT colonflaa \ Leave colons 7
2770 EBFL midlook
2780 3
2790 CMF #colon
2800 EBEQ opener
£2810 ¢
2820 (OMF f#spasce
2830 ENE midloolk
2840 @
2850 N\ Test for one or more opening
calons or spaces
28460 Jopener INY
2870 LDa (memloc),Y
2880 OMF Tspace
2890 EBEQ opener N\ §till mavbe
2900 ¢
2910 OMF fcolon
L9220 BEQ opener N Still mauhe
2930
88

2940
2950
29460
2970
2980
2990
3000

3010
3020
3030
3040
3050
3060
3070
3080
3090
3100

3110
3120
3130
3140
3150
3160
3170
3180
3190
3200
3210

3220

3230

3240
3250

3260
3270
3260
3290

+*
*

REM stripper

CMF #eol N A whole line of them 7
BENE midlook?

\ Remove entire line

L]

+
+

+

+

+*
*

+

lineout LDY #0 N Nothing to keep
JSR pack

JMP lookrem N\ Next line now in
position of lost line

micilook INY

micdlook? LDA (Memloc),Y

CHMF #eol

BEQ lookling N\ Onto next line

CMF &rem
ENE midloolk

N Test for preceding colons or

+

+
*

+*
+

+
+

spaces

bhaclk DEY

CFrY #2 N At start of line ?
FEQ lineout

LDA (memloc),.Y
CHMF #space
EEQ back

CMF fcolon
BEQ baok

INY N\ Cancel last INY
DEC length N\ Overlay &0 hefore
following line
JSR pack N Found mid-line REM
LDY ysave N Saved by ‘pack’ but
points at eol; so -
INY
TYA
STA lermgth
LDY #2
89

REM stripper

3300

3310
3320
3330
3340
3350
3360
3370
3380
3390
2400
3410
3420
3430

3440

3450
34610
34710
34840
3490
3500
3510
3520
3530
33540
3550
3540
3570
3560
3590
34600
3610
3620
34630
3640
34650
3660
90

+
+

8TA (memloe) ;Y N\ Over—write

currernt length

J1ookline LDA memloc

¢
N\
\

-

-

CLC
ADC
STh
LDA
ARC
85TA
JMF

length
memloc
memloc+l
#0
memlootl
lookrem

Facking sub-routine
Enter with
point

spack STY ysave N\ Set up move
pointers

L.D#A
cLC
abe
STA
L.DA
aDC
5TA

L.DA
CLC
ADC
STh
LDA
ADC
STA

LDA
SEL
SEC
8TA
LDA

SEC

memloo

Ysave
destin
memloct+l
*0
cdestintl

memloo

length
GOUTCE
memloc+l
&0
source+l

t.op
SOUTCE

count
top+l

(memloc),Y on split

REM stripper

34670 SEBEC source+l

3680 LDY %0

34690 TaAX N\ Fages to move

3700 EEQ shift?2

3710 3

Azz20 .shiftl LDA (sourced,Y

3730 5TA (destinm),Y

3740 INY

3750 EBNE shiftl

3760 INC sourcetl

3770 INC destintl

3780 DEX

3790 ENE shiftl

aaoon 3

3810 .shift2 LDX ecount \ Move odd
bytes

3820 EBEEQ shiftdone

3830

3840 .shift3 LDA (source),Y

ags0 5Ta (destin),Y

3860 INY

3870 DEX

3880 ENE shift3
3890 ¢

3900 \ Reset BEasic pointers
3910 .shiftdone LDA length
3920 SEC
3930 OSBEC ysave
3940 STa offset
39%0 LDA top
3960 SEC
3970 SEC offset
39280 STA top
3990 STA lomem
4000 STA vartop
4010 LDA top+l
4020 SEC #0
4030 STA top+l
4040 STA lomemtl
4050 STA vartop+l
9l

REM stripper

40460
4070
4080
4090
4100
4110
4120

4130

4140
4150
41690
4170
4180
4190
4200
4210
4220
47230
4240
4250

92

RTS
+
+

+Finish JSR osnewl
JMFP osnewl N & exit to caller

v i

FROCtext (1, CHR$2Z2 + CHR$7 +
CHRE$31 + CHR$12 + CHR%2 + "REM
STRIFFER" + CHR$31 + CHR$1 + CHR%8
+ "Do vou want to remove
single-colon and” + CHR$13 + CHR$10
+ CHR$10 + " single-space lines ?
II}

FROCtext (2, CHR$31 + CHR$7 +
CHR$16 + "Stripping in progress

[2R K N ”}
+

NEXT

END

DEF FROCtext (N,a&%)
meg(N) = FX

tmeg(N) = A%

Py o= P% o+ LEN(A%) + 1
Fr?—-1 = 0

ENDFROC

Replacer

GLOBAL REPLACEMENT

REPLACE is a utility written in machine-code, which will change almost
anything - commands, variables, strings or text - into anything else within a
BASIC program, irrespective of their relative sizes. You can use it, for example,
to change long variable names to short ones or vice versa, to change real arrays
to integer arrays or subroutine calls into calls to named procedures.

There are two versions of the program on the tape. REPLACE is the version for
use with tape-based computers and resides between &E00 and &FFF.
REPLACEDSK is for use with disks and is loaded between &1700 and &I8FF.
Please refer to ‘Using the Programming Utllities' for installation instructions.
Other than their starting addresses, the two programs operate identically.

The utility is co-resident, that is, it will remain in the computer’s memory whilst
you load, run and save BASIC programs until you over-write it.

Before you use the utility, you'll need to set up two function keys - any keys will
do. Program the first key

«KEY | O {H Replace ?

and the second key

«KEY 2CA &E00IKIM

If you like, you can add a space after the question mark at the end of the first
key's string. The second key's string must be typed exactly as printed above,
with no spaces between the characters. If you want to use keys other than 1 and
2, you'll obviously use different key numbers when setting them up. If you are
using the disk version of the program, the second key string will be

« KEY 2CA.&1700/KiM

To use the utility, press the first function key and the message Replace ? will
appear on the screen. Type in what you want to replace (et’s call it the ‘target’
from now on) followed by a reverse oblique(*\), then whatever you want to
substitute for the target {(we'll call it the ‘replacement’), ending with a Return. If
you are in Mode 7, the oblique will appear on the screen as ¥2. The oblique acts
as a ‘delimiter’, that is, it tells REPLACE where your target ends and your
replacement begins.

As an example, let us say that your program contains an integer array A%().
You now realise that it has to hold decimal numbers and you have to alter every
reference to it into A(). After pressing the first function key (Replace ? appears),
you would type:

A%(\A(

followed by a Return.

93

Replacer

What you have done at this point is to cause a new line, numbered 0, to be
added to the program in memory, containing the target and the replacement
separated by a delimiting oblique. (If you wonder why we add a new line to
your BASIC program, the reason is so that we can use the parser in ROM to
create tokens from BASIC keywords.)

There are a number of points to bear in mind from this process.

Since REPLACE temporarily adds a new line 0 to your BASIC program (which it
subsequently deletes), your program must not already contain a line 0. If it does,
it will be lost.

Be careful if your target might appear in different contexts in the program. For
example, if you want to change the variable A to B, and you give just the letter
A as your target, every occurrence of that character in your program will be
altered. To prevent unwanted changes, you could temporarily change other
occurrences to unused names (e.g. A$ into ZZZ$). Then alter A to B and finally
reset ZZZ$ to AS.

If you do not proceed to the second stage of the utility (by pressing the second
function key), you will be left with an unwanted line 0, which will probably cause
a syntax error unless you delete it before running the program.

Since the reverse oblique is reserved for use as a delimiter, you can't include it
as part of your target or replacement.

The utility will search for the target in the exact form in which you have typed it
and will change it to the replacement, again exactly as you have typed it.
Therefore, be accurate - particularly with spaces.

One advantage of using the parser is that you can type in the truncated form of
BASIC keywords. If you are changing, say, MOVE XPOS to DRAW XPOS, you
can type:

MOV. XPOS\DR. XPOS

The drawback of using the parser is that it will not tokenise anything after a REM
or DATA command. You cannot therefore specify REM or DATA as part of
your target, because the second REM or DATA will be retained as ASCII
characters by the parser. Although it will look correct when you list the program
line, it will generate a syntax error when the program is run. If this happens, re-
copy the line with the cursor edit keys and the line will be re-parsed and re-
inserted into your program in its correct form. The same principle explains why
you should be careful about including both opening and closing quotation marks
in a target. For instance,

94

Replacer

PRINT “‘Hello\ PRINT*‘Goodbye
will not work, whereas you will succeed with
PRINT *‘Hello’\PRINT ‘‘Goodbye"

You can mix keywords, variables and text as you wish, For example, you can
change

A$ =""APPLES"

to

PRINT TAB(13) “ORANGES"

Because your target and replacement are tokenised, you must include the full
word (don't type SUB 1000 instead of GOSUB 1000) and all necessary
brackets in accordance with the list of tokens on pages 483-4 of the User Guide.
For instance, if you want to replace LEFT$ with RIGHTS$, you must type:
LEFT$(RIGHT$(

The finai point is that you must not begin your target with a number, since it will
be parsed as part of the line-number and you will add a new and unwanted line
somewhere else in the program! Since numbers within a line can almost always
be related to another command, e.g. GOSUB, or a mathematical symbol,
include that as the start of the target and replacement.

Having entered your target and replacement, press the second function key.

If you have made an error in the form of your command line, you'll get the
message Bad command. This will happen if there is no target before the oblique,
no replacement after it, no oblique or more than one oblique. Re-enter the
command, line by pressing the first function key.

If the utility cannot find your target anywhere in the BASIC program, it will
respond with Not found. Otherwise it will replace the target with the
replacement and indicate, with the message Replaced, that it has finished.

There are two situations when replacement will not take place. The maximum
length of a BASIC program line is 237 characters. If you try to change a target in
aline with a longer replacement and the effect would be to exceed the
maximum line length, replacement will stop with the message Too long. Since
some replacement may already have taken place, you should now list the
program to find the problem line and break it up into shorter parts. Remember
to re-use the utility, since otherwise you will have a partially altered program.

The other case when replacement will stop is if, as before, you are enlarging the
program by making the replacement larger than the target. If the size of the
program grows until TOP reaches HIMEM and it runs out of expansion space,

95

Replacer

you'll again get a Too long error. One solution is to change to Mode 7 and
repeat the command, unless you're already in Mode 7, in which case your
program is just too big!

As with all of these types of utility, 'tacked-on’ bytes will cause problems. (See
‘Using the Programming Utilities'.)

The utility contains useful routines for string searching and for moving blocks of
bytes upwards and downwards through the memory.

10
20
30
40
w0
60
70

80
20
100

110

120
130
140
150
160
170
180

190

200
210

96

REM xxxx GLOBAL REFLACEMENT XXXX

REM (o) Ian Trackman 1983

DIM msa(4),08CL 20

firvdd = "Replace ? "
FROCoscli ("KEY 1 0]|H" + fird$)

e

REM Fut uwser imput into line 0

+

himem = 804 ¢
top = &12 %
Program

page = &18
start of progr
loc = R70
from = R72
dest = &74
Qap = R76
lemngth = &80
shatug = &81
inde:

sige = &2
flag

len_one = &83
len_two = &84
replacemernt
affset = £85
size

REM &07
REM &13 Top of

REM Holds msh of

M

REM
REM
REM
REM
REM
REM

*h B e e e e

L e d

REM

REM
REM

. e

e

REM

+ &71
+ &73
+ &75
+ &77
s OF line
Exit messaqe

Relative size

Size of target
Size of

Difference in

230
240
250
260
270

280
290
300
310
320
330
340
350
360
370

380
390
400
410
420
430
440
450
4460
470
480
490
o0
510
H20
S30
S40
SS90
5610
570
580
590
600

Ysave = KBé
ysave?z = &87

+
+

REM User’s date buffers

first = &710 ¢ REM After start aof

keyhoard buffer
gecond = &780

+
+

oswret = EFFEE
oshyte = &FFF4

*

+
o0l
slash

+
+

org = KEQO0

&0

i

FROCoscli ("KE

H’Kiru)

*
®

opt = 2

FOR I% = 0 TO
FZ = org

£

aFT IX

N Find user’s

DA #3 + LEN
8T loco

LDA page

8Ta loo+l
LDY #&FF
«Loopl INY
LDa (loc),Y
CMF #eol

BEQ errjmp M\
CMF fslash
ENE loopl

+
4

ASC Il\ll

Y 2CA.&" + STR$~org +

opt STEF opt

input dinm line 0

Firmdd N Skip prompt

Before slash 7

97

Replacer

98

610
&20
&30
640
650
6610
&70
&840
46210
700
710
720
730
740
7590
7610
770
780
720
goo
810
820
830
8410
850
860
8790
a80
820
00
10
@20
930
g40
50
e60
@70
a0
9290

STY len_one
TYA& N\ For Z-flaq
BEQ errjmp N Null string

EMI errjmp \ Over &7F characters

DEC lern_one
DEC len_one

LDX #&FE \ For slash and eol
+loopZ INX

INY

LDA (loc),Y

CMF #eo0l

ENE loop?

CFX #&FF

EBEG errjmp N\ Nothing after "\
CFX #&7F

ECS errjmp \ Too big

STX len_two

N\ Reverse makes faster search
LDX #0

DEY

srevl LDA (loc),Y

CMP ¥slash

EEQ revZ

8T second, X

INX

DEY

ENE revi

+
+

«Teve LDX #0

DEY \ skip slash
+Tavd LDA (loc),Y
STA first,X

INX

DEY

ENE revd

+

1000 N\ Difference in size 7

1010
1020
1030
1040
1050
1060
1070
1080
1090
1100
1110
1120
1130
1140
1150
1140
1170

1180
1190
1200
1210
1220
1230
1240
12590
1260
1270
1280
1290
1300
1310
1320
1330
1340
1350
1340
1370

L.DX
LDA
SEC
SEC
EEQ

.e

LDX
BCS

-

LDaA
SEC
SEC
LDX
EINE

ors

« 4o

#0 N For size flaqg
len_one

len_two
search \ Size remains

840 N\ Eit 6 set
search

len_two
len_one

880 N Bit 7 set
sesrch N always

errimp LDA Fmsg(l) N "Bad

command®

STha
JHF

e B

status
fimish

N Start of search

ssearceh STA offset

8TX
LD&
SThA
H
LDY
STY

size
fmsg(Z) N "Not found®
status

1 N Start of program
loo

N Skip fake line 0

INY
LDA
GTA
ENE

.
+

(loc),Y
lermgti
erndline N Always

Replacer

Replacer

1380
1390
1400
1410
1420
1430
1440
1450

1440
14740
1480
1490
1500
1510
1520
1530
1540
1550
1560
1570
1580
1590
1400
146190
1620
14630
14640
1650
146460
1670
14680
1490
1700
1710
1720
1730
1740
1750
1760
100

emextlime LDY #0

LDA
EMI
INY
INY
t.DA
5ThA

(loed, Y
finish \ &FF end of proaram
(10(3)9Y
length \ Offset to start of

rext line

+
+

s1ookmore LDX len_one

STY

ysave \ For moves

fexthiyte TINY

LDA
CMF
EEQR

*
+

(loc),Y
fFeonl
endline

sCompare CMP first,; X

ENE
DEX
BFL

o e be

STY
BEIT
EMT
BEvC
JER
JMF

*
+

lookmore

nextbyte

Matcen fourndg

ysaveZ \ End of matoeh
size

larger

swap \ Same size

moverdown
SWap

tlarger JSK moveup

BECS

s 7 ee

fimish \ Error in move

Insert replacement

sgwap LDX len_two

LDY
INY

“wsave

1770
1780
1790
1800
1810
1820
1830
1840
1850
1860
1870
1880
1890
1900
1210
1220
1930
1240
1950
1960
1970
1980
1990
2000
2010
2020
2030
2040
2050
2060
2070
2080
2090
2100
2110
2120
2130
2140
2150

2160

sawap? L.DA second, X

STa (loc),Y

INY

DEX

EFL swap?

LDA #msg(3) N\ "Completed"

5TA status

LDY ysave

BIT size

EFlL. lookmore \ Same size or less

N Skip re-search of replacement
LDA 4Yysave

SEC N Flug 1

ADC offset

TAY

ENE lookwmore N\ Always
sendline LDA loce

CLG

ADC length

5TA loco

BCC mextline

INC looc+l

BNE mextline \ Always

*e +e

+Fimish LDX status
sMsaloop LDA msgstart,X
BEQ exit

JER oswroh

INX

ENE msgloop

+
+

N Delete line 0

sexit LDA #R15 N VDU off
JBR oswroh

LDY #ASC "0"

JER bufohar

Replacer

101

Replacer

2170 LDY #6 N VDU on

2180 JSR bufcochsr

2120 LDY #eol N Fazll through & exit to
Basic

2200 3

2210 N\ FPuts Y into keybosrd buffer

2220 .bufechar LDA #88aA

2230 LDX #0

2240 JMF osbyte

2250

2260

2270

2280

2290

2300

2310 .moveup LDA length

2320 CLC

2330 ADC offset

2340 CHMP #K&ED

2350 BCS too_lomng N\ Over 237
characters

2360 ¢

2370 N Store new lerngth

2380 STA length

2390 LDY %2

2400 STA (loc),Y

2410 @

2420 LDA top

2430 STA from

2440 CLC

2450 ADC offset

2460 STh dest

2470 TAX N\ Temp save

2480 L.DA top+l

2490 STAH from+l

2300 ADC #0

2310 S5TA dest+1

2520 OCMF himemt+l

2530 EBECS too_ lonag

2540 3

102

XXX Subrouwtines XXXX

XXXX Move memory block right

e S we S e e

2820
2830
2840
2850
2860
2870
2880
2890
2900
2910
2920
2930
2940

STX top N\ O to alter

STA top+l

L ad

L.DA from
SEC

SEC loc
STA gap
LDA from+l
SEC loc+l
STA qap+l

..

L.DA qap
SEC

SEC ysavel
STA qap
ECS rmove
DEC qaptl

.e

rmove LDY #0
LDX qap+l
EEQ rmvpart

-

e

rmv2 DEC from+l
DEC dest+1

rmv3 DEY

LA (from),Y
STA (dest);¥Y
CFRY #0

ENE rmv3

DEX

ENE rmvZ

+
+

sravpart LDX gap
FEQ rmvdone

DEC from+l

DEC dest+1
+Tavd DEY

LDA (From),Y

-

<>

Replacer

103

Replacer

2950
2960
2970
2980
2990
3000
3010
3020
3030
3040
3050
3060
3070
3080
3090
3100
3110
3120
3130
3140
3150
3160
3170
3180
3190
3200
3210
3220
3230
3240
3250
3260
3270
3280
3290
3300
3310
3320
3330
3340
104

8TA (dest),Y

DEX
EINE

*
+

sTMVOOone

RTE
*

+

rmv4

cL.c

«Loao_long LDA #msa(4)

STA

status

RTS N With carry set

- 7 e se

XKXXX Move

memory block

smovedown LDA loco

CLC
ADo
SThA
LDA
ADC
STA
LDA
SEG
SEC
SThA
LDA
SEC
SThA
LDA
SEC
SEC
aTA
L.DA
SEC
5TA
LDA
SeC

ysavers
from
loc+l
£#0
from+l

from

offset
dest
fromtl
%0
dest+1

top

from
aap
top+l
from+1
Qapt+l

top

left

3350
3360
3370
3380
3390
3400
3410
3420
3430
3440
3450
3460
3470
3480
3490
3500
3510
3520
3530
3540
3550
3560
3570
3580
3590
3600
3610
3620
3630
3640
34650
3660
3670
34680
3690
3700
3710
3720
3730

Replacer

SEC offset
STA top
LDAa top+l
SEC #0

ST topt+l

-

1move LDY #0
LDX gap+l
BEQ lmvpart

-

*n

lmvpage LDA (from),Y
8Ta (dest),Y

INY

BNE 1lmvpage

ING from+d

INC dest+l

DEX

ENE 1mvpaqe

-

*e

Imvpart LDX aap
BEQ lmvdone

>

L ad

lmviast LDA (from),Y
8TA (dest),Y

INY

DEX

ENE 1lmvlast

-

-4

1mvdone LDA lernath
SEC

SBEC offset

5TA length

LDY #2

5Ta (loci,Y

RTS

¢
4

mesastart \ Used for messages
1

+
+

&

105

Replacer

3740
3750
3760
3770
3780
3790
3800
3810
3820
3830
3840
3850
3840
3870
3880
3890
3900
avio
39240
3930
3940
3950

39410
3970
3980

REM Cover "CA.Razzaa"

FROCtext (1,CHR$7 + "BEad command")
FROCtext (2,"Not found™)

FROCtext (3;"Replaced ™)

FROCtext (4,CHR$7 + "Too lonma ")
NEXT

END

DEF FROCoscli (A%$)
X% = DSCL MOD &100
Y4 = 085CL DIV &100
$0SCL = A%

CaLl. &FFF7

ENDFROC

*

DEF PROCtext (N,a$)

Megaddr = FPZ

fmeoacdr = A

maagl(M) = FY - wmsgstart | REM Offset
Lo message
Pr o= P% O+
Fa?-1 = 0
ENDFROC

LENCAEY + 1

Resequencer

PROGRAM RESEQUENCER

RESEQ is a utility written in machine-code, which moves one or more lines of a
BASIC program to another place within the program. Having written part of a
program, you might decide that you need to re-use a section of code. Instead of
copying it out again, you can move it down the program, turn itinto a
procedure and call on it as needed. Even if your program uses a block of the
code only once, it often helps to establish the structure of a program by creating
a number of smaller, self<ontained procedures out of a large section of code.
You might also want to use RESEQ to sort all of your procedures into
alphabetical order so as to make them easier to find in a listing.

There are two versions of the program on the tape. RESEQ is the version for
use with tape-based computers and resides between &E00 and &|OFF.
RESEQDISK is for use with disks and is loaded between &1600 and &I8FF.
Please refer to ‘Using the Programming Utilities’ for installation instructions.
Other than the addresses at which they start, the two programs operate
identically.

As the utility is co-resident, you can load it before or after you get your BASIC
program into memory. Once the utility is in memory, start it working with
CALL &E00 (tape version) or CALL &1600 (disk version). If you are going to
make repeated use of the utility, it might be worth setting up a function key to
make the call.

When you invoke the routine, it will respond with a hash sign (" #) to indicate
that it is waiting for your command line.

The form of the command line is:

FLN/LLN:TLN

FLN is the line-number of the first line of the block to be moved. LLN is the line-
number of the last line of the block to be moved. TLN is the ‘target’ line-
number which tells RESEQ where to move the block. Don't include any spaces.

As an example, if you want to move lines 550 to 740 to a point just after line
1250, you would type:

550/740:1251

followed, of course, by Return,

Since the maximum number of digits in FLN, LLN and TLN is five, you will be
allowed to enter up to |7 characters. Anything other than a numeral, an oblique
or a colon will be ignored.

FLN and LLN are interpreted in the same way as line-numbers that you would
give to the LIST command. Assuming that your program is numbered in normal

107

Resequencer

incremental steps of 10, you could have given any number between 541 and 550
as FLN and any number between 740 and 749 as LLN. In other words, RESEQ
uses the closest actual line-number.

As to TLN, you can give any number up to and induding the fine-number of the
line before which the insertion is to be made. In other words, in the above
example you could have given any number between 1251 and 1260. However,
we suggest that to avoid mistakes, you forget about the ability to use an existing
line-number (i.e. 1260).

The utility will also accept default values. Using our symbols to represent real
numbers, if you type:

/LLNETLN

RESEQ will assume that FLN is the first line of the program. If you type:
FLN/TLN

it will assume that LLIN is the last line of the program; and if you type:
FLN/LLN:

it will assume that you want to move the defined block to the end of the
program. You can use the default values of FLIN and TLN in combination, as in:
150:

which means that you want to move the lines from the start of the program up
to line 50 to the end of the program.

RESEQ will first test the validity of your command line. It will reject it:

- if the command line does not contain one and only one oblique

- if the command line dogs not contain one and only one colon

- if the colon precedes the oblique

~if FLN, LLN or TLN are not integer decimal numbers in the range 0 to 32767
- if FLN is greater than LLN

- if LLN is less than FLN

- if TLN is between FLN and LLN.

Notice that there is nothing to prevent FLIN and LLN from being the same
number, Indeed, that is how you would tell RESEQ to move a single line.

Remember that if your command line is rejected, you must re-invoke the utility

and produce a new hash symbol. Don't just copy over the old command line, as
you'll either create a syntax error or, worse, accidentally over-write the original
line at FLN if you miss out the hash!

Because the block of code has to be moved around the computer’s memory,
additional RAM space is needed. If there is insufficient room, RESEQ will fail with
a No room error. If you are in a high-esolution Mode, try switching to Mode 7.

108

Resequencer

Once your command line is accepted, RESEQ will take a fraction of a second to
make the move. It then has to change the line-numbers. Rather than making the
utility even larger by including our own renumberer, we decided to make
RESEQ call up BASIC's own RENUMBER command and so you'll see REN.
appear on the screen just before control is handed back to you.

Renumbering can cause problems if the block being moved contains a line which
is referred to elsewhere in the program. You'll know about it when you get the
Failed at . . . error message. If you write well-structured programs with named
procedures, this should cause only minor difficulties with RESTORE and ON
ERROR commands containing line references. You have to edit those lines by
hand after the renumber in order to reinstate the correct line references.
However, if you write unstructured, 'spaghetti’ code full of GOTOs, we regret
that we have little sympathy for you.

Referring back to the opening paragraph, we would make one suggestion as to
the creation of new procedures out of main-ine code. Enter the DEF and
ENDPROC lines and the PROC call itself before you invoke RESEQ. In that way,
your program will be correct immediately after using the utility. If you insert the
procedure commands after moving the block of code, there is a danger that the
renumbering will confuse you as to the correct place in the program to add the
new procedure call.

The utility contains some useful subroutines for text input verification, block
memory moves and decimal to hexadecimal number conversion.

Please refer to ‘Using the Programming Ultilities’ for notes on tacked-on bytes
and other generat hints.

10 REM xxxx RESEQUENCER XXXX

20

30 REM () Tan Trackman 1983
40 3

50 KKEY 4 CALL &1600 (M

60 ¢

70 himem = 046 3 REM + &7
80 page = &1 ¢ REM Hi-byte of FAGE
Q0

109

Resequencer

100 loc k70

110 firmal = &72

120 lirmel R74

130 linme? &74

140 target R78

150 top s Q7

1460 adidrd &R7C

170 acdr? &7E

180 tgtade &80

190 temp &az

200 dest £84

210 size &8s

220 gap &88

230 marhk &8A

240 Tlag &BE

250 hi_twmp &30

260 %

270 param E&H00 1 REM 5 bytes

280 buffer = &605 ! REM User-—defined

keshosrd input buffer

290 3

300 vasnewl = &FFF7

310 oswreh = &FFER

320 osword RFFF1

330 oshyte = KRFFF4

340 @

350 roturn o= 13

360 slash = AL "/

370 colon = &L "

380 @

390 org = EF00

400 3

410 opt = 2

420 ¢

430 FOR I = 0 TO opt STEF apt

440 P% o= orag

450 [

4460 OFT I¥

470

480
110

REM
REM

VEM
REM
REM
REM
FREM
REM
REM
REM
REM
REM
REM

&71
&73
&75
&77
&79
R7E
&7D
&7F
&81
283
&85
{87
&89

i oHo# i

L H

15
H

BE B A e S S S S Oh S 4 S e

B S S A U Y

0 8 ¥

i

F
LI | S §

e e

Resequencer

490 N xXxXX Imnput 8 line
500 3
510 N Set up parameter block

520 LDA Fbuffer MOD &100

530 5TA param

540 LDA Ebhuffer DIV 100

550 S5TA paramtl

B5460 LDA 217 N Maximum line lenath
570 STA paramt+

280 LDA #slash N Minimum ASCIT
590 STA paramt3

400 LDA #colon N Mawximum ABCIT
410 STA paramt+d

620
430 LDA ¥ASC "#'" N As promptl

&40 JSR oswroh

&50 LDA %15 N Flush input buffer

&60 LDX %1

470 JSKR oshylte

480 ¢

&90 N\ Cal1ll 0S8 input routine

700 LDA *0

710 LDX #param MOD K100

720 LDY #param DIV &100

730 JSR osword

740 BCC not_esc N\ Carry set if escape
750 JMFP osnewl N so RTS to BASIC

.

760 1
770 3
780 \ xxxx Get first lime number
790 @

800 +not_esc LDY #1 N\ Skip “‘return’
810 S8TY loc

820 LDA page

830 STA loctl

840 DEY N To 0

850 LDA (loc),Y

8460 STA limel+l N Hi-byte of line no.
870 INY

880 LDA (loc).Y

Ny

Resequencer

8920 STA linel N\ Lo-byte of lirne no.
200 INY

oin ¢

9Z0 ¢

230 N xxxx Get last line rumber

40

250 Jqetlast LDA (loc),Y \ Line
length

@60 CLC

270 abC loc

980 STA loc

990 EBECC getlst?

1000 INC loc+l

1010 3

1020 .qgetlst? LDY #0

1030 L.DA (loc),Y

1040 EBMI save_top \N &FF = end of
PTOQram

ioso ¢

1060 N\ Save latest line ro.

1670 STA final+l N Hi-byte of last line
(ST P

1380 INY

1090 LDA (loec),Y

1100 8TA Final N Lo-byte of last linme

i«
1110 INY
1120 ENE getlast \ Always

1130 3

1140 \ Save top of proaram asddress
1150 .save_top LDA loc

11460 STAH toap

1170 LDA loct+l

1180 S5Ta top+il

1190
1200
1210

/00 e

¥xK¥X Get first command line
g .

pary
M
N
=]
e

1230

1240
1250
1240
1270
1280
1290
1300
1310
1320
1330
1340

1350
1360
1370
1380
1390
1400
1410

1420
1430
1440
1450
1460
1470
1480

1490
1500
1510
1520
1530
1540

950
1560
1570

*
*

*

Resequencer

LD& *#¥buffer MOD 100 \ Set up for
‘convert’

5TA loc

LDA #buffer DIV K100

STA loc+l

LDA linel \ Farameters
LDX linel+l

LDY #slash

JSR convert

ECS mperr

+
\ Is nmew start line after resal

first line ?
LDA temp
CMF linel
LDA temp+1
SEC linel+l
ECC hemsond

\NIf so0, use new start line

e =

rnumber

LDA temp
8TA linel
LDA temp+l
5TA linel+l

\ XxXxXX Convert second number to

*
+

+

-

he

fexscend LDA final

STA line2 \ Can never be » final
LDX final+l

5TX linez2+1

LDY #¥colon

JSR convert

BECS jmperr

113

Resequencer

1580 \ Is mew start line before real
last line 7

1520 LDA temp

1600 CHMF finmal

1610 LDA temp+l

1620 SEBC finmal+l

1630 EBCS order

14640 ¢

1650 \ If so, use new end line number

1660 LDA temp

1670 STA lined

1480 LDA temptl

1690 STA line2+l

1700

1710

1720 \ xxx%Xx%x Is ‘last’ before ‘first’
e

1730 3

1740 .order LDA lineZ2

1750 CMF linel

1760 LDA linelt+l

1770 SEC linel+l

1780 ECC jmperr

1790

1800

1810

1820

1830 LDA final

1840 LDX Tinal+l

1850 LDY ¥return

1860 JSR convert

1870 EBCS jmperr

1880 3

18920 \ Save it

19200 LDA temp

1210 STA tarqet

19220 LDA temp+l

1930 SThA tarqget+l

1940

1950

114

- e

XXXX Where to move it ?

e 7 ee se

- 44

19460

1970
1980
1920
2000
20140
Z0z20
2030
2040
2050
2060
Z070
2080
2090
2100
2110
2120
2130
2140

2150

2160
2170
2180
21940
2200
2210

2220

2230
2240
2250
2260
2270
2280
2290

2300

Resequencer

N XxXxX Is tsraget above first line
3

L.DA tarqget

CMF linel

L.DA target+l

SEC linel+l

BCC find N\ Below

\ ses and below end line 7?
LDA line?

CMF tarqet

LDA lineZ+l

SEC target+l

BCC fired N Line no. is above

imperr JMF synterr
¥EXK Finmd 2 lime no. sddresses

Fxit with closest line
addresses in addrl, addr?

P R 2

+
+

+Fimd LDX %0

8TX flaag

INX N\ Skip opening ‘return’
STX loco

LDA page

8Téa loo+l

*
+

LFind?2 LDY #0

LDa (loc),Y N Hi-byte line no.
STA hi temp N Hold it

INY N\ Ready for lo-byte

BLT flagq

BEMI testd

¢
Ll

115

Resequencer

2310
2320

2330

2340
2350
2360
2370
2380
2390
2400
2410
2420
2430
2440
2450
2460
2470
2480
2490
2500
2510

2520

2530
2540
2550
2560
2570
2580
2590
2600
2610
2620
2630
2640
24650
2660
2670
2680

6

N\ Compare with first no.

UHMF $#&FF

EEQ jmperr N\ First rno. » last line
ro .

LA (loc),Y N\ Lo-byte line no.
CHMF linel

LDA hi_tmp

SEC linel+l

ECC mewline N\ Not et passed
N\ Save details of this line

LDA loc

SThA addrl

LDAa loc+l

STA addril+l

DEC flag

ENE newline N\ Always

+
L2

+stLest?2 CMP #&FF
EEQ overtop N\ &FF end of program

N Compare with second no.
LDA lirne2

CHMF (loc):Y N\ Lo-byte
LDA linmeZ+l

SEC hi_tmp N Hi-byte
EBECC overtop

L
+

smewline LDA loo

cLC

INY

abDC (loc).Y N line length
8TA loco

LDA loc+l

ARG #0

STA loc+l

BNE find2 \ Aluavys

+

2690
2700
2710
2720
2730
2740

2750

2760
2770
2780
2790
2800
2810
2820
2830
2840
2850
28610
2870
2880
2890
2900
2910
2920
2930
2940
2950
2960
2970
2980
2990
3000
3010
3020
3030
3040
3080
060
3070

Resequencer

sovertop LDA loc
8TA addr?

LDA loc+l

85TA adcrZ+l

o~ e se

XXxx Test for move space above
TOF

LDA addr?

SEC

SEC addrl N\ Difference +.+.
FHFP

CLC

ADC top \N +++ added to top
STA temp

LDA addri+l

FL.F

SEC addril+l

CLC

ADC top+l

5TA temp+l

\ Enough room below HIMEM ?
L.DA himem

CMP temp

LDA himem+l

SEC temp+l

BECS shift

JMF noroom

XXXX Move block to end

*s e e

eshift LDA addr?
SEC
SEC addril
STA size
8TH qgap
LDA sddrZ+l
17

Resequencer

3080 SEBEC addri+l
3090 STA size+d
3100 STA gap+l
3110 LDA addrl
3120 STA loco
3130 LDA addril+l
3140 STA looc+l
3150 LDa top
3160 STA dest
3170 LDA top+l
2180 5TA dest+l
3190 JSR lmove

3200 3

3210 ¢

3220 \ xxxx Close gap

3230 ¢

3240 N Include end block in shift

ready for next exit test

3250 LDA top

3260 SEC

3270 SEC addri

3280 STA size

3290 LDA top+l

3300 SEC sddri+l

3310 STA size+l

3320 LDA addr?

3336 STA loc

3340 LDA sddr2+1

3350 STA loe+l

3360 LDA addri

3370 STA dest

3380 LDA sddril+i

3320 S5TA dest+l

3400 JSR 1move

3410 ¢

3420 \ Is shift to end of program ?
(Target => last line no.)

3430 LDA taroet

34490 CMF final

3450 LDA target+il

118

3460
3470
3480
3490
3500
3510

3520
3530
3540
3550
3560
3570
3580
3590
34600
3610
3620
3630
3640
3650
3660
34670
3480
3690
3700
3710
3720
3730
3740
3750
3760
3770
3780
3790
3800
3810
3820
3830
3840

Resequencer

SEC final+l
BECC gettgt
JMF exit N\ No more moves needed

:

+

NOXXXX Find address of line above
tarqet

+
+

.qettagt LDY #1 N\ Skip ‘return’
STY loc

L.DA page

STH loc+l

INY \ To 2

gettqt?2 DEY N To 1

LDA (loc),Y

CMF taraet

DEY \ To 0

LDA (loc),Y

SEC target+l

BECS gettaet3d \ Fassed it

INY

INY \ To 2

LA (loc),Y \ Line length
cLC

abC loc

SThH loco

BCC gettqtlt?

INC loo+l

ENE qgettatZ \ Always

+
L]

yqettgtd LDA loc
STH tgtadr

L.DA loc+l

5TA tatadr+l

XXxXX (pen new gap

e S we v

19

Resequencer

3850
3860
3870
3880
3890
3900
3910
3920
3930
3940
3250
3960
3970
3980
3990
4000
4010
4020
4030
4040
4050
4060
4070
4080
4090
4100
4110
4120
4130
4140
4150
4160
4170
4180
4190
4200
4210
4220
4230

120

l.DA top
SEC

SEC tatadr
8TA size
LDA top+l
SEC tatadr+i
8TA size+l
L.DA top
STA dest
SEC

SEC qap
STh loc
L.DA top+1
STA dest+1
SEC qap+1
STA loe+l

’/"0.0

+

«Trmove LDY ¥0
LDX size+l
EEQ rmvpart

*
+

+TmvZ DEC loc+i
DEC dest+1
tmv3d DEY

LDA (loe),Y
5Ta (dest),Y
CFY #0

ENE rmv3

DEX

EBNE rmvZ2
«Tuvpart LDX size
EEQ rmvdone

+
+

XXX¥X Move memory block

right

Resequencer

4240 DEC loc+l
4250 DEC dest+1
4260 ~rmv4 DEY
4270 LDA (loc),Y
4280 STA (dest),Y

4290 DEX

4300 BENE rmv4

4310

4320

4330 \ Xxxx Move block to gap
4340

4350 Jrmvdorne LDA gap
4360 STA size

4370 LDA qgap+l
4380 STA sizetl
4390 LDA top

4400 STA loc

4410 LDA top+l
4420 STA loc+i
4430 LDA tgtadr
4440 STA dest

4450 L.DA tgtadr+l
44460 STA dest+l
4470 JSR lmove
4480

4490 .exit LDA ¥&FF
4500 LDY #0

4510 STA (top),Y
4520 2

4530 L.DA #&88A N\ Stuff buffer
4540 LDX #0

4550 LDY #ASC "RV
45460 JSKR osbyte
4570 LDY #ASC "E"
4580 JSR oshyte
4590 LDY E£ASC "N©
4600 JSR osbyte
4610 LDY #ASC "."
44620 JSRKR osbyte
44630 LDY #Freturn

121

Resequencer

44640 JMF osbgte N RTS to EASIC

4650 ¢

4660 ¢

4670 N\ XXxX Subroutines XXXx

4680 3

44620 N\ Convert decimal to hex

4700 N ‘loc’ contains correct address
in buffer

4710 N Enter with defsult line mo. in
AX and delimiter in Y

4720 3

4730 «convert S5Ta temp

4740 STX temp+1

47530 STY mark

4760

4770 \ Is delimiter first character ?

4780 LDY %0

4790 LDA (loe),;Y

4800 CMP marhk

4810 EEQ convdone \ No digits to
convert

4820

4830 N Else clear temp

4840 STY temp N\ 0

4850 STY temptl

48460 ¢

4870 N\ Top of loop

4880 .convZ LDA (loc),Y

4890 COCHMF mark \ Delimited 7

4900 BEQ convdone

4910

4920 CHMF #4SC "0" \ For what’s below

4930 BCC converr N\ Wrong delimiter

4240 3

4250 ASL temp \ times 2

492460 ROL tLemp+l

4270 LDA temp \ Save in AX

4980 LDX temp+i

4990 ASL temp N\ times 8

5000 ROL temp+l

122

Resequencer

5010 ASL temp

5020 ROL tempt+l

5030 CLC

5040 ADC temp \ add times 2
5050 STA temp

5060 TXA

5070 ADRC temp+l

5080 S5TA temp+l

5090
5100 LDA (loc),Y N\ Next ASCII
5110 SEC

912 SEC $ASC "0" N To hex
5130 CLC

5140 ADC temp N\ Add it on
5150 STaA temp

%5160 ECC convd

5170 INC temp+l

5180
%5190 sconvd BIT temp+l

5200 EBMI converr \ line no. = 32767 7
5210
5220 INY

5230 CFPY $6 \ Too long 7

5240 ENE cornvZ \ If so, fall throuwah

5250

*

Ead

-

>

-

5260 .converr SEC

5270 RTS

5280 ¢

5290 ,convidone INY \ Foint to next

bhyte

5300 TYA N\ Ready for re-entry

5310 CLC

%320 ADC loc

5390 STA loc N\ Hi-byte must stay on
5aME P IYE

5340 RTS N With carry clear as 0K flag

5350 ¢
5360 1
5370 \ XXXX Move memory bDlock left
5380 @

123

Resequencer

53920 .lmove LDY #0

S400 LDX size+l

9410 EBEQ lmvpart

S420 ¢

S430 Jlmvpage LDA (loc),Y
S440 STA (dest),Y

9450 INY

460 EBENE lmvpage

5470 INC loc+l

5480 INC dest+1

9420 DEX
S900 ENE lmvpage
5510 3

9520 Jlmvpart LDX size

9530 BEQ lmvdone

5540 ¢

Sga90 +lmvliast LDA (loc),Y

3960 8TA (dest),Y

9970 INY

5380 DEX

3590 EBNE lmvlast

95600

9610

9S820

9630

G640

5650

S4660

9670 synterr = F¥%

5680 M$ = CHR$0 + CHR$4 + CHR$7 +
”8111‘,;}"

5690 $synterr = M$

9700 P4 = FX + LEN M%

5710 ?P%L = 0

S720 ¢

5730 noroom = P¥%

9740 M$ = CHR$0 + CHR$0 + CHR$7 + "No
room"

5750 $moroom = M$

G760 PX = PY 4+ LEN M$

124

lmvdone RTS

e Ll 4o ¢+ 4+ + we

Resequencer

W70 PRA o= 0
G780 FRo= P4 o+ 1
B790 ¢

G800 NEXT

$810 ¢

820 END

Shape maker

SHAPE MAKER

SHAPER is a BASIC program which analyses a shape drawn on the screen and
converts it into a string of user-defined characters, so that you can re-display it
at different places over the screen. The program is written as a BASIC

procedure (PROCIHill) and is embodied within a larger demonstration program.

The shape that we are using for our demonstration is a circle with a thick
arcumference line. It will take up 36 character spaces and is set in a box to
define its boundaries.

Since we will exceed the normal 32 characters available for user-defined
characters, we have to ‘explode’ the character set. Please refer to the notes on
the Character Generator for a full description of this process. The program
starts by checking whether PAGE has been reset in order to make room for the
extra characters. If your shape is of a different size, you'll need to make the
appropriate adjustments.

At the beginning of the program there are two variables, HZ and VT, which
specify the horizontal and vertical dimensions of our shape. If you look at the
source listing, you'll see how the program uses these two variables to work out
whether we need to explode the character set and, if so, where to set PAGE.
We call on OSBYTE routine 13| (see page 43| of the User Guide for details) to
establish whether you have a disk- or tape-based system.

Before we draw the circle itself, we set up an array of sine and cosine values.
Although this takes up extra space in the computer's memory, it is faster to
look up the array during run-time than to carry out the same calculations of
trigonometric values over and over again. The circle itself is drawn in quadrants,
using the same routine as appears in the Circle Draw program.

The shape is then analysed with the POINT command and the individual pixels
are transformed into 8 x 8 character cells. They are re-plotted in red simply to
demonstrate the progress of the scan.

The scan itself is carried out in the form of a vertical boustrophedon, that is, in
columns moving alternately up and down the screen, rather than in a more usual
left-to-right row scan. The reason for this is so that the final shape can be sliced
up with LEFT$ and RIGHT$ commands. In that way, you can ‘pull’ it on from
the left of the screen and ‘push’ it off at the other side without wrap-around.

Although the demonstration uses a circle, you can obviously create your own
shapes, with mathematical routines or from the keyboard (perhaps using the
cursor move keys) or even with a joystick.

126

Shape maker

10 REM xxxx SHAFE-MAKER XXXX

20
30
40

50

60
70
80
g0
100

110
120
130
140

150
1460

170

180
120
200
210
220
230
240

250

260

+
*

REM (¢} Ian Trackman 1983

*

&

REM Draws a shape on the screen
ther converts it into a
user—defined shape for printing
anywhere else

HZ
VT
+

é
é

REM Horizontzsl size
REM Vertical size

LI

e o

MEM = ({(HZ % VUT) DIV 32) x &1400 :
REM Every 32 characters above the
first needs an extra &100 hytes of
MEMOTY

REM Find lowest free RAM zddress

A% = 8&83

BASE = (USR(&FFF4) AND &FFFFO00)> DIV
&100

REM Test that the character memory
is sufficiently "exploded"

IF FAGE <> BASE + MEM THEN FRINT
"HReset FAGE to ;i ~BASE + MEM " and
re-run" ¢ STOP

MODE 1

VDU 23;1,0:030305 ¢ REM Cursor off
MEM = MEM DIV &100

IF MEM > 0 THEN FROCoscli

FROChox (HZ x &Z0,VT x &Z0) : REM
Draw 8 box to show shape’s ares

+
+

127

270 SZ = 2 { REM Drawing step size

280 PROCtriaq

290 FPROCcircle (RS50,840) ¢ REM As a
demo

300 GCOL. 0,1

310 FROCTill (6,6)

320 FROCsetup

330 FRINT A%

340 FRINT TAEC0,30)

330 END

340 3

370 ¢

380 DEF FROChox (X,Y)

390 VDU 29,828038200;

400 X = X + &Z20

410 ¥ = Y + &20

420 MOVE -X DIV 2.,Y DIV 2

430 FLOT 1,%,0

440 PLOT 1:0,~Y

450 FLOT 1,-X,0

440 FLOT 1,0,Y

470 ENDFROC

490 ¢

500 DEF FROCcircle (R1,RZ)
510 ¢

520 FOR RZ = R1 TO RZ2 STEF 2
S30 A4 o= 0

540 uZz = R%

550

: TD RAD 20 STEF RAD SZ
G970 X4 = RZ X S((DEG A) /7 2) + .5
X

80 Y% = R% CDEG &) /7 2) + .5
S90 FOR BX% = -1 TO 1 STER 2

600 FOR QY%Z = -1 TO 1 STEF 2
610 MOVE % X QXZ%Z,9y% x QY%
&H20 DRAW X% % QX%Z,Y%Z x QYZ
630 NEXT

&40 NEXT

450 MA o= X%

128

Shape maker

6610 yi o= YZ
670 NEXT
4680 H

6920 NEXT

700 3

710 ENDFROC

720 1

730 ¢

740 DEF FROCFill (X,Y)

750 DIM E(7)

760 VDU 29,8260 —~ Xx&103RZ10C + Yx&103
7706 N = 128

780 ¢

790 FOR I = 1 TO X

800 :

810 IF I MOD 2 THEN FOR J = 1 TO Y

820 IF T MODRD 2 = 0 THEN FOR J =Y

TO 1 STEF -1

830 :

840 FOR K = 0 TO 7 STEF 2

850 FOR L= 1 TO 0 STEF -1

860 :

870 B o= 0

8860 :

820 FOR M = 0 TD 7

200 XT = IxX&Z0 + Mx4

@10 YT = =~ Jk&20 -~ (K +
L.yx4

20 IF POINTC(XT,YT) THEN
FLOT &92,XT,YT

230 IF POTINT(XT,YTY THEN B
m B+ 2N A7 - M)

240 NEXT M

o :

P40 B + L) = B

g70 :

980 NEXT L.

990 NEXT K

1000 :

129

Shape maker

1010

10Z0
1030
1040
1050
1040
1070
1080
1090
1100
1110
1120
1130
1140
1150
1140
1170
11840
1190
1200
1210

1220
1230
1240

1250
12460
1270
1280
1290
1300

1310

130

UDU Z3,N,EC0)BEC(L),EB(2),E(3),
E(4),B(3),B(48),E(7)
N =N+ 1
NEXT J
NEXT I
ENDFROC

DEF PROCoscli
REM Explode the character set
DIM O8CL 10

$0SCL = "FX 20," + STR$ MEM
X% = 0SCL

Y4 = 05CL DIV &100

caLl. &FFF7

ENDFROC

*
+

DEF FROCsetup

&% = STRING$(?46," ") + REM

"Declare" the string size -~
prevents string garbage

At = "v REM Now clear it

N = 128 REM CHR% counter

+

*r L

REM Connect defined shapes in a
vertical "boustrephon” with
cursor move keys

REM This allows LEFT$ and RIGHTS
sectioning of the shape

FOR X = 1 TO &

IF X MOD 2 THEN FOR Y = 1 T0 S
IF X MOD 2 = 0 THEN FOR Y = §
™) & STEP -1

At = A% + CHR$N + CHR$8

13240

143

1340
1350
1360
1370
1380
1390
1400
1410
19E0
1430
1440

1450

14460
1470
1480
1490
1500
13510
1520

1530

Shape maker

IF X MOD 2 THEN A% = A% +
CHR$10 ELSE A% = A$ +
CHR$1L : REM Up and down on
alternazte passes

N o= N+
NEXT
A% = A$ + CHR$N
N o= N+ 1
NEXT
ENDFROC

DEF FROCtvriq

REM Creaste array of trig
valiles.,

REM Faster tham calcoulating
during run-time

DIM S(20 DIV 8Z),C(20 DIV SZ)

FOR AZ = 0 TO 20 DIV SZ
SCAZY = 5IN (RAD A%XXZ)
CCaXZ)Y = COS (Rab AXxZ)
NEXT

ENDFROC

131

Sideways characters

SIDEWAYS CHARACTERS

The routine which forms the basis of this program was originally part of a
program called ‘Sideways', which is included in the ‘Programs from the
Computer Programme’ Pack. The routine has since been enhanced to make it
more versatile.

The program is called TWIST. It lets you display any character sideways (left or
right) or upside-down. The routine itself is written in assembly language, but the
demonstration is in BASIC, so CHAIN or LOAD-and-RUN it.

First, a business letter is typed on the screen the right way up. Then, when a key
is pressed, the first part of the letter is reprinted sideways, waiting for you to
finish it off. Characters typed in from the keyboard will be displayed sideways.

The machine-code routine takes up 67 bytes and makes use of CHR$224. You
can substitute any free user-definable character in line 1020 if your program is
already using CHR$224. The routine is CALLed by PROCtwist, which simply
‘pokes’ the required ASCIl character into a location in zero-page, where it is
collected on entry to the routine.

Another location, labelled type, controls the orientation of the output character.
If it contains 0, characters will appear twisted to the right. With &80 (decimal
128)in it, the characters will be produced upside-down and &40 (decimal é4) will
cause a twist to the left. In the demonstration, it is set to O in line 400, Of
course, altering the value of type merely changes the orientation of the
characters and not of the entire screen display, so that if you change the value of
type and re-run the program, you'll either have to use a mirror or stand on your
head to make sense of what appears on the screen!

When displaying a screenful of characters, the trick effect is clearly enhanced if
the layout of the page is also sideways. You will see from the demonstration that
we have had to use joined cursors (VDU 5) and MOVE commands to perform
this trick. We also needed to write our own rudimentary line-feed and carriage-
return routines.

Since the BASIC part of the program is only a demonstration for fun and to
ilustrate the speed of the machine<ode, we haven't added complete routines
to trap and handle the cursor-move and edit keys; nor, indeed, for scrolling.

Where we think that you will actually find the routine most useful is in diagrams
and games. You can label graphs down the edges without having to make up an
entire set of user-defined characters. You can also give the idea of turning
movement in a game or moving diagram by making up your own symbols and

132

Sideways characters

then rotating them as you go round corners or change direction. (You're
obviously not limited to the letters of the alphabet - any character, keyboard or
user-defined, will work.)

If you are interested in understanding how the matrix inversion routines work,
you may care to study the BASIC translation of the right-twist routine which
we 've added at the end of the program. It's only there for information. As it is
never used, you don't need to copy it when you use the routine in your own
programs.

10 REM xxX¥XX TWIST XXKX

20 ¢

30 REM (o) Tan Trackman 1982, 1983
40 3

50 REM This program demonstrates how
the standard charascter set can be
rae-~defined in 8 different rotation

40 %

70 ON ERROR GOTO 800

80 ¢

90 MODE 4

100 VDU 23,1:,03030303 3 REM No cursor

110 VDL 28,0,2%9,39,1 ¢ REM New screen

BiLE

120 3

130 FPROCsssemble

140 ¢

150 COLOUR 0

160 COLOUR 129

170 CLS

180 PRINT 7

190 ¢

200 REM Frint letter normally

210 REPEAT

220 READ LIN$

230 FRINT TAE(Z) LIN$

240 UNTXL LING = " "

250

LY

133

Sideways characters

134

2610
270
280
290
300
310
320
330
340
350

3460
370
380
390
400

410
420
430
440
450
440
470
480
490
a00
S10
G20
530
540
550

060
570
G980
590

*FX 15,0
¢ = GET
RESTORE

REM Frint letter sideways
CL.S
vl 8 f REM Joinm cursors
GCOL. 4,0 I REM Inverting
Goo. 0,129
GAF = &1C ¢ REM Gap between
characters
MARGIN = & X GAF
X = 488 ¢ REM "Top of page' qap
LMARG = R3FF - MARGIN
Y = LMARG
Ptype = 0 ¢ REM &80 for
upside-down, &40 for
anti-clockwise
REFEAT

READ LIN%

FOR I% = 1 TO LEN LIN%$
MOVE X, Y
FROCtwist (MID$(LIN®,IX,1))
Y =Y ~ GAF
NEXT

LMARG
X — &Z8

oo

e DL wl o

UNTIL LINS = " M

+
+

REM Frint keybosrd characters
sideways

®¥FX 1%,0

X = X - &28

4+
L]

Sideways characters

6500 REFEAT

&10 MOVE X, Y

620 FROCtwiast ("_") ¢ REM Print
“"oursor"©

46320 At = GETS

640 MOVE X.Y

&at FROCtwist ("_") § REM Remove
cursor

660 MOVE X,Y

46710 IF A% = CHR%13 THEN Y = LMARG ! X
= X -~ &Z8 § UNTIL FALSE $ REM ITf
‘Return’, back for arnother
character else ...

&HB80 3

690 MOVE X,Y

700 PROCtwist (A$)

710 Y =Y - GAF

720 IF Y < MARGIN + GAF THEN Y = LMARG

! X = X ~ 828 ! REM New line

730 ¢

740 UNTIL FALSE

750 ¢

760 END

770 ¢

780

790 REM Error trap

800 MODE &

810 IF ERR <> 17 THEN REFORT @ FPRINT

at lime "3 ERL

920 END

a30 @

840 3

850 DEF FPROCtwist (L.$)

860 ohar = ABC L%

870 Cal.l Mcode

820 ENDFRQC

aen ¢

200

‘e *

135

Sideways characters

710
920

930
940

90
240

@70
280
720
1000
1010
1020

1030
1040
1050
1060
1070
1080
1090
1100

1110
1120
1130
1140
1150
1140

1170
1180
1190
1200
1210

1220

136

DEF FROCzssemble
REM Creates a8 machine-code program
for matrix inversion

DIM Mcode 100 ! REM Space for
machine code program

*
+

char = &70 ¢ REM Use 9 bytes on
zero pace for speed

type = &8O

oswrch = KFFEE

psword = EFFF1

*
+

vidu _char = 224 § REM Use any spare
ASCIT character
:

opt = 2 { REM No display
*

FOR IZ = 0 TO opt STEF opt
FZ = Mcoode
COFPT Ix%

N Call 08 ‘resad character
definition’ rowtine

L.DA #&A

LDX #Fchar

LDY #chayr DIV &100

JSKR osword

*
+

\ Crezte new character with VDU
23
LDA 23 N\ Start VDU 23 command
JSR oswrch
L.DA #vdu_char
JER oswroh
LY #8 N\ Twist 8 bytes

L

1230
1240
1250
1260
1270
1280
1290

1300
1310
1320
1330
1340
1350
1360

1370
1380

1390
1400
1410
1420
1430
1440
1450
1460
1470
1480
1920
1500

1510
1520
1530
1540

1550

Sideways characters

+test LDX 48 \ BEit counter
BIT type

EMI reverse \ Eit 7 set
BVS amti \ EBit 6 set

N Twist 8 bhits clockwise
+loopl ROL char,X \ Rotate one
it from each byte into carry
ROL. A N o and collect it
DEX

ENE loopl N\ Dome 8 bits 7

BEQ print \ always

*
+

N To twist wpside-down -
sreverse LDA char,Y \ Take each
byte 440
STA char N\ .2 hold it
«Jdoop?2 ASL char \ Reverse sach
hl'L L)
ROR A N v+ and save it
DEX
ENE loopZ2
EEQ print \ Always
N To twist asnti—-clockwise -
«anti ROR char,X
ROR &
DEX
ENE anti
sprint JSR oswreh \ Frint a
hwute
DEY
ENE test \ Done 8 hytes 7
LDA #vdu_char N Frint new
character ...
JMF oswroh N ses o a3nd RTS to
BEASIC

137

Sideways characters

1860]

18710 NEXT

1580 ¢

1590 ENDFROC

14600 ¢

1610 3

1620 REM Here’s the same routine in
Basic

1630 ¢

1640 DIF X% 8, EX(8)

1650 YZ = X% DIV R100

14660 A% = 10

1670 3

1680 ?X% = ASC L%

14690 CALL &FFF1

1700 3

1710 HYX = &80

1720 ¢

1730 FOR IZ = 1 TO 8

1740 BA(IZY = 0

1750 HZ% = 1

17460 :

1770 FOR JXZ = 1 T0 8

1780 IF (XZ?J% AND HMX) THEN BXA(I%) =
BLZOXXY + H2ZX

1790 H2%Z = H2% * Z

1800 NEXT

1810 :

1820 HZ = HXZ DIV 2

1830 NEXT

1840 3

1850 VDU 23,224,BZ (1) ,BX(2) ,BX(3),
BZC4) ,BZ(G) ,BYA) LBA(7) ,BX{8)

18460 VDU 224

1870 3

1880 3

1890 REM Demo data

1700 DATA 15, HIGH STREET"
1210 DatTa v ANYTOWN"

1920 DATA " "
138

1930
1940
1950
1960
1970
1980
1920
2000
2010
2020
2030
2040
20560
2060
2070
2080
2090
2100
2110

DATA
DATH
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DAaTA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA

Sideways characters

"Je 8mith Esq.
12, The Avenue"
"“Londomn N.W. 18"

lat March"

"Dear Mr Smith,"

" 11

"Thank yvou fTor your letter”
"of 18th February."

" "

“T confirm that nmext Monday"
"ig 5 suitable date for our”
"meetine and I look forward®
"o seeing wou"

"Yours sincerely,"”

“Joe EBElogas"

" "

139

Sorting routines

SORTING IT ALL OUT

Three factors control how well a sort works. The first is, naturally, how good
the sorting algorithm is and how well it has been translated into the particular
computer language (BASIC, in our case). The second factor is the total number
of items in the list to be sorted. Some sorts work well with a small list, but work
much more slowly as the size of the list grows (the so-called ‘exponential
explosion’). The third factor is how badly the list is out of order. Some sorts
work very fast with a list which is nearly in order; others work at the same rate,
whatever the order of the list. The last two factors mean that there isn't really a
‘best’ sorting method - it depends on your requirements.

The Demonstration Programs

There are seven demonstration programs on your tape. They are named:
BUBLSRT

SLCTSRT

INDXSRT

SHELSRT

SHL2SRT

QUIKSRT

HEAPSRT

Each of the programs follows the same format. There is a main program which:
a) sets up an array of 100 random numbers

b) calls PROCsort (the actual sorting procedure)

c) displays the sorted array and various information about the way in which the
sort has worked.

Here is the main routine from BUBLSRT - the Bubble Sort demonstration:
10 REM xxxx BUBRLE SORT XXXX

20 3

30 CL.S

40 @% = 4 ¢ REM Frint formatting
90 NZ = 100 ! REM No. of items

&0 DIM AINZD
70 I% = RND(-1) ¢ REM Reset
randomizer
80 3
20 FOR I% = 1 TO N¥%
100 ACIZ)Y = RNDINZDD
110 FRINT &4(I%) ;3
140

Sorting routines

120 NEXT
136 ¢
140 FRINT
150 COMF = 0
160 SWAF = 0
170 TIME = 0
180 3
190 FROCsort
200 3
210 NOW = TIME
220 ¢

230 FOR I% = 1 TO NZ

240 FRINT A(TZ) ¢

250 NEXT

260 3

270 @% = &90A ! REM Reset print formatl

280 FRINT 7/ "Time "3 NOW/100

Seconds"

290 FRINT; NX " Numbers"

300 FRINT; COMF " Comparisons'

310 FRINT: SWAF " Swaps" ’

320 END
Line 40 (@ % =4) simply formats the colums of numbers so that they fit
properly onto the screen. Normal formatting is reset in line 270 before the
program ends.

1 REM Reset timer

In line 50, the variable N% sets up the number of items to be sorted. As we
mentioned above, it doesn't necessarily follow that if you double the number of
items, each of the various sorts will take twice as long. Some are comparatively
faster, but some take more than double the time. We'll come back to this point
shortly.

Line 70 resets BASIC'’s randomiser. Each of the series of random numbers
generated by the different routines will be the same, so that valid comparisons
can be made.

A loop then creates an array of N% random numbers. An interesting
experiment is to re-run the sorts with the numbers already in order by changing
line 100 to:

Al%)=101—1%

Then run the sort again with the numbers in reverse order altering line 100 to:
A(l%)=101—1%

(41

Sorting routines

The computer's internal timer is set to zero just before the test starts and then
read as soon as the sort is completed.

The variables COMP and SWAP count how many comparisons and swaps have
been made. Although time is usually the most important factor, these variables
will give you some indication of the efficiency of the sort routine, particularly if
you change the size of the array or the order of its contents.

Using the Routines in Your Own Programs

The procedures containing the sorting routines are almost completely self-
contained. The only things that need to be done beforehand are to dimension
the array(s) that will be needed and, of course, to put some data into the main
array. All the variables used by the procedures have been declared as 'local'
variables so that they will not conflict with any variables with the same names in
your main program.

The COMP and SWAP variables are included in the procedures only because
we want their values afterwards for display. They don't affect the actual sorting
process and all references to them should be deleted.

If you delete the main program (lines [0-340), you can append the sort
procedure to your own program, using one of the methods described on pages
402-3 of the User Manual.

You can use the routines to sort string arrays simply by changing the variables
A() to A$() and T (whenever it is used) to T$, in which case the array variables
will be sorted according to their ASCli values,

As written, the routines always sort the entire array - the normal case. If you
want to sort only a part of the array, you can send the start and end 'pointers’
to the sort procedure as parameters, e.g. PROCsort (FIRST, LAST). You'll then
have to re-define the loop counters (1 and N% in the demonstration programs)
to correspond to the new values.

Which Sort for You?

The table below sets out the sorting times which we obtained from the six
routines, using three different array sizes (25, 100 and |50 items) in random
order, correct order and reverse order. We've also calculated the average
times for each routine.

Before we ran the timing tests, we removed the COMP and SWAP variables
from the procedures. If you want to make the routine work even faster, you
can remove the blank spaces, which we put in to make the listings more legible.

(42

Sarting routines

You can also put several statements on to one line. However, if you are that
anxious to save a few more micro-seconds, perhaps you should be thinking of
using a sort written in machine-code. A well-designed machine-code sort could
be over |50 times as fast as its BASIC equivalent!

TABLE OF SORTING-ROUTINE SPEEDS

Number of items 25 100 150 Average
BUBBLE Random 1-34 21.00 49-44 29-93
| — N% 0-04 0-24 0-37 0-21
N% — | [-95 31-00 6975 3423
Average [-10 17-41 39-85 19-46
HEAP Random 0-88 5.27 8-65 4.93
| —N% [0l 571 9.28 5-33
N% — | 0-86 4.98 813 4.66
Average 0-92 5.32 8-69 4.97
INDEX Random |-48 21.98 49.02 2416
| —N% |-47 2188 48.84 2406
N% — | |-47 21.87 48.-84 24-06
Average |-47 2191 48-90 24.09
QUICK Random 0-83 497 8.76 4-85
| —N% I-73 24.99 55-53 27.42
N% — | I-69 24.73 55.06 27-16
Average I-42 18:23 39.78 19-81
SELECT Random 0-70 8-86 19-31 9.62
| —-N% 0-64 8-51 18-69 9.28
N% — | 0-85 1181 26-10 12.92
Average 073 9:73 21.37 10-61
SHELL Random |.03 924 13-14 . 7-80
I —N% 0-26 1-51 2:68 1-48
N% — | 0-66 4-08 7-01 3-92
Average 0-65 4-94 7-61 4-40

Best results are shown in bold type.
143

Sorting routines

How Do They Do It?

The next section attempts to explain the mechanics of each type of sort. You
don't need to understand how the routine works in order to use it, but if you
do, you might like to play around with the routine to try to improve its speed
or, say, to sort the array into descending, rather than ascending, order.

To assist in the explanations, we 're going to use a pack of playing cards to
represent our array. Let’s arbitrarily decide that, for our purposes, a pack of
cards in correct order will start with the Ace of Clubs as the first card, going
through the Aces in the order Clubs, Diamonds, Hearts and Spades, and then
repeat the suit order for the Twos, Threes, etc. The last card will therefore be
the King of Spades. The only problem with using a pack of cards is that there are
no duplicates, whereas in an array there may well be. So, if you really want to
be realistic, mix up two or more packs and then deal yourself 52 cards at
random.

Bubble sort

The Bubble Sort
The Bubble Sort is probably the easiest routine to understand.

Starting at the beginning of the array, adjacent items are compared. If they are
out of order, they are swapped. In that way, the largest item will ‘bubble’
through to the end of the array. The same process is repeated to bring the next
largest number to one position before the end. Every time that a swap is

made, a 'flag’ (the variable F%) is set to FALSE. The swapping continues until no
more swaps are needed, that is, unti the flag remains TRUE.

Take your shuffled pack of cards and a coin. Turn the coin heads up. Look at the
first two cards. If the first card should be lower in the pack than the second,
swap them over. Look at the second and third cards. Again, swap them if
necessary. Repeat this process until you reach the end of the pack. The first
time that you make a swap on each ‘pass’ through the pack, turn the coin over
and then leave it tails up until you reach the end of the pack. At the end of the
first pass, you should be left with the King of Spades (the ‘largest’ card) at the
bottom of the pack.

If the coin is heads up, you didn't make any swaps. This means that the pack is in
order and you have finished. However, if the coin is tails up, there is more work
to be done. Turn the coin back to heads and restart the ‘'compare and swap’
process from the beginning of the pack. Since the King of Spades is already at the
bottom of the pack, you only have to compare 51 cards this time. Now you'll
get the King of Hearts to one before the end. Each time you go through the
pack, stop one card sooner, since you know that the cards below are in order.

In the computer program, the coin is represented by the variable F% (for ‘flag’)
and the stopping point is held in the variable P% (for 'pointer’). Notice how we
need an extra variable T to help in the swap. If you don’t understand why, try
swapping the contents of a glass of water with the contents of a glass of milk
without using a third glass! (T is a floating point variable in case the item to be
swapped is a decimal number or outside the range of an integer number.)

The speed of the Bubble Sort depends on how ordered the items are to begin
with. There is a significant difference between an array in order (with 100 items,
the demonstration program takes about 0-2 seconds) and an array which is in
reverse order {about 3| seconds).

As you will see from the table, the sorting time also increases out of direct
proportion to the size of the array. A fourfold increase in the number of items
causes a fifteenfold increase in the sorting time.

145

Bubble sort

10 REM xxxx EUEBELE SORT XXXX

20 3

30 CLS

40 % = 4 + REM Frint formatting
50 NZ = 100 ¢ REM No. of items

60 DIM AINYD)

70 I% = RND(~1) ! REM Reset
randomizer

80 ¢

20 FOR IZ%Z = 1 TO NX

100 A(IX) = RND(NZ)

i10 FRINT A(IZ%):

120 NEXT

130

140 FRINT

150 COMP

160 SWAF

170 TIME

180 3

190 FROCsort

200 @

210 NOW = TIME

220 ¢

230 FOR IZ% = 1 TO NX

240 FRINT AC(IZ):

250 NEXT

260 ¢

270 @Y% = &90A { REM Reset print format

280 FRINT * "Time "} NOW/100 ™
Seconds"

290 FRINTS NX " Numbers"

300 FRINT: COMF " Comparisons"

310 FRINT; SWAF " Swaps"

320 END

a30 ¢

3440 3

350 DEF FROCsort

360 LOCAL FX,X%,F4,T

370 FZ = N¥ - 1

380

o H

0
0
0 : REM Reset timer

Bubble sort

370 REFPEAT

400 FZ4 = TRUE

410 :

420 FOR I% = 1 TO PZ%

430 IF ACIZ) > ACIX+1) THEN T =
ACTZY ¢ ATZ) = A(IX+1) ¢
ACTEZ+LY = T ¢ FZ = FALSE § SWAP
= GWAF + 1

4840 COMF = COMF + 1

450 NEXT

4460 $

470 FZ = F% - 1

480 UNTIL FZ

490 3

500 ENDFROC

(47

Selection sort

The Selection Sort

In the Bubble Sort, we physically swapped adjacent cards throughout the pack.
Let's imagine that before we started, the King of Spades was the 27th card.
After the first pass, that card became the 52nd card but all of the other cards
stayed unsorted. So why don't we just look for the King of Spades and swap it
for the bottom card? Then the next time, we ll look for the King of Hearts and
swap it with the 51st card and so on, throughout the pack.

That's the idea behind the Selection Sort, except that, since loops run faster in
BASIC forwards than backwards, we Il begin by looking for the Ace of Clubs
and bringing it to the top of the pack. When you do the sort with a pack of
cards, you might not see why we have to do a swap, since you can simply
extract the Ace of Clubs from somewhere in the middle of the pack and put it
on the top. If you don't do a swap, you are effectively going right through the
pack, putting the original first card in the second position, the second card in the
third position and so on - very time-consuming for the computer.

Again, we could use our coin as a ‘flag’ to tell us whether a swap is needed, but,
with a small array, this actually slows down the computer program. It takes
longer to check the flag than to complete the entire loop. With a large array,
the ‘trade-off’ time might warrant testing a flag.
10 REM xxxx SELECTION SORT XXxx
20 2
J0 CLS
40 @7
50 NX HR1]
60 DIM AN
70 Ix = RND(-1)
80 3
0 FOR Tx = 1 TO NZ
100 ACTL) = RNDINL)
110 FRINT ACTZ)3
120 NEXT
130 3
140 FRINT
150 COMF = 0
1460 SWAF = 0
170 TIME = 0
180 3
190 FROCsort
200 ¢
148

4-
1

o
220
230
2410
2510
2610
270
2890

290
300
310
320
330
340
350
360
370
380
390
400
410
420
430

4410
450
440
470
4849
490
woo
a1

Geo

Selection sort

MOW = TIME

FOR T% = 1 TO NZ

FRINT AdXIxni;

MEXT
@x = K90A
FRINT ¢ "Time i NOW/100 v
Seconds"
FRINTI NX " Numbers"
FRINT: COMF " Comparisons'
FRINTS: SWAF " Swaps" 7/
END

o on

DEF FROCsort
LOCAL I%,J%,F%, T
FOR I% = 1 TO N¥~1
T = ACIZ)
P L%

*
¢

FOR J% = T% + 1 TO N
IF alJdXZ)y < T THEN T = A(J%)
Fa o= Ji 3 SHAF = SWAF + 1
NEXT

+
+

T = A(TH)

ACTXY = AR
ACFZY = T

COMF = COMF + 1
NEXT

+

ENDFROC

149

Index sort

The Index Sort

This time, take a piece of paper. Write down the numbers | to 52in a column.
Look at the first card. Now go through the pack, and count up the number of
cards which are lower in value than that first, ‘control’ card. Add one. Write
down that number against | on your paper. For example, if the first card is Six
of Diamonds, you would write down the number 22 in the first row of your list
of numbers. That tells us that the first card in the pack is the 22nd highest in
order.

In the previous sort routines, duplicates have been taken care of automatically.
In the Index Sort, we would have a problem if two or more cards had the same
value. To deal with this situation, if a row already has a number against it, you
would have to move down until you found an empty row.

Keep repeating the process until you have been through the entire pack.

As you'll see from the table, this is a very slow sort routine, since it goes right
through the entire array for every item in it. The reason that it's sometimes
used is that, as its name suggests, it creates an index to the main array, which is
left alone in its original order. This could be useful to avoid wasting memory
space when swapping string arrays.

10 REM xxxx INDEX SORT XXX

20 3

30 CLS

40 @% = 4,
G0 ONX o= 100

60 DIM ACNK) XHINK)
70 IT¥% = RND(-1)

a0 ¢

20 FOR I% = 1 TO NX
100 ACTZY = RNDUINX)
110 FRINT aA(I%);3
120 NEXT
130 3

140 FRINT
150 COMP =
160 SWAF =
170 TIME =
180 ¢

190 FROCsort
200 3

(50

oo o

Index sort

210 NOW = TIME

220 3

230 FOR IXZ = 1 TO NX

240 FRINT A(X%Z(IXY):

250 NEXT

260 ¢

270 RE = &90A

ZRO FRINT “ “Time "3 NOW/100 ¢
Secaonds"

290 FRINT: N% " Numbers"

300 FRINTS COMF " Comparisons”

310 FRINTS SHAF " Swaps"

320 END

330 &

340

a50 DEF FROCsort

360 L.0CAL IX,J%.F%Z

370

3R0 FOR I% = 1 TO N%

390 PL o= 1

400 H

410 FOR JX = 1 TO NX

420 IF A(IX) > A(JZ) THEN FZ = FZ +
1

430 COMF = COMF + 1

440 NEXT

450 H

460 REFEAT

4710 IF XX(FZ) THEN FX = FZ + 1

480 UNTIL XZ(FZ) = 0

490 :

=00 XLC(PZY = 1%

oid0 SWAF = GWAF + 1
920 NEXT

30 3

940 ENDFROC

151

Shell sort

The Shell Sort

We can see from the table that if the items in the array are already in order, the
Bubble Sort is the fastest sorting routine. The idea of the Shell Sort is to
concentrate on getting a gradually increasing section of the array sorted out as
early on as possible, so that it won't need re-sorting on subsequent 'passes’
through the array.

Unless you have a very large card-table, you'll probably need to lay out this card
demonstration on the floor. Take your shuffled pack of cards and a coin. Put the
coin heads up. Set out the cards, face up, in two rows of 26 cards one above
the other. (In fact, you're splitting the total number of items to be sorted into
two halves.) Go through the pack, but, instead of comparing adjacent cards as in
the Bubble Sort, compare pairs of cards in columns. In effect, you are comparing
the first card with the 26th card, the second card with the 27th card and so on,
until you have made 26 comparisons. In each comparison, if the card in the top
half is larger (i.e. higher in our arbitrary card order) than the card beneath it in
the second half of the pack, swap the two cards over and, if the coin is not
already set to tails, turn it over.

Turn the coin heads up. (The coin is a 'flag" - tails indicates that a swap has been
made during the pass.) Collect up the cards in order (i.e. the first card in the top
row first, the second card in the top row second and so on). Re-deal the cards
into four rows of |3 cards each. The first card goes at the left of the top row,
the second card to its right and so on. Starting with the first card, compare it
with the card immediately below it. Swap them if necessary and set the coin to
tails up. If the coin is tails up after the last comparison, put it back to heads and
repeat the ‘compare and swap’ process. Keep doing so until the coin stays heads
up. Notice now that the cards are already in order within each column of four
cards.

Collect up the cards and re-deal them into eight rows of six cards each with four
cards left over in a ninth row. The size of the row - six cards - is always half of
the previous row size, ignoring fractional halves. Repeat the entire ‘swap and
compare’ process until the coin stays heads up. The columns should now be in
order.

Repeat the complete process twice more, once with rows of three cards and,
finally, with one long column, one card wide. The last pass is, of course, a
standard Bubble Sort.

A slightly slower variation of the Shell Sort (included on the tape as SHL2SRT)
carries out a Selection Sort, rather than a ‘mini Bubble Sort’ on each pass
through the array.

152

10
20
30
410
50
60

70

g0

¢0
100
110
120
130
140
150
1460
170
180
190
200
210
220
230
240
250
260
270
280

290
300
310
320
330
340
350
3610
370
380

REM #xoxxx SHELL SORT XXXX

CLS

@x = 4

N%Z = 100

DIM ACNK

I% = RNDC(-12

FOR I% = 1 TO N
ACTZ) = RNDONZD
FRINT &(XX%) %
NEXT

FRINT

COMF = 0

SWAF = 0

TIME = 0

FROCsort

NOW = TIME
FOR I7% = 1 TO N

FRINT A(LX)

NEXT
@7 = K&90A
FRINT 7 "Time "3 NOW/100 ¢
Seconds"
FRINT: NZ " Numbers"
FRINTS COMF " Comparisons”
FRIMNT: SWAF " Swaps" 7
END

DEF FROCsort
LOCAL CX,FXL,G%,T%, T
GA = N

&

Shell sort

153

Shell sort

390 REFEAT
400 Gx = GX DIV 2
410 CHh = NX - GZ

420 H

430 REFEAT

440 FZ = FALSE

450 :

4460 FOR I% = 1 TO CX%

470 Fx o= IZ + GX

480 IF AIZ) > AFZ) THEN T =
ACTZ) ¢ ACTIZ) = AFZL) t A(FX)
= T ¢ FZ = TRUE ¢ SHAF = SHAF
¥ 1

490 COMF = COMF + 1

500 MNEXT

510 H

520 UNTIL FZ = FALSE

30 :

540 UNTIL GX <= 1

550 ¢

960 ENDFROC

10 REM xxxx SHELL/INSERTION SORT XXXx
20 2
30 CLS

40 %X = 4

50 NX = 100

&0 DIM AINID

70 TZ = RND(~-1}

g0 3

?0 FOR Ix = 1 TO NX
100 ACTXY = RNDINZ)
110 FRINT A(IX):
120 NEXT

130 ¢

154

140
150
140
170
180
190
200
210
220
230
240
250
260
270
280

290
300
310
3Z0
a30
340
350
3460
370
380
3g0
400
410
420
430
440
450
460
470
480

490
S00
10

Shell sort

FRINT

COMF = 0
SWAF = 0
TIME = 0
FROCsort

NOW = TIME

FOR I% = 1 TO NZ
FRINT AC(XZ)}
NEXT

+
+

r = &204

FRINT ¢ "Time "§ NOW/100 "
Seconds"

FRINT: NZ " MNumbers"
FRINT? COMF " Comparisons'
FRINT; SWAF " Swaps'" ”

END

DEE PROCsOrt
LOCAL CX,E%, 6%, T%,J%, T
GL = N

REFEAT
GX = G¥ DIV 2

T

C% N% — GZ
FOR I% = 1 TO C%Z STEF GX

T = A(IZ)

Fou = I%

FOR J% = I¥% + GX4 TO NX STEF G
TE AGJZY < T THEN T = AGJA)Y ¢
Fao= JE
COMF = COMP + 1
NEXT

e

Shell sort

we0 T = A(IX)

w30 ACTH) = A(PX)
“40 ACFZ)Y = T

a0 HWAF = SWAF + |
a6 NEXT

G710 :

580 UNTIL G¥% <= 1

90 %

400 ENDFROC

156

Quick sort

The Quick Sort
The Quick Sort, as its name indicates, is significantly faster for out-of-order
arrays than the sort routines that we have looked at so far.

Take your pack of cards. Look at each card in turn. If it is lower than the Six of
Hearts, put it on to a left-hand pile, otherwise put it on to a right-hand pile. (The
reason for choosing the Six of Hearts is that it is half-way through a pack of cards
which is already in order.) Next, pick up the left-hand pile and divide it into two
smaller piles, using the 13th card, Five of Clubs, as the test card. Do the same
with the right-hand pile, using the 39th card (Nine of Spades).

Continue subdividing into left- and right-hand piles. If you keep the piles in their
correct positions relative to each other, you'll end up with the Ace of Clubs as
the left-most card and the King of Spades as the right-most, with all of the other
cards in order in between.

That's the general idea of the Quick Sort - but it's organised slightly differently
for use on the computer. To work it with the cards, you'll need a paper-dip and
a coin.

Reshuffle the cards and lay them out, face up, in one long row. Now carry out
the following steps:

| Put the paper-clip on the left-most card and the coin on the right-most card.
2 Compare the two ‘marked’ cards. If the left-hand card is higher than the
right-hand one, swap them over.

3 Remove the coin (leaving the card where it is) and replace it on one card
nearer towards the card with the paper-clip.

4 If the paper-clip and the coin are not on the same card, go back to Step 2.

5 When the coin and the paper-clip meet, that card is in its correct position.
Furthermore, all the cards to its left are earlier in the pack and all of those to its
right come later in the pack. Turn the card over to show that it has been sorted.
6 Now repeat the whole process, first with all of the cards to the left of the
correct card and then with all of the cards to its right.

7 Gradually, you'll end up with more and more subdivisions consisting of only
one card. When there are no more multiple-card subdivisions, the pack will be
in order,

Obviously, the computer doesn't ‘turn cards over'. Instead, it keeps track of
duplicate sets of ‘paper-clips and coins’ - actually left-hand and right-hand
pointers to the appropriate positions of the items in the array - until they all
meet up, but the concept is the same. You'll notice from the program listing
that two special arrays have to be created to hold the pointers so that the
Quick Sort, although fast, takes up extra memory space. You would use it if

speed were important and you had plenty of spare memory capacity. |57

Quick sort

10 REM xxxx QUICK SORT ¥XxXX
20 3
30 CLS
40 @ = 4
G0 ONZ = 100
&0 DIM
A(NE)Y L SLAC(SAR (NZ DY) L SRACSAR (N Y)
70 I% = RNDC(-1)
80 3
0 FOR I% = 1 TD NXZ
100 ACTEY = RNDONZ)
110 FRINT ACTZD
120 NEXT
130 3
140 FRINT

150 COMF = 0
160 SWAF = 0
170 TIME = 0
180 ¢

190 FROCsort
200 3

210 NOW = TIME
220 ¢

230 FOR X% = 1 TO NX

240 FRINT adIlx)i

250 MEXT

260 ¢

70 @7 o= &90A

280 FPRINT 4 “Time ") NOW/L100 ¢
Seconds"

220 FRINT: NX " NMumbers"

300 FRINT: COMP " Comparisons"

310 PRIMT: SHAP " Suaps"

3Z0 END

330

340 ¢

4

158

Quick sort

250 DEF PROCsort
3460 LOCAL FZ,LZ\Z2%4,PXL,R%E.R2%
370 P%Z = 1

380 SLAFZ) = 1

390 SRA(FX) = NZ

400 ¢

410 REFEAT

420 L% = SLAFZ)

430 R% = SRZ(FX)

440 F4 = PX - 1

450 :

460 REFEAT

470 L2% = LX%

480 RZ%Z = RX

4920 F%Z = TRUE

500 :

510 REFEAT

=l IF A(RZZ) < ACL2X) THEN T =
ACLZZ) + AWLZZ)Y = A(RZZ) 2
A(RZXZY = T ¢ FX4 = NOT FZ 2
SHWAF = GWAF + 1

a30 IF NOT F% THEN L2Z% = LZXZ + 1
ELSE R2X = R2%Z - 1

940 COMF = COMF + 1

550 UNTIL L2% = RZ%

960 :

570 IF L2%Z + 1 < RXZ THEN FZ = FX +

1 ¢ SLA(FXY = L2% + 1 & SRU(FX)
= R%

580 RZ = R2%Z - 1

590 UNTIL L% = RZ

600 :

610 UNTIL FPZ = 0

620 ¢

430 ENDFROC

159

Heap sort

The Heap Sort

The final sorting routine on the tape is the Heap Sort, which makes use of the
idea known as the ‘binary tree’. Although it's only the fastest routine with 150
unsorted items, its timings average well and it is a good contender for the ‘best
all-rounder' prize. If you look at the listing, you'll also notice that it uses up very
little extra memory space in which to operate.

It is more difficult to understand how it works than the other sorting routines.
To make it easier, the following description, using the pack of cards, is a
somewhat simplified version of the actual steps carried out by the computer.
Set out the cards in rows. Put one card in the first row, two in the second row,
four in the third row, and so on, doubling up the number of cards in each row.
You should end up with 21 cards in the bottom row. Now, so that you can see
what is happening more easily, move the cards into the form of a pyramid. Each
card in the upper rows (except where there are cards short in the bottom row)
should be in a position half-way between the two cards below it. Now we are
ready to begin the sort.

Go through the following steps:

| Puta paper-clip on the last card at the right-hand end of the row above the
bottom (the fifth row).

2 If there are no cards below the card with the paper-clip on it, move the
paper-lip on to the card to its left. When you reach the left-hand end of a row,
continue at the right-hand end of the row above.

3 If there are cards below the card with the paper-clip on it, compare the card
with the paper-clip on it with the two cards below it. (With a pack of cards,
there will be one card with a single card below it.) If either of the two lower
cards comes earlier in the pack than the upper card, swap the smaller of them
with the upper card. (Don't swap the lower two cards with each other.)

4 When you reach the left-hand edge of the fifth row, you'll notice that each of
the cards in that row is earlier in the pack than the cards, if any, below it.

5 Repeat the process with the third row. This time, however, if you swap
cards in the third and fourth rows, you may affect the relationship between the
cards in the fourth and fifth rows. If you do, you'll have to carry out a secondary
swap between the fourth and fifth rows to keep them in order.

6 After you have checked out the third row, move up to the second row and
finally up to the top card. As before, you'li have to do subsidiary swaps if you
disturb lower cards.

7 At this point, the Ace of Clubs, being the first card in the pack, should be at
the top of the ‘heap’. Put it on one side as the start of the sorted pack. The rest
of the cards won't necessarily be in order, although any particular card will
always be higher than all of the cards in the ‘mini-pyramid’ beneath it.

160

Heap sort

8 Next, you have to carry out the somewhat laborious process of gathering up
the cards in row order, that is, starting at the left-hand card of the second row
and working towards the right-most card in the bottom row. Then, you have to
make a new pyramid and sort it out as before. This time, however, the cards
will be almost in order so that very little swapping should be needed. The Ace
of Diamonds will now be the top card. Remove it and put it under the Ace of

Clubs.

9 Continue making new pyramids - or ‘heaps’ - until the old pack is
exhausted. Each time, the top card will be the next card in order in the sorted

pack.

10
20
30
40
o0
&0
70
g
20
100
110
120
130
140
150
1460
170
180
190
200
210
220
230
240
250
260
270
2840

REM xxxx HEAF SORT *XXxX

*

CLS

e% = 4

N% = 100
DIM AN

17 = RND{(-12

FOR I% = 1 TO NX
ACTHY = RNDINZ)
FRINT ACXZ) 3
MEXT

FRINT

COMF =

SHAF =

TIME =

o oo R

FROCsort
NOW = TIME

FOR TZ = 1 TO NZ
FRINT A(IX):
MEXT

<+
¢

@y = &90A
FRINT ¢ "Time "3 NOW/L100 "

Seconds"

161

Heap sort

162

290
300
310
320
330
340
350
3460
370
380
390
400
410
420
4310
441
450
460
470
480
420
500
310
5210
530
540
550
540
570
580
590
600
610
6210
&30
640

650

FRINT: NX " Numbers"
FRINT: COMF " Comparisons'
FRINT: SWAF " Swaps" ‘

END

DEF FROCsort
LOCAL TX,J%, T
Jx o= NX

FOR I% = NX DIV 2 TO 1 STEF -1
T = A(IX)
FROCsubhsort
NEXT

A =1

+o b oe

™

OR J% = NZ-1 TO 1 STEF -1
T = A(JA+1)
ACIE+1Y = ACL)
FROCsubsort
NEXT

2 TS

NDFROC

* +4

DEF FROCsubsort
LOCAL FX%,KXZ,L%
K% = I%

F% = FALSE

SWAF = SHAF + 1

REFEAT
COMF = COMF + 1
LA = KZ + KZ
IF L% > J%Z THEN UNTIL TRUE 3
AKZY = T 1 ENDFROC

+
+

&Ha

&0

6810
&S0
700
710

Heap sort

IF L% < J4 THEN IF A(LAZ+1) > ALK
THEN L% = LX + 1

IF T < ALZY THEN AMKE) = ALAY 3
Ko = L4 ELSE FA = TRUE

UNTIL FZ

> e

A{KE%Y = T
ENDEROC

163

Spacer

SPACER

SPACER is a utility, written in machine-code, which adds spaces around
keywords and other selected items in a BASIC program, so making it easier to
read, edit and debug. To a large extent, it reverses the effect of the Crunch
utility.

There are two versions of the program on the tape. SPACER is the version for
use with tape-based computers and resides between &E00 and &FFF.
SPACERDISK is for use with disks and is loaded between & 1700 and &I8FF,
Please refer to ‘Using the Programming Utilities' for installation instructions.
Other than the addresses at which they start, the two programs operate
identically.

As the utility is co-resident, you can load it before or after you get your BASIC
program into memory. Once the utility is in memory, start it working with
CALL &E00 (tape version) or CALL &1700 (disk version).

The routine begins by setting Mode 7 and displaying the message Uncrunching . ..
After a short while - just how long depends on the length of your program and
how many spaces need to be inserted - the prompt will return, leaving the
spaced BASIC program in memory.

There is a table at the end of this section which sets out the BASIC keywords in
the numerical order of their tokens. Spacer will insert a space, provided that
there isn't one there already, around all of the keywords between AND (880)
and HIMEM (&93), with the exception of TAB, and between AUTO (&Cé6) and
the end of the table, with the exception of PROC (&F2). It will also add spaces
around TO (&B8). We have made this selection in an attempt to compromise
between a fast-running, compact utility routine and adding spaces where a
programmer would probably want them, bearing in mind that, in some cases,
adding an extra space would create a syntactically incorrect BASIC statement.

Spacer will also add spaces around colons and (except as mentioned below)
equals signs.

It won't insert a space:

- at the very beginning of a line

- at the very end of a line

- after an asterisk at the beginning of a line (indicating a call to the Operating
System)

- anywhere between opening and closing quotation marks

- to separate)= or {=,since » = or { = (with an intermediate space)
causes a syntax error

|64

- after a DATA statement
- after a REM statement
- if it would cause the line to exceed its maximum permitted length.

Spacer

Since the utility is adding to the size of your program with the extra spaces, it
will stop with a ‘No room’ error if the program is about to exceed the amount
of RAM available to it.

Please refer to ‘Using the Programming Utilities' for notes on tacked-on bytes,
embedded control characters and other general hints.

80 AN

84 OR

88 STEFP
8C THEN
90 FAGE
?4 AES

?8 ASN
9C COUNT
AD EVAL
A4 FN

A8 INT

AC NOT

B0 FOINT(
B4 SGN

28 TO

BC VFOS
Co LEFTS$(
C4 STRINGS<(
C8 LOAD
CC RENUMEER
D0 PAGE
D4 SOUND
D8 CLEAR
DC DATA
E0 END

E4 GOSUE
E8 INFUT
EC MOVE
Fo FLOT
F4 REM

F8 RETURN
FC TRACE

BEC EBASIC KEYWORD TOKENS

81 DIV

85 ERROR
89 SFC

8D Lirme no
91 TIME
95 ACS

99 ATN

90 DEG

Al EXF

AS GET

A9 LEN

AD OFENIN?Z
E1 FOS

5 SIN

E9 TRUE
ED CHR$
C1 MID$(
CS5 EOF

€9 LIST
CD SAVE
D1 TIME
DS EFUT
D9 CLOSE
DD DEF

E1 ENDFROC
ES GOTO
E9 LET

ED NEXT
F1 FRINT
F5 REFEAT
F9 RUN

FD UNTIL

\ New EBASIC only

2 OFENUF in

new EBASIC

3 0ld EASIC only

EOR
LINE
TAE(
OFENIN
LOMEM
ADVAL
EGET
ERL

EXT
INKEY
LN
OFENOUT
RAD

SQR
USR
GETS
RIGHTS(
AUTO
NEW

LOMEMS3
CALL
CLG
DIM
ENVELOPE
GeoL
LOCAL
ON
FROC
REFORT
STOP
WIDTH

F7
FE
FF

MOD
OFF
ELSE
FTR
HIMEM
ASC
cos
ERR
FALSE
INSTR(

: 1.0G
- FI

RND
TAN

vaL
INKEY$
STRS
DELETE
oLD

PTR
HIMEMS
CHAIN
CLS
DRAW
FOR

IF

MODE
VDU
READ
RESTORE
COLOUR
0scLT!

165

Spacer

10 REM xxxx SPACER Xxxx

20 ¢

0 REM (o) Yam Traclkman 1982

40 3

90 DIM msqi(2) I REM Text messaqes
&0 3

70 REM EBasic pointers
80 lomem = &0
0 himem = &4
100 vartop = &2

110 top = &12

120 page = &18

130 ¢

140 memloc = &70 § REM + &71
150 split = &72 ! REM + K73
160 newtop = 74 | REM + &75
170 source = &76 § REM + &77
180 destin = K78 ! REM + &79

190 length = &74
200 quoteflag = KR7E
210 asave = &7C
220 Yysave = &7D
230 offset =
240 ¢

250 oswreh = &FFEE
260 osnewl = &FFE7
270

280 REM Constants

290 eol = K00

ASC "o
&22 REM “
ASC "3"

300 space
310 quote
320 colon
330 star ASC "xV

340 equals s o =n

350 maxsize = &70C ¢ HEM for Mode 7
360 abs 894

370 auto = &Cé

380 data = &DC

320 proc &F2

400 rem &F 4

166

0o

Spacer

410 tab = REA

4720 to = KR8
430 1§

440 org = &E0O0
450 3

460 opt = 2

470 ¢

480 FOR IX = 0 TO opt STEF opt

490 F% = org

500 [

510 OFT IX

520 3

520 LDY %0

540 .msaliloop LDA& mselld,Y N\ Mode 7
ard Litle

550 BEQ msgldone

540 JSKR oswroh

570 INY

580 EBNE msqlloop

590 ¢

600 musaldone LDA #massize

610 SThA himem+1l N\ Himem wunder Mode 7

&Z0 LDX #0

&30 STX himem

&40

650 LDA F1 N\ Start at PAGE + 1

&40 5TH memloc

&70 LRA pages

&80 5TH memlooc+l

&0 3

700 smevwtline LDY #0

710 LDA (memloc).Y

720 CMP $&8FF N End of program. flag

730 BNE morelines

740 JMP finisn

7EL

|67

Spacer

760
770
780
790

800
810
820
830
840

8350
840
g70
880
890
00
210
QZ0
30
240
a0
2410
@70

980
P90
1000
1010

1020
1030
1040
1050
1040
1070
1080
1090

168

emoOrelines INY
INY

LDA (memloc),Y

STA length \ Offset to start of
mext lime

CMF 5 N One byte line

BEQR endline

INY

LDA (memloc),Y N\ First item in
line

CMF #Fstar \ 08 command 7

BEQ endline

DEY N reset it

scleasrauote LDA #0

5Ta quoteflag
smesthyte INY

LDA (memloc),Y

CMFP feol

EEQ endline

EIT quoteflag \ Ianore colons in
quotes

BEFL quote_test

CMP #quote

ENE mextbyte \ Loop wntil closing
quote

BFEQ clesrquote

+
*

squote _test CMF #quote
ENE tokentest

DEC quoteflag \ Set flaq
ENE mextbhyte

+

1100

1110
1120
1130

1140
1150
1160
1170
1180
1190
1200
1210
1220
1230
1240
1250
12460
1270
1280
1290
1300
1310
1320
1330
1340
1350
1360
1370
1380
1390
1400
1410
1420
1430

1940
1450

Spacer

sLokentest CHMF #8D N Line-number

tokern. Mustn’t unpachk
ENE tokens?Z

+
+

THY N\ Newxt 3 bytes asre encoded

line number
IMY

INY

ENE nextbhgte

+
+

ctokens?2 CMP #8880 N A tokern ?
BECS openup

+

CMF #colonm

EEQ openup

CMF fequals

ENE nextbyte

N Dom’t split <= or =
BEY

LA (memloc),Y

INY

CMP & ASC mav

BER mextbhyte

CMF & ASC "o

EEQ nexthyte

LDA& Fequals

+
+

opernip STA ssave
STY ysave
JER unmpackhk
LDA assave
LDY wysave

CMF #data N Can’t space afler

Oor rem
FEQ endline

+

dats

169

Spacer

14460 CHMF #rem

1470 ENE nesxtbhyte

1480 ¢

1490 .endline LDA memloc

1500 CLC

1310 aADC length

1520 8574 memloo

1530 LDA memloo+l

1540 ADC #0

155 STH memloot]

15460 JMP nmestline

1570 ¢

1580 finish JSK osnewl

15920 JMF osmewl N & exit to caller
1400
1410
1620 sunmpack LDA top

14630 CLC

1640 abc &2

14650 LDA top+l

1460 abDC %0

1670 CMF #maxsize \ Room Lo unpack ?
14680 BOC inmem

14690 JUMF outmem

1700 ¢

1718 sinmem LDA &0

1720 STA offset

1730 DEY

1740 CPY #2 N Was it first byte 7
17530 EBEEQ typetest

1740 3

1770 LDA (Memlooc).Y

1780 CMF fspace

1790 EBEED typetest

1800 @

1810 INC offset

1820 INC length

1830 ¢

1840 Jtupetest INY

*e e

170

1850
18460
1870
1880
1870
1900
1910
1920
1930
1940
1950
1960
1970
1980
1990
2000
2010
2020
2030
2040
2050
2060
2070
2080
2090
2100
2110
2120
2130
2149
2150
2160
2170
2180
2120
2200
2210

»y o
2220

2230

INY N Now one wup
LDA {(memloc).Y
CMFP feol

EER movetest
CHMF fFspace

BEQ movetest

H

L.DA ssave

CHMFP FLab

FEEQ movetest
CHF #abs

ECC goodtype
CHF #proc

BEQR movetest
CHF #to

EEQ aoodtype
CMF #Fauto

BCC movetest

saaodtype LDA lermgth

Spacer

CMF #&F0 N Maximum line lenqgth

BCS mo_move N Too big
+*

L3

ING offset

ING length

&

Jranvetest LDA offset
ENE co_maove

o_move RTS N No move

+
%+

ao_move LDY #2
L.DA lenath

OTd (memloc):Y N Over-

current length

+
*

neaded

~-Wwrite

171

Spacer

2240 N Foint split st token
2250 L.DA memloco
2260 CLC
2270 ADC uysave
2280 STA split
2290 LDA memloct+l
2300 ADC #0
2310 STa gplit+l
2320 ¢
2330 \Set uwup move vectors
2340 L split
2350 05 BOUT @
2360 LDA top+l
2370 STA source+l
2380 LDA source
2390 CLC
2400 ADC offset
249410 SThA destin
2420 LDA sourcet+l
2430 ADT 0
2440 STA destintl
2450
2460 LDA top
2470 SEC
2480 SEC aplit
24?0 TAY N Difference over exact R100g
2500 LDA top+l
"“;1 0 SEC
2520 SBC split+l
2330 TaHaX N Fages to move

e

2540 TYA
2550 BEQ shift?
2560 1

ZIH70 N Move odod bytes
2580 INY

2A90 Johiftl DEY

2600 LDA (source),;Y
2410 5TA (destir),Y
2620 CFY %0

172

2630
2640
2650
2660
2670
2680
2690
2700
2710
Z7E0
2730
27499
2750
2760
2770
2780
27940
2800
2810
2820
2830
2840
2850
2860
2870
2880
2890
900
2910
2920
2930
29410
2050
2940
2970
2980
2990
000

Spacer

ENE shiftl

s e

shiftd TXA

BEQR shiftdone

N Move Tull paees
Lani T3 DEC source+]
DEC destintl

*
+

«ahiftd DEY

LDA (source),Y
STé (destin),;Y
CFY 40

ENE shift4

REX

BNE shift3

4

sahiftdone LDA fspace
LDY ysave

CFY #3

BEQ after

DEY

CHMF (memloo),Y
BEQA after

INY

S5ThH (memloc),Y
LDX offset

CEX 41

BEQ repoint

*
*

safter LDY offset
8Th (aplit),Y
DEY

LA asave

STA (split),Y

<
+

173

Spacer

3010 srepoint LDA top

3020 CLC

2030 ADC offset

3040 STa top

30350 STa lomem

30406 STA vartop

3070 LDA& top+l

3080 ADC #0

2090 STA topt+l

100 STA lomemtl

110 8TéH vartop+l

3120 INC ysave

3130 RTSH

3140 3

S150 youtmem LDY #0

31460 smsg2loop LDA msg(Z2),Y N Qut of
MEMOT Y

3170 BEQ msoZdons

3180 JSR oswroh

3190 IMNY

3200 BNE mseZloop

3210 @

220 smusqldomne FLA N FOFP RTS

3230 PFLA

240 JMP firmdsh N Exit 2t once

FE50 2

3260 ¢

3270 PROCtext (1, CHR$22 + CHR$? =+
CHR$31 + CHR$14 + CHR®12 +
"norunotiing)

3280 FROCtext (&, CHR$10 + CHR$10 +
CHR$13 + "No room" + CHR$7)

39N 8

3300 NEXT

asio s

AJE0 END
<+

*

ey
o e

2240

174

3350
33460
3370
3380
3390
3400

DEF FROCtext
= P

Mmuca(MN)
Fmsg(N)

FZ o= FZ + LEN(A$) + 1

Fre-1 =
ENDFROC

0

A%

(N, A%)

Spacer

175

Space remover

SPACE REMOVER

CRUNCH is a machine-code utility for removing spaces from BASIC programs.
It is the second of the three ‘squeeze’ utilities which will help to shorten a BASIC
program. Use it after REMSTRP and before PACKER.

Get the utility into memory as described in ‘Using the Programming Utilities'. It
takes up exactly &100 bytes starting at location &00. CRUNCHDISK is the disk
version and loads at &1800.

When you invoke the utility, the screen will clear (to Mode 7) and the message
Crunching will be displayed in the middle of the screen. After a short while -
depending on the length of your program and the number of spaces init - the
normal prompt will return and the crunch will have been completed.

CRUNCH does not remove afl of the spaces in a program. It will leave quoted
strings - that is, anything between quotation marks - as originally entered. It will
also not touch anything in a line following a REM or DATA statement.

Since spaces can be used as delimiters in «FX calls, CRUNCH will not remove
spaces from any line which starts with an asterisk. Normally, asterisks elsewhere
in the line mean ‘multiply’, so that

A=B:C

is correctly shortened to

A=B+C

However, this will cause problems with something like

IFA = 5THEN +FX 15 0 (with a space between |5 and 0)

which will be reduced to

IFA=5THEN+FX150

The solution is to use commas as delimiters in indine *FX commands, like this
IFA = 5THEN «FX 15,0

Two further checks are made in case your program contains an assembly
language listing. Anything following a reverse oblique (\") is considered to be an
assembly language comment and anything beyond it to the end of the line is left
uncrunched. Secondly, a space can be used as a delimiter between a symbolic
address label and an opcode, as in:

Jdoop INX

The rule here is that a dot at the start of a line will prevent crunching. On the
other hand, if you have a label as part of a multiple-statement line, as here:
BEQ skip : .add INC hibyte : etc. . . .

CRUNCH will create the compound variable name addINC and assembly will
fail. The solution is keep all labels at the start of program lines.

176

Space remaover

Notice that in all of the above cases where we refer to the start of a line, we
mean literally the first byte. One or more spaces before an asterisk or full stop
will prevent the check from operating properly.

There is one other case where removing a space will cause difficulties. You can
reserve a fixed number of bytes in memaory with the special use of the DIM
statement, as in DIM A 25 or DIM B% 30 (see page 237 of the User Guide for
further details). if you use an integer variable, the percentage sign enables the
interpreter to handle the crunched DIMB%25, but if you use a real variable, as
in DIMA25, A25 will be treated as a compound variable name and will generate
an error when you run your program. You must either use integer variable
names or reinstate the space after using CRUNCH.

You may be aware that you can omit THEN after IF, as in

IFA=BC=35

meaning

IFA=BTHENC =5

provided that you leave a space between the variable names B and C. If you put
such a statement through CRUNCH, the space will be removed and the result
will become

IFA=BC=5

leading to a syntax error. Since, when tokenised, both the space and THEN
take up one byte each, there seems to be no good reason to leave out the
THEN when writing programs except, of course, to save work for lazy typists
and to make the program code less readable!

One final point arises if you subsequently want to edit your program. Normally,
when you add lines to your program or edit them, you have to make sure that
you insert spaces wherever there is the possibility of ambiguity, particularly after
a variable name. For example, you cannot type

IFA = BTHEN PRINT

since the line editor treats BTHEN as the name of a variable. (You must type a
space between B and THEN.) As CRUNCH is working on a program which has
already been tokenised, it will produce lines of code without spaces in them such
as

IFA=BTHENPRINT

which will be interpreted correctly and will not cause any errors. However, if
you edit such a line by copying over it, you must re-ntroduce the spaces that
you would have used in the first place.

Space remover

10 REM xxxx CRUNCHER XXXx

20 ¢

30 REM () Ian Trackman 1982

40 @

50 REM Facks in-line sssembler ‘.’ -
causes assembly failure, Not worth
checking time

&0 3

70 DIM msadl)

80 ¢

20 REM Easic pointers

100 lomem = KO

110 vartop = &2

120 top = &12

130 page = £18

140 ¢

150 memloc = &72 ¢ REM + &73
160 split = &74 1 REM + R75
170 source = &7A 1 REM + &7E
180 destin = &7C § REM + &7D
1920 length &80

200 quoteflaqg = &83
210 count &84
220 4ysave &85
£30 ¢

240 oswrch = &FFEE

it o#

250 osnewl = &FFE7

260 ¢

270 REM Constants

280 eol = &0D

290 space = ASC " "

300 quote = 22 ¢ REM
310 colorn = ASC "

320 star = ASC "x¢

330 slash = AKC "\"

340 dot = AKC "."

350 maxsize = &7C + REM for Mode 7
360 rem = &F4

370 data = &DC

380 3

178

390
400
410
24
430
440
450
460
470
480
490

o200
510
AL
w30
940

350

960
w70
580
a0
600
610
620
630
640
650
660
470
680
&0

700
710
720

&E00

H

org

+
%

opt = 2
*

Space remover

FOR IZ = 0 TD opt STEF opt

i o= arq
L
OFT I%

*
+

LDY %0

Mmsalloop LDA msql(l),Y \ Mode 7

and title
EEQ msqldone
JSR oswreh
INY

ENE msalloop
smagldone LDA
1

STA memlococ
LDA page

STAa memlact+l

+
+

smextline LDY
L.BA (memloc),

F1 N\

#0
Y

Start at FAGE +

CMF #&FF N End of program flag

ENE morelines
JMF fimish

+
+

«Mmorelines INY
INY
LDA (memloc),

Y

5Téa length N Offset to start of

next line
CHMF #5 N\ One
EEQ endline

*
*

byte

line

179

Space remover

730 INY

740 LDA (memloc).Y

750 COCMF $#star

760 EBEQ endline N Opening X7 don’t
cruneh

770 i

780 CHP #dot

790 EBEEQ endline N Operning Assembler
f 7 donft orunch

g00 DEY

a10 3

8720 .clearquote LDA #0

830 STA quoteflag

a40 @

850 .newtbhwyte INY

8460 LDA (memloc),Y

g70 CHP #eol

2880 EEQ endline

890 3

200 BIT quoteflaa \ Igrore colons in
quotes

10 BPL quote_ test

Q20 3

@30 CMP daquote
240 EBENE mextbyte N\ Loop until closing

quote
250 EBEQ clearquote
Y U

@70 saquote_test CMP #quote

980 ENE tokentest

o0 ¢

1000 DEC quoteflag N\ Set flag

1010 EBENE nextbyte

1020 @

1030 .tokentest CMP #&88D N\ Line-number
tolkern, Mustn’t examine

1040 ENE test?

1050 @

Space remover

10480 INY N Mext I bates sve encoded
Time rmber

1070 INY

1080 IMY

L20 BNE mextbhyte N Alwasvys

1100 3§

L1L0 stest? CMF drem N Can’t orunch
after rem, dats or N

1120 EBEQ endline

1130 ¢

1140 CMF fdsts

L1%0 BEQ endline

Li&sn

1170 OMF #slash

1180 EEQ endline

riea ¢

1200 CHMF dspace

1210 ENE nextivyte

1220 3

1230 STY uysave

1240 JSKR crunch

1250 DEC 4ysave

1260 LDY ysave

L2770 ENE mextbyte N Always

1280 3

1290 sendline LDA memlococ

1300 CLC

1310 ARG lenath

1320 8TaA wmemloc

1330 LDA memloo+l

1340 a&aDC 40

1350 STH memloct+l

13460 JMP nextline

1370 3

1380 sTfindsh JER osnewl

1390 JMF osnewl N & exit Lo caller

1400

1410

e ao

18l

Space remover

1420 .orunch LDA memloc N\ Foint destin
at space

1430 CLC

1440 ADC gsave

1450 S8TA destin

14460 LDA memloc+l

1470 ADC #0

1480 STA destintl

1490 3

1500 \ Set up move vectors

1510 LDA destin

1520 CLC

1530 ADC #1

1540 STA source

1550 LDA destintl

1560 ADC #0

1570 STA source+l

1580 3
15920 L.DA top
1600 SEC

1610 SEBEC source

16420 STA count

14630 LDA top+l

1640 SEC

1650 SEC source+l

1660 LDY %0

1670 TAX N\ Pages to move
14680 BEQ shift2

1670
1700 .shiftl LDA (source)l,Y
1710 STa (destirn).,Y

1720 INY

1730 EBENE shiftl

1740 INC source+l

1750 INC destintl

e

*

1740 DEX
1770 EBENE shiftl
1780 3

182

1790

1800
1810
1820
1830
1840
1850
18460
1870
1880
1890
1900
19210

1920
1930
1940
1950
19240
1970
1980
1990
2000
2010
2020
2030
2040
2050
2060

2070
2080
2090
2100
2110
2120

Space remover

+sNift2 LDX count \ Move odd
bhytes

EEQR shiftdone

sahift3 LDA (source),;Y

STha (destind,Y

INY

DEX

ENE shift3

-t

*

shiftdorne LDY %2
DEC length

LPAa lerngth

STA (memloc),Y N Over-write
current length
L.DA top

SEC

SBEC #1

5Ta top

STA lomenm

STA vartop

L.DA top+l

SEC #0

5Té top+l

STh lomem+l

5Tty vartop+l

RTS

]

FROCteaxt (1, CHR$2Z + CHR$7 +
CHR$31 + CHR$15 + CHR$1Z +
"Crunching ')

XT

ND

o4 wo ITH e 77 ae

183

Space remover

2130 DEF PROCLext (N,A%)
2140 msa(N) = F%
2150 FmaglN) = A%
21460 PX = P4 + LE
2170 PZ?-1 = 0
2180 ENDFROC

MiAt) + 1

184

Speech chip number generator

SPEECH CHIP NUMBER GENERATOR

SPEAK, written in BASIC, is a routine for converting numerical values into words
"0 be 'spoken’ by the BBC Microcomputer Voice Chip.

The main loop simply repeats, collecting keyboard input and passing it to
PROCspeak, where all the work is done.

The procedure first tests whether it has, in fact, been given a number. If the
parameter is invalid, it will say 'zero’.

We next test for range. Since the word ‘million’ is not available on the Chip, any
number above 999,999 or below — 999,999 will trigger the response Number
too large.

Any minus sign is recognised and any numbers following a decimal point are
separated out.

If the number is greater than 999 (or less than—999), the procedure recursively
calls itself in order to handle repeated phrases. Because of the recursion, it is
important that D$ is declared to be local, so that previous values are saved.

The procedure then deals with smaller integers, with special attention to the
numbers between 10 and 20.

Finally, if we have a floating point number, the digits following the decimal point
are pronounced, although rounding will occur if the number cannot be stored
with sufficient accuracy as a real variable.

10 REM xxxx SPEECH CHIFP DRIVER XKXX

20 1
30 REM () TIan Trackmarn 1982
494 3

50 REFEAT

41 ITNFUT A

S0 FROCspeak. (&)
820 UNTIL FALSE
Al
100
1110
120

T} o=

NI

e e

185

Speech chip number generator

186

s
L
o}

1460
1740
180
190

200
210

220

230
240

230
2610
220

280
290
300

310

320
330
340

350

DEF PROCspesk (N)

IF N = 0 THEN SOUND -—-1,A8C"0",0,0 ¢
ENDFROC ¢ REM Zero or invalid

IF ABS N »= 1E& THEN SOUND
=1,229,0,0 3 SOUND ~1,50,0,0 ¢
SOUND ~1,Z214,0,0 ¢ ENDFROC § REM
"Number too large®

LOCAL D%

IF N <2 0 THEN SOUND ~1,219,0,0 ¢ N
= AES N 1 REM Minus

D$ = STREN + 1) ¢ REM Frevent E
format it 1 < .1

D% = MID$(DE, INSTRDS,".")) ¢ REM
Save decimal part

IF N * 999 THEN FROCspesk (N DIV
1000) 3 SOUND -1,141,0,0 ¢ IF N MOD
1000 AND N MOD 1000 < 100 THEN
EBUND “19165,09ﬂ

M = N MOD 1000

IF N < 1000 AND N > 99 THEN SQUND
=1, ABC STR$EN DIV 100),0,0 ¢ SOUND
~1,140,0,0 ¢ IF N MDD 100 THEN
SGUN& “1;1&590’0

N = N MOD 100

IF N > 19 THEN SOUND ~1,140 + 2 x
(N DIV 10),0,0 3 SOUND ~-1,137,0,0
IF N < Z0 AND N > 12 THEN SOUND

=1 140 + 2 %X (M MOD 10),0,0 ¢ SOUND
-1,:13%,0,0

IF N = 12 THEN SOUND ~1,;273,0,0

IF N o= 11 THEN SOUND ~1,190,0,0

IF N = 10 THEN SOUND -1,244,0,0

*

3610

370
380
390
400
410
420
430
440

Speech chip number generator

IF N > 20 OR N < 10 THEN N = N MOD
10 ¢ IF N THEN SOUND -1,A50C STRS
N,0,0

IF INSTR(D$,".") = 0 THEN ENDFROC

FOR N = 1 TO LEN D%
SOUND ~1,A8C MID$(D$,N,1),0,0
MNEXT

*

ENDFROC

187

Unpacker

UNPACKER

UNPACK is a utility, written in machine-code, which splits up multi-statement
BASIC program lines into single statements on separate lines, so making the
program easier to read, edit and debug. To a large extent, it reverses the effect
of the PACKER utility.

There are two versions of the program on the tape. UNPACK is the version for
use with tape-based computers and resides between &EQO and &|0FF.
UNPACKDISK is for use with disks and is loaded between &1600 and &I8FF.
Please refer to ‘Using the Programming Ultilities’ for installation instructions.
Other than the addresses at which they start, the two programs operate
identically.

As the utility is co-resident you can load it before or after you get your BASIC
program into memory. Once the utility is in memory, start it working with
CALL &E00 (tape version) or CALL &1600 (disk version).

UNPACK will create a new single-statement line for every statement in a
multiple-statement line, except for statements following an IF or ON ERROR
command. Essentially, it is looking for colons, although it will ignore colons in a
string between quotation marks, a colon in a REM or DATA statement and a
colon following an asterisk at the start of a line (indicating a call to the Operating
System). It will also not unpack after a reverse oblique ('), which indicates the
start of a comment in an assembly language program.

The additional program lines will need new line-numbers and these are created
in increments of one, following the multi-statement line. For example:

100 CLS : INPUT X : A=B+X

will become:

100 CLS

101 INPUT X

102A=B+X

This means that there must be a large enough gap in the line-numbering
sequence before the next line to allow sufficient new numbers to be created.

The routine begins by testing the line-number spacing. if it finds that there are
too many statements to fit in, it will exit with the message Renumbering needed
at line number: — followed by a list of the one or more line-numbers at which
the problem lies. Cure it by renumbering the program with a larger increment -
the second parameter in the RENUMBER command.

Once UNPACK is satisfied that it can work properly, it will display the message
Unpacking and start to work. After a short while - just how long depends on

188

Unpacker

the length of your program and how many statements need to be unpacked -
the prompt will return, leaving the unpacked BASIC program in memory.

Whilst unpacking, the utility will also remove any spaces on either side of a
statement-separating colon, since they will no longer be needed.

There are two situations which will stop UNPACK from completing its task. The
first is when the program, which is being expanded by the creation of new line-
numbers, runs out of memory in which to grow. The second case is if you try to
make it unpack a multi-statement line numbered 32767, since BASIC will not
accept a line-number greater than 32767. In both cases, UNPACK will stop with
a No room error.

Please refer to ‘Using the Programming Utilities' for notes on tacked-on bytes,
embedded control characters and other general hints.

10 REM xooxx UNFACKER XxXxxX

20 ¢

30 REM (¢) Tan Trackman 1982
40 3

50 DIM msg(3) 1| REM Text messaqes
&0 3

70 REM Basic pointers

80 lomem = &0

Q0 himem = &&

160 vartop = &2

110 top = &17

120 paae = &18

1320 3

140 limenum = &70 ¢ REM + &71
150 memloc = &72 ¢ REM + &73
140 qgap = &74 + REM + &795
170 modild = R7A4 1 REM + K77
180 rnewtop = &78 ¢ REM + &79
190 source = &7& ¢ REM + &7E
200 destin = &70 ! REM + &7D
210 chars wm &7E

220 vernumflag = &7F

230 lengthn = RB0

240 colon count = &81

250 if_fTlaag = &8Z

260 quoteflasg = &3

270 passl = RE4

189

Unpacker

190

2810
290
300
310
320
330
340
350
360
370
380
390
400
410
/20
430
440
450
460
470
480
490
500
510
520
©30
540
550
Ho60
570
5840
550
400
6110
&20
H3N
640
650
660
4710

opt STEF opt

for Mode 7

“ERROR?

¥

token

Mimemtl N Himem undeyr Mode 7

newlength = K83
offset = KB&
nswrch = KFFFE
osrnewl = &FFE7

REM Constants
rnumsize = 8

eol = &01D

Space = A%cC " o"
qriote = EZ2Z 1 REM
color = #sc "I
star = AGC "x'
alash = AGC "N\
maxsize = K70 § REM
erToaonr = 8% | REM
if = &E7

rem = &F4

ciata = R0

org = EEOQ

opt = 2

FOR I = 0 TO

F7% = org

[

OFT 1%

LDa 216 N\ Set MODE
JE5R oswroh

Lha &7

JER oswroh

LDA fmaxsize

8TA

LDX &0

STX rernumflaag N\ Clear
STX himem

DEX

it

Unpacker

680 STX passl N\ Set "pass number”
indesx

+d

&90
700 ,maimloop LDA #1 N Start at FAGE +
1

710 STA memloc

720 LDA page

730 85TA memloc+l

740
750 snextline LDY &0

760 LDA (memloc),Y

770 CMP #&FF N\ End of program flag
780 ENE morelines

790 JMP endprog

-

LL

<>

aoo ¢
g10 .movelines STA limnenum+l N\ Hi-lo
820 INY

830 LDA (memloc),;Y

240 S8T7TA linenum

850 INY

B60 LDA (memloc),Y

870 S7TA lerngth N\ Offset to start of
next line

e

880
8e0 COCMF 495

200 EBEQ endline
10
Q20 LDA %0

230 STA colon_count N Clear them
40 STA if_flag

*e

@50 INY
240 LDA (memloc),Y N\ First item in
line

@70 CMF #star \ 0S5 command ?
80 BEQ endline

220 DEY N reset it

1000

T

191

Unpacker

1010 selearauote LDA &0

1020 STha aquoteflag

1030 ¢

1040 snextbhyte INY

1050 LDA (memloc):Y

10&40 COMP #eo0l

1070 EBEQ endline

1080 ¢

1090 BIT quoteflsg N Igrore colons in
guotes

1100 EFL iftest

11i0 ¢

1120 CMP #Fquote

11530 EBNE mextbyte N Loop wuntil closing
quote

1140 EEQ clearquole

1150 3

1140 ,iftest CMF #if

1170 BEQ endline

1180 3

1190 CHMF frem

1200 BEQ endline

1210 ¢

1220 CHMP #error

17230 EBEQ endline

1240 1@

1250 CMF #slash

1260 EBEQ endline

1270 1@

1280 OCMP 2data

1290 BEQ endline

1300 2

1310 CMP #88D N Line mnumber follows

1320 BENE aquotetest

1330 ¢

1340 INY

1350 INY

12340 INY

1370 ¢

192

1380
1390
1400
1910
1420
1430
1440
1450
1440
1470
1480
1490
1500
1510
1520

1530
1540
1550
15450
1570
1580
1590
1400
1a10
1420
14630
14640
1650
14660
1470
1480
16910
1700
1710
1720
1730
1740
1750

squotetest CMF fgquote
ENE colontest

DEC quoteflag \ Set Tlao
ENE nexthyte

+
L]

colontest CHMP fcolon
ENE nemxtibhyte

INC colon_count

BIT passl

EMI nextbyte

CRY #3 N\ FPass 2 only

BEQ nextbyte N\ Don’t unpack

apening colon
JSE unpack
JMP mextline
senddline LDA memloco
CLG

ARG lerngth
STA memloo
LDA mnemloc+l
ADC &0

STA memloo+]
BIT passl

EFL nestjump \ di.e. on pass 2
+

LDA colon_count
BEQ next jump

CRY 44 N Single colon line
EEQ mewxt jump

JER roomtest
srEst jump JMF nextline

+
+

Unpacker

193

Unpacker

1760 .endprog BIT renumflaqg

1770 EBMI fimish N If set

1780 ¢

1790 INC pzssl \ To 0 or 1

1800 EBENE finish N 1 means second pass
done

i810 ¢

1820 LDY #0

1830 .msaeZloop LDA msgl(Z),Y N
Unpacking

1840 EBEEQ msqldone

1850 JSR oswrch

1860 INY

1870 EBNE msqgZloop

1880 .mseZdone JMF mainloop

1890 @

19200 .finish JSR osnewl

1910 JMF osnewl N & exit to caller

1920

1930

1240 .roomtest LDY %0

1950 LDA (memloc),Y

1960 OCMF #&FF N\ End of program 7

1976 BEQ test32767

1980 ¢

1990 LDRA linerm

2000 CLC

2010 ADC colon_count

2020 STA qap

2030 LDA linenumtl

2040 ADC %0

2050 STA gaptl

2060 CMF (memloc),Y / Next linenum hi

2070 EBCC test3dZ7&7

- oo

2080 3
2090 LDA gap
2100 INY

2110 CMF (memloce),Y /7 Next linenum lo
2120 EBCS no_raom
2130 ¢

|94

Unpacker

2140 N Can’t unpack beyond 32767
2150 +test327467 LDA limernum+l
2160 OCHMF #&7F

2170 EBNE jumpbachk

2180 LDA linerum

2190 OCMF #&FF

2200 EBENE jumpback

2210 1%

2220 .no_room BEIT rermumflag
2230 BMI listit

2240 DEC remnumflag N\ Bet it
2250 3

2260 LDY #0

2270 smsqglloop LDA msg(l);Y N\ Rerumber
2280 EBEQ listit

2290 JSR oswrch

23006 INY

2310 BNE msglloop

2320 3

2330 Jlistit JSK rmumber

2340 ., jumpback RTS

2350 13

23460 13

2370 N Convert Z-byte hex line-number
to decimal ASCIT

2380 N value holds valuwe Div 10

2390 N modlld holds valwue Mod 10

2400 3

2410 srnumber LDX #Frumsize

2420 STX chars N ASCIT digit counter
2430 1
2440 .cornvert DEC chars

2450 LDA #0

2460 S8STA wmodadll

2470 8TA modli+l

2480 LDX #&10 N Double byte
2490 CLC

2500 3

195

Unpacker

2510 .odivlioop ROL lineram N\ Bit 0
(carry) bhecomes quotiernt

2520 ROL linenumtl

2530 ROL modld

2540 ROL modlo+1

2950 1§

2560 LDA modll

2570 SEC

2584 SBC #10

2590 TaHY N Low bwyte

2600 LDA modlQ+l

2610 SEC &0

ZHZN BLCC deccount N if dividend <
divisor

2630 8

7640 STY modld N Next bit of dividend =
1.

ZHH0 8TA mocdld+l N Dividernd = Dividend
-~ givisor

26460 3

2670 sddeccount DEX

24680 BNE divioop

2690

2700 ROL 1imenum N Shift in last carry
for aquotient

2710 ROL linenumtl

2720 ¢

2730 LDA mocl(

2740 ORA FASC "0 N ASCII mashk

2750 FHA N Stack it (starts at
riatb-hand digit)

27460 3
2770 LDA linernum N Continue 1if valuwe <&
]

2780 ORA linenumtl
2790 BNE convert
2800 3

196

2810

2820

2830
2840
2850
2840
2870
2880
2890
2900
2910
2920
2930
2940
2950
2940
2970
2980
2990
2000
3010
3020
3030
3040
3050
30640
3070
3080
3090
3100
3110
3120
3130
3140
3150
3140
3170
3180
3190

.
+

LDX chars
EEQ outrmml N Only possible if
rumMsize = 5

N FPad to right-justify

+

+
+

+

+

s rE

o

+
+

4

+
¢

\\

*
[

LDé& #asc o
tblasmk FHA
DEX

ENE bDlanhk

outnuml LDX #numsize
outnum?Z FLA N Unstack ASCII
JOR oswreh

DEX

ENE outrium?

RTH

unpack LDA top

CL.C

ARC 3

8TéH newtop

LD& top+l

ARG &0

CHP Emarxsize N Room to unpack
BECC inmem

JMF outmem

inmem STA newtopt+l
LDa& %3
Th offset

Spaces arownd colon ?
INY
LA (memloc),Y
CMF #apace
ENE bhack
DEC offset
DEC length

?

Unpacker

197

Unpacker

3200 .hack DEY

3210 DEY

3220 LDA (memloce),Y

3230 CMF #space

3240 ENE forward

3250 DEC offset

3260 DEC length

3270 DEY N Obliterate the space

3280

3290 .forwarc INY

3300 LDA #eo0l

3310 8TA (memloc);Y N In last byte of
line

3320 INY

3330 8STY newlength N Foint to next
(rew) line start

3340 LDA length

3350 SEC

3360 SEC newlength

3370 CLC

3380 ADC #*3

3320 STA length \ New line‘s lengthn

3400 L.DY #2

3410 LDA nmewlerngth

3420 S7TA (memloc),;Y N\ Over—write
current lenath

3430 @

3440 N\ Foint memloc st new line start

3450 LDA memloc

34460 CLC

3470 ADC newlength

3480 8TA memloc

3490 LDA memloc+l

3500 ADRC %0

3510 STA memloct+l

3520 ¢

3530 \Set up move vectors

3540 LDA memloc

3550 TBTA source

3560 LDA toptl

198

*e

£ d

Unpacker

as7d 87TA sowurcetl

3580 LDA sowurce

3590 CLOC

3400 ADC offset N\ 3, 2 or 1
34610 STH destin

3620 LDA sourcetl

3630 ADC #0

3440 STA destintl

3650
3660 LDA top

3670 SEC

3680 SBEC memloc

3490 TAY \ Difference over exact &100s
3700 DA top+l

3710 SEC

3720 SBELC memloctl

3730 TAX N\ Fages Lo move

o

3740 TYA
3750 EBEQR shiftl
3760 ¢

3770 N Move odd bytes
3780 INY

a7Y0 .shifttl DEY

3800 LDA (source),Y
aBli0 8TA (destin).Y
agzoe CrY #0

3830 BENE shiftl

3840

2850 .ashiftld TXaA

3860 EBEEQ shiftdone
as7o 1

3880 N Move Tull pages
AP0 .shift3 DEC sourcet+l
3700 DEC destintl
3910 ¢

3920 Lushiftd DEY

39230 LDA (sourcel,Y
39240 5§74 (destind,Y
3950 CPY %0

9460 BNE shift4

Unpacker

avz7o DEX

3980 EBNE shift3

3990

4000 N New line’s info.
4010 .shiftdone LDY ¥2
4020 LDA lenath

4030 SThA (memloc),Y
4040 DEY

4050 LDA linermm

4060 CLC

4070 ADC #1

4080 8STA (memloc),Y
4090 DEY

4100 LDA linenum+l
4110 ADC #0

4120 STaA (memloc).Y
4130
4140 LDA mewtop
4150 8Ta top

41460 8STA lomem
4170 HTéh vartop
4180 LDA newtoptl
4120 STa top+l
4200 8TaA lomemt+l
4210 SThH vartopt+l
4220 RTS

-

4230 3
4240 ,ouwtmem LDY F0
4250 .msg3loop LDA msq(3),:;Y N Out of

MEMOTY
42460 BEQ msa3done
4270 JSE oswroh

4280 INY
4290 ENE msq3loop
4300

4210 .mesqd3done FLA N FOF RTS
4320 PLA
4330 JMF fimish N Exit at once
43440 1
4350 3

200

43560

4371

4380

4390
44400
1510
4420
44320
4440
4450
4460
4470
4480
4490
4500

Unpacker

FROCtext (1, "Renumbering needed at
lime mumber 31=" + CHR#%10 + CHR$10 +
CHR%13)

FROCtext (2,CHR$31 + CHR$14 +
CHR%12Z + "Unpacking ")

FROCtext (3,CHR$10 + CHR$10 +
CHR$13 + "No room”™ + CHR%$7)

MEXT

END

DEF PROCtext (N, A%)
meql(N) = FZ%

Frsgi(N) = A%

A o= PR O+ LENC(A%E) + 1
pae-1 = 0

ENDFROC

201

Variable dump

VARIABLE NAMES DUMP

When you have written a reasonably long program or if you are reading through
someone else's program, it is often a good idea to make a print-out of a list of
the names of all the variables used in the program. You can then add notes as to
how the variables are used. It can also help to ensure that you don't accidentally
re-use the name of an existing variable and so over-write its value when the
program runs.

VARDUMP is a machine-code utility which resides at &E00 (tape) or &1800
(disk) and takes up less than &100 bytes. The disk version is VARDMPDSK.
Please refer to ‘Using the Programming Ultilities’ for loading instructions. Having
loaded VARDUMP into memory, use it with CALL &EO0O (tape) or CALL
&1800 (disk).

You can either install the utility before you load your BASIC program with a
«LOAD command or you can use it directly from tape or disk with a *RUN
command after loading or running the BASIC program. (Disk users can type
»VARDUMP.) Provided that you don’t over-write it, the utility will remain in
memory whilst you load and save BASIC programs.

VARDUMP prints out a list of all the names of the variables created by a BASIC
program. It does not print out the names of the ‘system variables’ (A% to Z%),
since these remain in memory at all times whilst the computer is on and it is not
possible to tell, at least with this utility, whether the BASIC program makes use
of system variables.

Other integer variables are suffixed with a % sign. String variables are suffixed
with a § sign. Arrays, whether real, integer or string, are followed by the size of
the element(s) with which they have been dimensioned.

Notice that we particularly referred to variables created by the BASIC program.
If the program does not execute a statement which creates a new variable, its
name will not be included in the print-out. For example, if the program contains
a test which is always passed, you will never see a variable which is used only
within a procedure called when the test fails. A similar situation will arise if you
start the program but interrupt it before it has generated all of its variables.

If you want to search your program to see whether a particular variable is
referred to in it, for example a system variable, use the XREF utility in the
Toclbox. You can also use XREF to produce a list of lines in which any particular
variable occurs in the program.

Remember also that variables are destroyed if you alter or renumber the
program, type CLEAR, or press Break.

202

Variable dump

To send a list to your printer, simply preface the CALL with a VDU 2 command
or a Control B.

The program works by referencing an index table which starts at location &482.
The table contains the link addresses of further details of the variables
themselves. Since the table is only ordered to the extent of the first character of
a variable’s name, the list produced by VARDUMP will not necessarily be in true
alphabetical order,

The utility contains a useful subroutine called 'convert’, which converts a
hexadecimal number to decimal and then prints it out in ASCII.

10
20
a0
40

S0

&0

70

80

20
i00
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270

REM xxxx VARIABLE NAMES DUMP XXXX
REM () Lanm Trackman 1982

REM Does not list system variables
6% to Z4

*HEY 1 CALL &18001M

R}

vector = &70 § REM + &71
temp = K72 + REM + &73
number = &74 { REM + R75
modl) = &76 { REM + &77
count = &80
dimens = K81
yesave = K82

+
+

hase = &482

+
+

oswrch = &FFEE
osnewl = &FFE7
org = KEQQD

opt = 2

FOR I% = 0 TO opt STEF opt
F#% = org

203

Variable dump

204

280
290
300
310
3Z0
330
340

350
360
370
280
390
400
410
420
430
440
450
460
470
480
490

w00
a10
520
a3
540

a9l

G360
570

wgo

a9n
400

[
OFT I%

LDX #0

STX count \ Zero it
shextletter LDA base,X N\ lsb of

rnext variasble start letter

8TaA vector

INX

LDA base,X N msh of letter

EEQ endlaoop N Zero if no names

e

5TA vectortl

-

inloop LDY #0

LDA (vector),Y

5TaA temp N Heep our place
IMY

LDA (vector),Y

5TH temp+l

JBR print

LA temp N Restore place before
print-out

STaA vector

LDA temp+l

STa vector+l

EBNE inloop N Alwaygs

-+

+e

erciloop INC cournt N Move on Lwo
butes

INC count

DY count N 58 Z-byte variable
MEmes

CFX ¥&74 N (& ~ Z, 8 — z incl.
intermediste ASCIID

ENE rmextletter N More 7

*
L4

*

610
620
&30
440
&H50
&60
&7 0
480
&9 10
700
710
720
750
740
750

760

770
780
790
800
a810

820

830
&g40
850

8460
a870
880
890

Pol

P10
g0

Variable dump

RTS N A1l dome, so exit

Frint-out subroutine

Convert count to ASCII letter
prinmt LDA count
SR AN DIV Z

> o ee S se s

CLC

ADEC #441 N\ Add conversion offset
«ame JSR oswreh N Frint it

INY

LDA (vecotor);Y N Next character
CH 2A8C "0 N S14i11 slpha-numeric

part of mame 7

BCS name N If so, continue
printing

+

CMF 0 N End of variabhle 7
BEEQ endname \ Exit swubroutine
4

CHFP #AS5C " (" N Start of srray info
]

ENE name N If not, must be % or $,
s0 print it

+

+

N Frint dimensions of array
JESK oswroh N Print opening
hracket

INY

THNY

L.D& (vector),Y

STH dimens N\ Encoded mno. of
elements

DEC dimens N Decode to actuasl
numbDer

LR dimens

-e

205

Variable dump

920 N FPrint dimension of each

440

950

P40

270

280

20
1000
1010
1020
1030
1040
1050
1060
1070
1080
1090
1100
1110
1120
1130
11490

1150
1140
11746
1180
1120
1200
1210
1220
1230
1LZ4%8
1250

12460

206

+

£
+

@lemeant
element INY

LD& (vector),Y
SEC
SEC #1 N Element includes 0
STHA mumber N\ lsbh
IMY
LDA (vector),Y
SEC #0 N\ Forrow from -1 7
ST number+l N msb
GTY wsave \ HKeep our place
LDA& 20 N End of string flaq
FHA

N Convert to decimal ASBCIIT

¥

L

-

Y

e

convert LD& #0

STaH modlld N Zero them

8TA modli+l

LDX #&10 N\ Dowble byte (16 bits)
cLC

divlioop ROL mumber N Eit 0
(carry) becomes guotient
ROL mumber+l

ROL. mos10

BOL modlo+d

LDA modld

SEC

GEC #10 N Division by subtracting
tens

THY N Save low byte

LDA modlid+l

SBEC #0

BOL deccount N IF dividend -
civisor

1270
1280

1290
1300
1310
1320
2238

1340
1350
1340
1370
1380

13940
1400
1410
1420
1430
1440
1950
14460
1470
1480
1490
1500

1510

1520

1530
1540
1550
15460
1570

1580
15%0

Variable dump

STY modld N Newt bit of dividend =
1

SThA mocdlo+l N Dividend = dividend
- fivisor

£

deccount DEX
ENE divlioop N\ Done 146 hits 7

%+

e

ROL number N Shift in last carry
for gquotiernt
QL. mumber+1

LDA mocdl(

ORA EASC "0" N ASCIT mashk
FHA N Stack it (starts at
right-hand digit)

e

LD rmumber
ORA number+1
ENE convert \ Not two zeros

-

outrnum FLA N Unstack aASCIT
BEEQ numdone N Ernd of string 7
JER oswroeh

JMF outrnum N Do some more

-

-

rumcdone DEC dimens
EEQ close N\ All elements printed
7

-

-

LDA FASCY ;" N Separate next
element with comma

JER oswroh

LDY ysave \ Restore position
JMF @lement \ Do next element

o

close LDA #ASC ") N Ernd of
array
JER oswroh

>

e

207

Variable dump

1400 .endrname JMF osnewl N CRLF andd
exit subroutine

1610 1
1620 1
1630 NEXT
14640 ¢

1650 END

© lan Trackman 1983

Al rights reserved. No part of this Manual (except brief passages quoted for critical purposes) or of
the computer programs to which it relates may be reproduced or translated in any form or by any
means, electronic, mechanical or otherwise, without the prior written consent of the copyright
owner.

Disclaimer: Because neither the BBC nor the author have any control aver the circumstances of use
of the programs, no warranty is given or should be implied as to the suitability of the programs
described in this Manual for any particular application. No liability can be accepted for any
consequential loss or damage, however caused, arising as a result of the operation of the program.

Printed in England by Popper & Company Ltd, Welwyn Garden City, Hertfordshire

208

