Three of a kind We look at low-cost computing with reviews of the Atmos, Spectravideo and Dragon 64 systems Customize your Commodore 64 with our new series on adding BASIC keywords Programs don't work? All the secrets of debugging techniques are revealed inside Format your text in BBC/= Electron programs with our word-wrapping procedure The winners of our Adventure competitions GRAFPA GRAFPAI ...for as many uses as YOU can imagine! With Grafpad you can now add a new dimension to your computer enjoyment, but most important, it helps you create your own application programmes by the simple use of the Grafpad! The Grafpad comes complete with a cassette comprising two programmes. #### THE FIRST PROGRAMME displays the co-ordinates of your screen area. The co-ordinates are based on the screen with a grid size of 1023 x 1279 pixel, also in the Grafpad giving you a grid size of 320 x 256 pixels! #### THE SECOND PROGRAMME provides you with the utilities for circles, squares, triangles, free-hand, erasing line-drawing etc, and of course, full "Fill-in" facility in 16 different colours by the simple use of the pen! Draw from a simple apple to a computer circuit - store in cassette or disk, perhaps transfer direct to a printer - in black and white or full glorious colour! Purchase unique C.A.D. (Computer Aided Designs) programme and add further enjoyment and professionalism to your computer designs! The Grafpad comes complete with Operational Manual. Programmes, The Grafpad and Pen and it simply plugs in your computer. (Size: 25mm height x 55mm width x 260mm depth) Weight: 1.2 kg (Gross) BY TELEPHONE: Simply fill in the coupon, enclosing your cheque/PO. made payable to: BRITISH MICRO, or use the special BY POST: (The above designs were drawn by a 12-year-old at our showrooms!) - DEALER INQUIRIES WELCOMED - SPECIAL DISCOUNTS FOR EDUCATIONAL #### BRITISH MICR A HEGOTRON GROUP COMPANY Unit Q2, Penfold Works, Imperial Way, Watford, HERTS WD2 4YY TEL: (0923) 48222. TELEX: 946024 Card Holder simply telephone us giving your Card No., Name, Address and item(s) required and your orders will be section for Credit Card Holders, and post to the address below. Please allow 14 days for delivery. dispatched within 48 hours! Post to: BRITISH MICRO, UNIT Q2, PENFOLD WORKS IMPERIAL WAY, WATFORD, HERTS. WD2 4YY If you are an American Express, Barclaycard, Diners Club or Access Please send me Grafpad for: BBC MODEL 2 SINCLAIR SPECTRUM (Please tick) COMMODORE 64 | Qty. | Item | Ex. VAT | Inc. VAT | Total | |---------------------------|------------------|---------|----------|-------| | | Grafpad Complete | £125.00 | £143.75 | | | | C.A.D. Programme | £18.00 | £20.70 | | | | £5.00 | | | | | nclose my cheque/PO for £ | | | | £ | I prefer to pay with my American Express, Barclaycard, Diners, Access Card (Please cross out whichever is not applicable) | 100000000000000000000000000000000000000 | , | | |---|---|--| | CARD NO. | | | | SIGNATURE | | | | GIGNATURE | | | NAME ADDRESS. Address above must be the same as card holder. Our thanks to Stirling Microsystems, 241 aker Street, London NW1 for the loan of the ragon 64. #### Editor: Peter Green Editorial Assistant: Jamie Clary Senior Advertisement Manager: Malcolm Wynd Advertisement Copy Control: Sue Couchman, Ann McDermott Managing Editor: Ron Harris BSc Chief Executive: I.J. Connell Origination by Design International. ABC Member of the Audit **Bureau of Circulation** ISSN 0142-7210 Computing Today is normally published on the second Friday in the month preceding cover date. Distributed by: Argus Press Sales & Distribution Ltd, 12-18 Paul Street, London ECZA 4JS. 01-247 8233. Printed by: Alabaster Passmore & Sons Ltd, Maidstone, Kent. The contents of this publication including all articles, designs, plans, drawings and programs and all copyright and other intellectual property rights therein belong to Argus Specialist Publications Limited. All rights conferred by the Law of Copyright and other intellectual property rights and by virtue of international copyright conventions are specifically reserved to Argus Specialist Publications Limited and any reproduction requires the prior written consent of the Company. © 1984 Argus Specialist Publications Limited. imited Subscription rates: UK £13,30 including ostage. Airmail and other rates upon application to Computing Today Subscriptions Department, Infonet Ltd, Times House, 179 The Marlowes, Hemel Hempstead, Herts 400 LTB. Exclused. Computing Today is constantly on the look-out for well written articles and programs. If you think that your efforts meet our stan-dards, please feel free to submit your work to us for consideration. All material should be typed. Any programs submitted must be listed (cassette tapes and discs will not be accepted) and should be accompanied by sufficient documentation to enable their implementa-tion. Please enclose an SAE if you want your manuscript returned, all submissions will be acknowledged. Any published work will be paid for. All work for consideration should be sent to the Editor at our Golden Square address. ## CONTENTS VOL 6 NO 3 MAY 1984 #### **EDITORIAL & ADVERTISEMENT OFFICE** No. 1, Golden Square, London W1R 3AB. Telephone 01-437 0626. Telex 8811896. | NEWS. 6 Our monthly round-up of the new products, both hardware and software, for computing at home and at your business. | UPGRADING YOUR WP. The half-dozen machine cod presented here will put a bit of life | |---|---| | EASYCODE PART 316 More typing this month, as we present the additional program lines to provide an assembler/disassembler. | YOUR QUESTIONS ANSWERED | | DEBUGGING | If you've got a question about system, here's the place for an analysis ADVENTURE WINNERS | | CHECK THE SPEC33 First up on the test bench this month is the Spectravideo SV318, the first machine on these shores from the MSX stable. | Back before Christmas we ran a competitions with an Adventu Here are the answers and winners. | | DRAGON'S BREADTH37 If you take a Dragon 32 and double it, do you get a machine twice as good? The Dragon 64 doesn't work quite that way, but add the magic ingredients discs and OS9 and things look up. | COMPUTERS AND TO COMMONS. The House of Commons is chargefficient running of the countrand ideally it would use the maced aids to do so. A pity life that | | SOFTWARE CHART 43 Our new monthly guide to the software that's proving to be the most popular. | BOOK PAGE Our reviewer shut himself awa armful of books on the Commoda these are his findings. | | ELECTRONIC MAIL | GOING APE-FACE A look at an oddly-named periplets you connect Atari compute tronics printers. Z80 TEXT | | READER SURVEY 49 Once again it's time to find out what the opinions are of the most important group of people in the world — our readers. | Just how can you get the huge no writing into your memory, or preally big adventure game? Lik | | EXTENDING THE 64'S BASIC | WORD-WRAPPING The PRINT function is pretty dun BASICs — it will happily break w at the end of a screen line. This bit smarter. | we'll be showing how to tailor it to your needs in this major new series. BACK......59 With a colourful new case and a decent keyboard, the Atmos seems to be an improvement over its ancestor, the Oric. But is it enough, and is it too late? THE ATMOS STRIKES | WP | |---| | YOUR QUESTIONS ANSWERED 67 If you've got a question about your micro system, here's the place for an answer. | | ADVENTURE WINNERS. 68 Back before Christmas we ran a couple of competitions with an Adventure theme. Here are the answers and the lucky winners. | | COMPUTERS AND THE COMMONS | | BOOK PAGE | | GOING APE-FACE 84 A look at an oddly-named peripheral that lets you connect Atari computers to Centronics printers. | | Z80 TEXT COMPACTOR | | WORD-WRAPPING93 The PRINT function is pretty dumb on most BASICs — it will happily break words in two at the end of a screen line. This article is a bit smarter. | | Personal Software 14 Next Month's Computing Today 15 Subscriptions 58 Binders 65 Digital and Micro Electronics 66 Back numbers 76 Microdealer 90 Classified Ads 95 Computamart 97 Advertisers' Index 98 | #### MICROTANIC COMPUTER SYSTEMS LTD. #### 65 NO OTHER COMPUTER IS AS PERSONAL! For less than £60 you can start building your own Computer that truly suits your needs and, of course, eventually far more superior to any Computer available off-the-shelf. MICROTAN 65 comes in kit form, complete with manual, full instructions, board with components, (kit form or fully built) our full back-up service, and your own Microtan World Magazine available on subscription. #### FLEXIBLE & EXPANDABLE SYSTEM - 1K to 256K! Just look at the options: - 1 DISK CONTROLLER - 2 REAL TIME CLOCK 3 FPROM PROG CARD - 4 SOUND BOARD - 5 SERIAL 1/0 BOARD - 6 PARALLEL 1/0 BOARD - 7 MASS EPROM STORAGE BOARD - 8 INDUSTRIAL CONTROLLER BOARD 9 40K RAM BOARD - 10 HIGH RES. GRAPHICS 256x256 **FULL RANGE OF SOFTWARE** Assembly, Basic, Forth, and Pilot HOW TO ORDER: 11 PRINTER FACE BOARD 12 ASC11 KEYBOARD Board with components BUILD AS FAST OR SLOW AS YOU LIKE! Full instructions manual Also available from. Waltham Forest Computer Centre 889 Lee Bridge Rd. Nr Whipps Cross, Walthamstow E7 Tel: 01-520 7747 Post to: MICROTANIC COMPUTER SYSTEMS LTD 16 UPLAND RD. LONDON SE22 Tel No. 01-693 1137 Please rush me my starter kit: (Please tick) kit form ─ I will build myself £59.95 ☐ Fully Built £69.95 ☐
Complete system wall chart I enclose my cheque/P.O. for £ Company Enter details in the coupon below, enclosing your cheque made payable to: Microtanic Computer Systems Ltd. Prices include VAT add £1.50 p&p. Please allow 14 days for delivery. | Tel (Eve) |
 | • | ٠ | C | 5 | İ | | |-----------|------|---|---|---|---|---|--| | Tel (Day) | | | | | | | | | | | | | | | | | #### MICROTANIC COMPUTER SYSTEMS LTD SHOWROOM: 16 UPLAND RD DULWICH, LONDON SE22 TEL: 01-693-1137 MAIL ORDER: 235 FRIERN RD. DULWICH LONDON SE22 (INC. P&P and VAT VALUE that's Capple ATARI ORIC-1 ZX81. VIC-20 DRAGON DDG A/B Spectrum It is impossible to tell you everything about the 50 games on CASSETTE - 50 but they include many types such as maze, arcade, missile, tactical and logic games, missile, tactical and logic games, to suit most tastes in computer game playing. CASSETTE - 50 will appeal to people of all ages and the games will provide many hours of entertainment for all the family at a fraction of the cost of other computer games. • | EX | PR | ES | S | DE | LIV | ER | Y- | |----|----|----|----|----|-----|----|----| | | OI | RD | ER | N | OW | | | Address Post Code Dealers & Stockists enquiries welcome. Please send me by return of post, Cassette 50 at £9.95 | per | tape. | i effciose a cheque/postal order for | | |-----|-------|--------------------------------------|--| | £ | | made payable to | | | Please debit |
1 1 | , | 1 1 | , | 1 |
 | - | 1 | | |--------------|---------|---|-----|---|---|-------|---|---|--| | my No. |
- | - | 1 | 1 | - |
- | - | 1 | | | my No. | | | | | |----------|--------|-------|--------|---| | SPECTRUM | ORIC-1 | ZX 81 | VIC 20 | | | 000 40 | DRACON | ATADI | APPI / | • | | SPECTRUM | ORIC-1 | ZX 81 | VIC 20 | | |----------|--------|-------|--------|--| | BBC A/B | DRAGON | ATARI | APPLE | | | 999 | | | | | ## TIRED OF WAITING FOR PROGRAMS TO LOAD AT LAST THE WAITING'S OVER! IKON COMPUTER PRODUCTS ANNOUNCE THEIR NEW #### **ULTRA DRIVE** £79.95 inc VAT The **ULTRA DRIVE** is a professional automatic digital cassette recorder specifically designed for the home computer user. - \star READ/WRITE SPEED 1200 BYTES PER SECOND A 32K program takes less than 28 seconds to load! - ★ FULLY AUTOMATIC No more pressing record/rewind/play! - ★ CAPACITY 200K PER MICRO CASSETTE - ★ USES NO MEMORY - * AVAILABLE NOW FOR THE DRAGON 32 AND 64 - ★ COMING SOON for the BBC, Nascom, Oric, Electron, Commodore 65 and Tandy Micros (send S.A.E. for details) - ★ Price includes all necessary cables, interface, operating system and one micro cassette no hidden extras! #### ** 10 DAY MONEY BACK GUARANTEE ** BRIEF SUMMARY OF COMMANDS FOR THE DRAGON COMPUTER: Initialises new tape ADVANCE Winds tape to end REWIND Rewinds tape to beginning HALT Halts tape between programs SAVE (filename) Saves a program to tape LOAD (filename) Loads program SKIP (filename) Skips to end of specific file DIR Displays directory of all files on tape RUN (filename) Loads and runs program BREAK OFF Disables the BREAK key BREAK ON Re-enables the BREAK key FAST Speeds up most DRAGONS OLD Recovers last program APPEND (filename) Adds file to program in memory #### TO: Ikon Computer Products, Dept. D, Kiln Lake, Laugharne, Dyfed SA33 4QE. Tel: 099 421 515 | | r the DRAGON at £79.97 +
Please debit my Access/ | Boxes of cassettes at £20 (Delete which | .13 per box of 6. ever not applicable) | |---------|---|---|--| | NAME |
 |
 | | | ADDRESS |
 |
 | | | | | | | (Please allow 28 days for delivery. Remittances will not be cashed until goods are ready to be despatched) COMPUTING TODAY MAY 1984 ## NEWS #### COMPUTING TODAY MERGER Astute readers will have noticed something a little different about our cover this month. There's a new logo under our name, and it means the start of a major improvement in your favourite micro magazine. Beginning with this issue, the well-known news stand publication MicroComputer Printout, incorporating Business Micro, will itself be incorporated into Computing Today. That might make the full title a bit of a mouthful, but it also makes our magazine a bigger, better buy with a much SIMULATION SEMINAR Professor Robert M. Howe of the Department of Aerospace Engineering at the University of Michigan is to be principal speaker at a three-day seminar on "Dynamic Accuracy of Digital Simulation". Sponsored by Applied Dynamics Inter- extended scope. MicroComputer Printout has always been one of the more literate of our competitors and we are delighted to be able to include its coverage of the business applications and social impact of computing. However, we will not be neglecting our existing readers, people who want their home computer to be more than just a convenient arcade game. The merger of Computing Today and MicroComputer Printout will result in a magazine that is essential reading for the person who is serious about his computing, whether at work or at play. We like the direction this will take our magazine. We hope you will too. national Limited, the seminar will be held at Castle Ashby House, Castle Ashby, Northamptonshire commencing Monday 30th April 1984. Over the three days Professor Howe sets out to familiarise engineers and scientists with special techniques in real-time digital simulation, including integration algorithms, input/ #### MEMORIES... MemoryText has been designed by Memory Computer to offer a comprehensive word processing package that has been specifically designed for non-technical personnel. Text and command functions are fully prompted. Not only does MemoryText contain all the facilities that one would expect from a word processor, it also boasts the following additional features; for instance, bold face is displayed (in high intensity): underline is also displayed. The program also provides for arithmetic calculations to be carried out within a page of text, and graphic functions are catered for. Word-wrap elim- output extrapolation methods, transfer functions, and iterative techniques for solving implicit algebraic equations. More importantly, he will present methods for quantitive analysis of dynamic errors resulting from numerical methods, so that the simulation engineer can choose the optimum method as well as predict ahead of time the computational speed required for successful real-time simulation of a given system. Professor Howe is an acknowledged authority in the field of digital simulation, and has already presented a number of highly successful seminars in Europe. As Chairman of the University Aerospace Engineering Department he is engaged in teaching and research programmes on Realtime Digital Simulation, Automatic Control Theory, and flight simulation techniques. He was the first National Chairman of the International Simulation Council, is a past member of the US Airforce Scientific Advisory Board, and is now a consultant to numerous companies. Robert Howe comments: "Real-time digital simulation of continuous dynamic systems plays an extremely important role of the development of complex technological systems, such as aircraft, missiles, space-craft, chemical process controls, robots, power plants and many others. "It is also used in simulators for human operator training. As present and future technological systems become more complex and exhibit faster dynamic performance, the computer requirements in real-time simulation of such systems become more demanding. To meet such demands successfully not only requires faster computers but also requires skill and understanding on the part of the engineer who formulates the problem. During the course of the seminar there will be a demonstration of the AD 10, a high inates the need to enter a carriage return at the end of each line; a word too long to fit at the end of the line is automatically moved to the next line. Filemerge enables you to take data from one file and combine it with another file containing text. Memory are marketing MemoryText with the complete speed digital computer specifically designed for the simulation of complex and highly non-linear dynamic systems. The AD 10 is manufactured by Applied Dynamics International of Ann Arbor, Michigan, USA and marketed in the UK by Applied Dynamics International Limited. Professor Howe is also speaking at a similar seminar to be held at the Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland (7th-9th May 1984), which covers the same topics as mentioned above. The cost per participant is £260 (£280 for the seminar in Switzerland) excluding VAT, travel, hotel and meals, but is inclusive of buffet lunches during the three days, refreshments and course material. Further details of both seminars can be obtained by contacting Applied Dynamics International Ltd, Oxford House, Oxford Street, Wellingborough, Northamptonshire (telephone 0933 72666). range of Memory Systems. An attractively-priced word processing package that includes a Memory 8000 series computer and a daisy wheel printer is available for around £2500. For further details contact Ian McHarg Memory Computer Systems Ltd, Britannia House, 960, High Road, London N12 9RY (telephone 01-446 1441). #### FLANNEL FROM ENTERPRISE Enterprise Computers is the new trading name of the company formerly known as Elan, it was announced today (14th March). Enterprise has also revealed major new developments in the structuring of its launch programme and timetable for its 64K and 128K models. They include a multi-million pound manufacturing deal with a British electronics company, Welwyn Electronics. With the new trading name of the company, the 64K and 128K models will continue to be known as "Enterprise". The name change reflects the company's international aspirations and its desire to establish a worldwide brand status. It follows an injunction forbidding the use of the Elan name in the UK.
The previous press leaks that Elan would change their to Flan were simply a load of flannel. it enabled the company to have some sort of identity during the six week gap between being forced to drop the name of Elan and tying up world rights to Enterprise, and in the words of Michael Shirley, director of marketing, "it injected a bit of humour into the situation." The change involves retooling costs to Enterprise's equipment, instruction manuals, sales literature and club magazine. It has however, say the company, been well-received by major UK retailers contracted to sell the Enterprise models. As a result of a tie-up with Welwyn electronics, Enterprise Computers will be manufactured in the UK. Enterprise and Welwyn have contracted to produce at least 150,000 units in the first year of production. Welwyn Electronics is a subsidiary of the Crystalate Group and a sister company of Royal Worcester — the bone china manufacturers. The deal will create at least 90 jobs at the company's Tyneside factory in the first year of production. It is worth "over seven figures a month" in turnover to Welwyn which currently carries out component assemblies for bluechip electronics companies. Said technical director, Robert Madge of Intelligent Software — inventors of Enterprise: "The Welwyn deal is a tremendous source of satisfaction to us. Quite apart from the superb standards of professionalism and expertise that Welwyn possess, it also gives the "British" tie-up we sought. The major UK retailers to whom we have been talking have stressed their desire for a British product in design and manufacturer — the Enterprise is now exactly that". While test models will be available in the spring, the Enterprise will be nationally available in the shops in September 1984. The 64K machine will retail at £199 plus VAT. "We want to produce a trouble-free product and one that's available in enough numbers to supply initial demand," said Mike Shirley. "We've talked extensively with the retail trade in the UK and abroad, who would rather see a fully debugged model appear in September — in time for the Christmas rush." The retooling exercise involved in the new Enterprise company name is of course partly responsible for the altered launch programme. But a further factor, says the company, is to provide time for careful testing and retesting of the revolutionary "Nick" and "Dave" chips. #### NEW TAPE FROM ARGUS In the early part of 1983, Argus Specialist Publications brought the world of computer publishing up-to-date with the launch of Spectrum Computing. This revolutionary concept of putting an entire computer magazine on tape was brought about by the need to communicate with computer owners in a form which could be easily understood. What better way to achieve this than to load each article into the computer and then be able to see actual examples and demonstrations running alongside the text? Following the success of Spectrum Computing, Argus have launched three more titles to date. In chronological order these are: Model B Computing, VICTAPE Computing and Atari Computing. All these titles appear bi-monthly and are available from W. H. Smiths, John Menzies and all leading newsagents. They are priced at £3.99. The latest addition to the range of on-screen computer titles is 64Tape Computing. The format of the magazine is balanced between games, utilities and tutorials. Full use is made of the 64's impressive sound and graphics throughout the magazine, greatly increasing the impact of the editorial. Unlike many other magazines, 64Tape will appear to all owners, no matter what stage they have reached with their computers. Its content is designed to be informative, useful, but above all fun! Among the contents of the first issue is a version of the everpopular Frogger game, a complete adventure game, a multicolour sprite editor and an assembler/disassembler. The magazine completely occupies both sides of a C30 cassette #### MINI-MO-DEM Now, the advantages of being able to transfer data communications via the public telephone system have come within the reach of anyone who already has a computer of their own at home. Newbury-based Steebek Systems have just launched a home computer/ business modem which will retail for under £100. Named the Minimo 300, the compact new unit is a 300 baud full duplex modem (to CCITT V21) which is switchable between answer and originate modes. The Steebek Systems Minimo 300 features a full specification RS 232 interface, is BT approved and mains powered. It comes complete with integral telephone line cord and socket. With so many schools and other educational institutions now owning computers, Steebek Systems have decided to make it easier for them to be able to afford their own modem too. The new Minimo will be available to any bona fide educational establishment at a special concessionary price. Full details can be obtained from Steebek Systems Limited, 3 The Paddock, Hambridge Road, Newbury, Berkshire RG145QT(phone063533009: telex 849446 MODEMS G). #### BITS AND PCBs FOR THE BEEB The most powerful expansion of the Acom BBC Microcomputer's capabilities to date has arrived. The new device, called the 6502 Second Processor, converts the standard BBC Micro Model Binto a high speed dual processor system, outperforming all other home and per- computers currently available - including 16 bit and 32 bit machines. The 6502 Second Processor makes possible many sophisticated applications - particularly those requiring complex graphics or fast handling that hitherto would have been impracticable or impossible on a conventional lowcost Micro. The device is also the first use of Acorn's patented Tube interface on the BBC Micro, a high speed data channel designed to enable external processors to talk directly to the BBC Micro's own processor. With the 6502 Second Processor connected, the host BBC Micro is dedicated entirely to handling input and output, screen display memory and system filing. Meanwhile the second processor, with its own 64K of user memory and 3 MHz 6502 chip (double the memory and 50% faster than the BBC Micro itself) simultaneously concentrates on running the application program. To enable users to get maximum benefit from their 6502 Second Processor, Acom have developed a special 'Hi-BASIC' ROM Chip, which frees 44K of user memory for BASIC language applications. Up to 60K is available for assembly language programs. In addition, the full character set of the BBC Micro can be redefined without using any program memory. A second ROM is provided to update and replace the user's disk filing and/or Econet filing systems with a single combined chip. Both ROMs plug into the sideways ROM slots within the host BBC Micro. The 6502 Second Processor also complements the BBC Micro in colour and size. It includes a ribbon connector to the host's 'Tube' port and an integral mains power supply with cable and plug. The unit, complete with two ROMs and User Guide, costs £199 incl. VAT. It is available now direct from Vector Marketing Ltd., Dennington Estate, Wellingborough Northamptonshire NN8 2RL or from author- ised Acorn dealers. A new graphics tool for the BBC was launched at the same time. Called 'Acorn Bitstik', the new peripheral uses the increased power and speed of the 6502 Second-Processorenhanced BBC Micro to provide a versatile, low cost computer-aided drawing facility comparable in quality and performance to many purposebuilt systems. #### HANG ON PHLOOPY Phi-Mag Systems, a subsidiary of Phi Magnetronics of Falmouth, Cornwall, have this month introduced yet another non-standard data storage medium for microcomputers. But the PHLOOPY data storage system is a tape storage unit with a difference. Whereas existing alternatives to conventional tape storage media have been designed around 1/8" tape (as used in cassettes) and have utilised single-track recording heads allowing only serial data transmissions to take place, the PHLOOPY uses 1/4" tape and a nine-track recording head to allow records to be filed a byte at a time. These factors, coupled with the greater operational speed and reliability which the 1/4" tape permits, allow an unprecedented 100 KByte storage capacity (unformatted) from a single 12 foot, continuous loop, tape cartridge. The drive unit itself is very unusual, in that it houses its own on-board microprocessor which, in addition to providing a complete error detection/correction facility, relieves the host microcomputer of time- The Acorn Bitstik also demonstrates the long-term market strength of the BBC Micro, by both supporting the computer's existing roles — particularly in education — and extending its reach into new application areas. For schools and colleges, the professional designer and producer of schematics, plans or business charts, the Bitstik System offers a sophisticated graphics facility at an affordable price. For comparative purposes, the cost of acquiring the entire system 'from scratch' — including Bitstik, BBC Micro, high resolution colour monitor, 6502 Second Processor, and Dual 800K Disc Drive, is under £2,000. The Acorn Bitstik System, including joystick, ROM, utility discs and user guide, costs £375 including VAT, and is now available direct from Vector Marketing Ltd, Dennington Estate, Wellingborough, Northamptonshire NN8 2RL and from authorised Acorn dealers. We'll be reviewing one as soon as we can get our hands on it. consuming housekeeping and file-handling operations, to the extent that a process such as formatting the tape can be performed with almost complete independence from the micro itself. The system has been designed to be an alternative to the conventional disc drive and **not** a 'super' tape system. With data transfer rates in excess of 80,000 baud, which in practical terms means approximately 10 KBytes/second, this claim seems to be quite justified. Although Phi-Mag may claim to have broken the 'lK-per-Pound' barrier with their PHLOOPies (with each
driveunit costing £99) a complete kit consisting of one PHLOOPY drive, the PHLOOPY interface chips, the Loop Filing System ROM, manual and two PHLOOPY tape cartridges, will cost a little under £143. PHLOOPY cartridges are set to retail at £3.50, and Phi-Mag are currently lobbying software factors in an effort to establish PHLOOPies as a medium for ready-made software. Although the PHLOOPY system is currently only available for use with the BBC micro, it is expected that versions for other micros will be available shortly. Don't go looking for it in your local computer store, though—Phi-Mag are making the system available by mail-order only, at least for the time being! For further information, interested parties should contact Phi-Mag Systems Ltd, Tregoniggie Industrial Estate, Falmouth, Cornwall TR1 1 4RY. #### OOPS, OOPS AND OOPS AGAIN! A trio of bugs to report on this month, to our shame. The first involves the diagram in last month's Learning FORTH Part 6. It was the wrong figure, and turns up this month in its rightful place in the Commodore BASIC article. There have been a few other problems throughout the series (such as the Mysterious Disappearing Cameraready Artwork of Part 5!) and next month we'll publish an update feature to sort out all can't wait, however, the elusive Fig. 1 is reproduced here. Honest. Next we come to the BBC Poker program. The listing in the March issue contained two 'undocumented features' — sounds better than bugs. The first of these made it impossible to access the instructions for the program, and can be cured by changing line 260 to: 260 IF A1\$="Y" PROC-INSTRUCTIONS The second, and more serious error occurs within the pro- cedure for offering a loan to the player if his or her kitty falls below zero. The procedure, rather than halting the program and asking the player whether he/she wants the loan, simply gives the player the loan and rampages ahead with the rest of the game. To cure this, look at the line between 2520 and 2540. It should, of course, be numbered 2530, not 2350, and it should actually read: 2530 Z2\$=GET\$ The reason for the latter error is a trifle embarrassing, and it suffices to say that the editor is typing this apology with his elbows. Our thanks to Mr. J. Jacques of Berkhamstead for bringing this bug to our attention. Finally we turn to the Genie Commands article from last month (April), which needs one or two corrections. For the program to work correctly with Level III BASIC resident, four modifications have to be made to the listing. Line 05550 becomes: 05550 AMD1 JP Z,ERROR and line 06250 becomes: 06250 LD B,95 Two new lines need to be inserted into the program: 07435 DEFW ERROR-6000H 08375 DEFW AMD1+1 In Fig. 2 on page 51, there should be two asterisks between the 16 and the P, ie (A*16**P). Below Fig. 6 on page 55, there is a missing) just before the , expression 2. Finally, on page 59 in the main text, second column, the Find Label routine actually starts at line 3410 and not 3140 as stated. Sorry! ## MICPOVAILE 80-BUS MULTIBOARDS #### GM813-CPU/64K RAM Board - * 4MHz Z80A C.P.U. * 64K Dynamic RAM - RS232 Interface * Two 8-Bit I/O Ports - Cassette Interface - Extended & Page Addressing Modes - CP/M Compatible Monitor #### GM829-Disk Controller Board - * Up To 4 Mixed 5.25 & 8" Drives - SASI Hard Disk Interface - * Single & Double Density Operation - * Single & Double Sided Drive Support - * Supports 48 and 96 TPI Drives £145 #### GM833-RAM-DISK Board - * Virtual Disk Operation * 512K Dynamic RAM - * Port Mapped For Easy Interface Software - * Over 10 Times Faster Than a Floppy Disk Please note: This board cannot be used as a conventional RAM board #### GM832-SVC Board - * Upwards Compatible with GM812 IVC - 256×256 Hi-res Graphics - 6 MHz Z80B Microprocessor - User-definable Character Attributes - On-board Buzzer - Comprehensive On-board Software - 256 Character Programmable - Character Generator English, French, German - and Danish Character Sets \$195 #### GM816-Multi I/O **Board** - * 61/O Ports - * 4 Counter/Timer Channels - * On-Board Real Time Clock - * Battery Backup - * Further Expansion Capability £125 #### PLUTO-Colour **Graphics Board** - * On-Board 16 Bit Microprocessor - 640×576 Bit Mapped Display - 192K Of Dual Ported RAM - Comprehensive On-Board Software <u>5499</u> #### CLIMAX—Colour **Graphics Board** - * 256×256 Pixel Display - * 16 Colours - * Ultra-fast Vector & Character Generation - * Light Pen Input - **UHF or RGB Outputs** - **UHF** Version £199 UHF & RGB Version #### GM811 -- CPU Board - * 4MHz Z80A CPU - * 4 'Bytewide' Memory Sockets - * 2×8-Bit Input/Output Ports - 8 Bit Input Port - * Cassette Recorder Interface \$125 #### GM803-EPROM/ROM **Board** - * Up to 40K of Firmware - 2708 or 2716 EPROMS - * Page Mode Operations £65 #### **GM802-64K RAM Board** - * 64K Dynamic RAM - * 4MHz Operation - * RAM Disable Function - * Page Mode Operation £125 #### MP826—Static RAM Board - * 32K Static RAM - * Battery Backup - * Page Mode Operation #### EV814-IEEE488 (GPIB) Controller - * Cost Effective Controller - Comprehensive Software Supplied - **Full Implementation** - * Easy To Use £140 #### GM827-87 Key Keyboard - * User Definable Function Keys - * Numeric Keypad - * Cursor Control Keys £85 #### GM839—Prototyping **Board** - * Fibreglass P.C.B. - * 80-BUS Signal Identification - * High Density IC Capability £12.50 All the boards and components in the 80-BUS range are fully compatible and offer a very flexible and cost effective solution to your computer needs. For further information about the 80-BUS range contact your nearest MICROVALUE dealer. ## MicroValue - MicroValue #### **Power Supplies. Mother Boards** & Frames | * GM807 | 3A Power Supply | £40.00 | |----------|------------------------|--------| | * GM817 | 6A Switch Mode P.S.U. | £75.00 | | * GM843 | 10A Switch Mode P.S.U. | £95.00 | | * GM656 | 3 Slot Motherboard | £5.00 | | * GM 682 | 6 Slot Motherboard | £7.50 | | * GM655 | 8 Slot Motherboard | £10.00 | | * MP840 | 14 Slot Motherboard | £47.00 | | * GM662 | 5 Board Frame | £50.00 | | * GM610 | 19" Frame | £37.50 | "I would place the Galaxy at the top of my list" (Computing Today, April 1983) - * Twin Z80A Processors - * CP/M2.2 Operating System - * 80×25 Video Display - * 64K Dynamic Ram - * Light Pen Interface - * Up to 1.6Mhz Disk Capacity - * Serial RS232 Interface - * Parallel Interface - * Numeric Keypad - * Definable Function Keys - * Cassette Interface - * 12" Monitor Included from £1495 #### Computerise Without Compromise - * 80-BUS Construction - * Serial & Parallel Interface - * Stylish Design - * Up To 2.4Mhz Disk Capacity - * Up To Three 5.25" Drives - * Fully Expandable - * Twin Z80A Processors - * CP/M Operating System - * 64K Dynamic Ram - * Definable Function Keys #### **Two-Drive** Quantum £1910 #### Gemini Multinet The Gemini Multinet enables as many people as possible to have access to their own microcomputer with mass storage and printer facilities for the lowest possible cost. This is achieved by providing a central 'fileserver' fitted with a Winchester hard disk unit and printer interfaces, in conjunction with a method of interconnecting up to thirty-one workstations to the fileserver. The fileserver and each station are fitted with the Gemini GM836 network interface board. A Micropolis 800K floppy disk drive is incorporated in the fileserver providing backup for the hard disk. GM910 Galaxy 4 Multinet 5.4 M/byte fileserver £2600 GM912 Galaxy 4 Multinet 10.8 M/byte fileserver £2850 GM909 Galaxy 4 Multinet workstation £650 Both fileservers and workstations are supplied complete with VDU's; the operating software is supplied with the fileserver. #### **Phoenix** P12 **Monitor** A high quality 12" data display monitor, ideal for Gemini systems. The P12 is available in both green and amber phosphor versions and has a resolution of 20Mhz. #### **BUY FROM THE** COMPUTER PROFESSIONALS #### **MICROVALUE DEALERS:** #### AMERSHAM, BUCKS Amersham Computer Centre, 18 Woodside Road, Tel: (02403) 22307 Target Electronics Ltd., 16 Cherry Lane. Tel: (0272) 421196 Electrovalue Ltd., 28 St. Judes Road, Englefield Green. Tel: (07843) 3603 Leeds Computer Centre, 55 Wade Lane, Merrion Centre. Tel: (0532) 458877 #### **LONDON W2** Henry's Radio, 404 Edgware Road. Tel: 01-402 6822 #### **LONDON SW11** OFF Records. Computer House, 58 Battersea Rise, Clapham Junction. Tel: 01-223 7730 #### MANCHESTER M19 EV Computing, 700 Burnage Lane. Tel: 061-431 4866 #### NOTTINGHAM Computerama, (Skytronics Ltd.) Tel: (0602) 781742 #### Telephone orders welcome All prices are exclusive of VAT REAL value — from the Professionals #### ACCOUNTING WITH MICROFACTS Two new modules for the Microfacts integrated accounting system have been introduced by Facts Software Limited, on one of the UK's leading independent micro computer software houses. The new modules are Job Costing and a Nominal Report Generator, which — with Microfacts existing modules — makes the package one of the most comprehensive and cost-effective accounting systems available in the UK. "Both these new modules are clear, concise and to the point," says Geoff Taylor, Facts' managing director. "They incorporate well-designed displays and reports, presenting all the information required in a user-friendly manner." The Job Costing module allows users to record costs incurred on a project with up to 30 cost headings, including budgets, to give variance and pro- fitability analyses. Quantities can also be accumulated per cost type per job, and can be recorded in either units of time or units of materials; the module also allows for the input of time sheets. Job Costing can be run stand-alone, or linked to Purchase Ledger, Sales Ledger and Sales Invoicing, in any combination. The Report Generator module allows the production of user-specified reports from the Nominal Ledger. It has the ability to produce ratios between figures on the reports, and to take percentage
apportionments. These two modules, and the addition of a Payroll module in the near future, will enable Facts to reach a much wider market, according to Geoff Taylor. Microfacts is an extremely flexible and practical accounting system, available on the IBM XT, Victor 9000, ACT Sirius, Commodore 700 and 8000, and the DEC Rainbow. It was also released on the ACT Apricot at the Apricot and Sirius Show in early February. Designed by accountants rather than programmers, it offers many additional facilities at a similar price to most accounts packages. There are many unique features in the system, including the ability, when posting cash, to specify which bank account is updated — with competitive systems, cheques can only be posted to a single account; a 'nudge' facility allows the operator to obtain an account record without knowing the full account code; the incorporation of password protection down to program level allows only certain users access to confidential information; and the ability to print messages on the bottom of statements and sales invoices as they are produced. In addition, the system is able to 'work ahead', for example, sending out next month's invoices before the previous month's accounts are up to date; something no other accounts system allows. For further information, contact Facts Software Limited, Ketwell House, 75-79 Tavistock Street, Bedford MK40 2RR (telephone 0234 218191). #### IT'S HOBBIT-FORMING You've played the game, now read the book. In response to overwhelming demand from computer adventure game fans, Melbourne House are publishing a new book A Guide To Playing The Hobbit. Thousands of Hobbit fans regard the game as the most exciting and challenging adventure available for the Spectrum 48K, Commodore 64, Oric and BBC B machines. Now with this book as a guide anyone from a beginner to an advanced adventurer will be able to #### ALL GO FOR LOGO Atari International (UK) Inc has introduced a powerful new version of the high level computer programming language, Logo, for use in schools and homes. Atari Logo provides a friendly introduction to programming for beginners, as well as being a serious tool for advanced programmers. With Atari Logo users can create programs that converse in recognisable words and sentences, such that beginners can manipulate text and shapes on the TV screen the very first time they use Atari Logo. By experimenting with Atari Logo, students of all ages can discover the principles of computer programming, geometry, maths and physics. Collision, animation and four dynamic graphics turtles, not usually found in other versions of Logo, allow users to create video game-quality animated graphics. Other unique features of Atari Logo include 128 available colours taneously on one screen and multi-voice sound capabilities. Joysticks can add a playful dimension to Atari Logo programming. The Atari Logo program cartridge works on all Atari home computers and requires as little as 16K RAM. The complete package, including a handy reference guide and two 200-page manuals—Introduction to Programming Through Turtle Graphics and Atari Logo Reference Manual—sells for the suggested retail price of £59.99 (including VAT). Meanwhile, Kuma Computers have launched a new, fast, user-friendly version of Logo on the Sinclair Spectrum. Logo Graphics is a tool for practical exploratory geometry, providing experience of angles, lengths, directions, radii and colour. The user can discover the structure of geometric shapes, experiment with patterns and gain invaluable experience in the estimation of quantities such as distance and angles. In addition to using the predefined procedures contained in Kuma Logo, users can define new procedures of their own, saving them to tape for future use. A calculator is incorporated into the interpreter to allow the user to be independent from other calculating aids. Kuma Logo comes complete with a user manual and is available from good micro stores or direct from Kuma Computers at £9.95 including VAT. For further details of this and other Spectrum software contact Kuma Computers Ltd, 12 Horseshoe Park, Pangbourne, RG8 7JW (phone 07357 4335). improve their understanding of this complex game, winner of the Golden Joystick Award for "Strategy Game of The Year" for 1983 A Guide To Playing The Hobbit is divided into three sections. Section one gives the reader broad outlines as to the general strategies and tactics involved in playing the game, while sections two and three give an increasing amount of guidance offering more detailed solutions to problems the player may encounter. While providing solutions to the problems encountered in The Hobbit, the beauty of the book is that it does not spoil the fun and challenge of the adventure. It does not supply THE solution to The Hobbit — it only offers one of many possibilities. So even the keenest adventure fan will have to admit it is an essential aid to anyone who owns the game. A Guide To Playing The Hobbit is published by Melbourne House, who created the original Hobbit game. Written by David Elkan it retails at only £3.95 and will be available in bookshops from April. #### **EPSON BUILDING** ON SUCCESS Now on permanent display at the Building Computer Centre on London's Store Street off Tottenham Court Road is a full range of computer products from Epson (UK) Limited which have been specifically developed to meet the needs of the British construction in- A fully operational workstation will allow demonstration by trained experts of a series of software packages designed for use on the Epson QX-10 desk top microcomputer and the company's award-winning portable micro, the HX-20. These packages span the areas of two dimensional drawing, project management, quantity surveying, land surveying and special accounting packages. A range of Epson printer products will also be on display. The Epson HX-20 will prove invaluable for on-site use in the construction industry. It is a fully-functional computer with its own printer, liquid crystal display and full size keyboard, all contained within the size of an A4 notepad. Weighing only two kgs, and with a standard 16K RAM memory, it operates on its own battery supply for 50 hours without recharging and has the ability to retain its memory in RAM even when switched off. It can communicate with virtually any other computer in use either directly or across telephone The Epson QX-10 is a fully integrated desk top system with a modern functional design including dual disc drives and a full size qwerty keyboard. It is particularly easy to use for the first time operator and has 192K memory, upgradable to 256K RAM. Special features include a 16:1 zoom, a variety of typestyles, split screen facilty and excellent graphics capabilities due to the high screen resolution. Of particular interest to draftsmen is a computer integrated drafting system developed for the QX-10 by Graphics Avant-Garde of Warrington, Cheshire. The system repackages the OX-10 as a drawing board replacement capable of making any draftsman up to four times more effi- cient and thanks to the special features of the QX-10 the program runs very quickly - faster than the majority of comparable, but higher priced systems. In its most basic form, this CAD system costs £3,500 for the hardware, software and an Epson RX-80 printer for producing hard copy. Also designed for use on the QX-10 is Pertmaster, a tried and tested software package for project management. Invaluable for the organisation of multi-discipline building and civil engineering projects, Pertmaster can analyse and evaluate an entire network of inter-related activities in under 30 seconds. This speed of operation ensures better control over time and deadlines, makes it easy to check, and modify if necessary, critical path activities; allows the best possible use of available resources and allows you to simply ask the computer 'What if?' or 'What next?'. Printouts include an overall project barchart, a period barchart, histograms of resource demand plus standard and selective reports. The software, which has been #### PLUGGING ERRORS Rite-plug Ltd is a new company with a totally new product. As more sophisticated and programmed appliances appear daily, so there is a need to prevent errors with plugs. The pack of self-adhesive vinyl labels produced by Rite-plug is a simple and elegant solution. The pack contains 80 labels, mounted on four sheets. They provide identification, at the plug, for all the common appliances. Additional red labels draw attention to appliances which should not be unplugged, those that should be unplugged at night, and those that require The labels are vinyl and can be wiped, and yet, although they are tenacious once applied, they can be removed and re-applied if desired. They are designed to be easily read and understood, and they add an attractive, organized detail to any home. Available soon in many different outlets throughout Britain, including DIY stores, newsagents and stationers and electrical shops, the pack of 80 labels retails at an RRP of 70pa packet. Alternatively an SAE, together with a 70p postal order made out to Rite-plug Ltd, can be sent to the address below. For further information regarding Rite-plug labels contact Neil Cowell, Marketing Director, Rite-plug Labels Ltd, 24 The Mall, Clifton, Bristol BS8 4DS. developed by Abtex Computer Systems Ltd of Aberdeen, is designed for self-teaching and costs £650 including all documentation. lldeal for use on building sites or on location, where instant communication and transfer of vital information is required, is DIALTEXT, a remote printing system developed by Talbot Computers Limited of Bournemouth. Using the HX-20 and an acoustic coupler, Dialtext allows users to transfer and receive information across the telephone line to and from another computer. The installation at the Building Computer Centre will consist initially of the Dialtext receive only station using
the HX-20 and through the use of an auto-answer modem it will give an instant hardcopy printout from almost anywhere in the world, 24 hours a day. # SOFTWARE Get more from your Spectrum - Great games to test your reflexes - Learn morse code - Go for different graphics - Play cards, win wars and destroy aliens - Useful utilities to run #### SEEING THROUGH THE BEEB Imbuing the microcomputer with the equivalent of the human senses is not that easy. Why do you think robots are so expensive? However, the video boom has resulted in cheaper cameras and it's inevitable that companies will start to interface them to home micros with the object of providing sight. One such system is the Microeye from Digithurst Ltd, which has made brief appearances in our news pages. Next month it makes its way to the front page of Computing Today, where we'll have colour examples of the effects you can produce on the BBC Micro in Mode 2. Read our review in the June issue #### HARD FACTS ABOUT HARD DISCS Hard discs, or Winchesters, have some nice properties. They are fast. They hold a lot of information. They are also pretty expensive, but prices are coming down and even that well-known cost-cutter Sir Clive Sinclair expects they will be used with his QL computer (whenever it finally appears). Find out the message about the medium in Computing Today next month. Articles described here are in an advanced state of preparation but circumstances may dictate changes to the final contents. #### A FEAST OF FANTASY Starting next month we'll be having regular Adventure reviews, and we get off to a great start with games for the BBC Micro, the Commodore 64, Atari, Spectrum and Dragon 32. Among the games mentioned will be BBC programs from the masters of text compaction, Level 9, and Dan Diamond will be trying to find his way out of the Dragon. If you're puzzled now, you'll be totally flummoxed by the June issue of Computing #### CP/M DIRECTORY CP/M, for all its faults, sports one of the largest ranges of software of any operating system. New software continues to appear for it even now, and starting next month we'll be guiding you through the jungle by publishing a CP/M Software Directory. Find the application you need with the June Computing Today. #### MICROWRITING Are you a two-fingered typist? Instead of trying to learn the QWERTY keyboard on your BBC Micro so that you can use all 10, why not settle for five fingers? Why not try the Microwriter? This one-handed input device, cut down from the original hand-held word processing system, plugs into your BBC CIVE THIS EVER TO GO TO BOUND COON ON THE SECONDARION TO GO TO BOUND TO GO TO BOUND TO GO TO BOUND TO GO and, once the simple mnemonics for the key-press sequences have been learnt, fast text entry is possible. Why, even the editor managed to pick it up quite quickly! ## EASYCODE PART 3 Simon N. Goodwin In this article of our Easycode series we let you talk to your computer in English (almost!) and show you how to have stacks of fun. his month we'll add a number of extra features to the Easycode language. The new features make Easycode even more like 'real' machine-code - in fact the only major difference left will be the lack of binary operations, which we will explain next month. The new program lines also give you a small 'assembler' and 'disassembler', via the added commands 'ASM' and 'DIS'. These facilities are not as versatile as the real thing, but they're still useful. They're also easy to use 'interactively' — you can chop and change your program clearly and fast. The lines in Listing 1 are not a complete program — they are EXTRA lines to be added to those published in the March 1984 CT. This means that we can print a program which is longer than we could otherwise, but it isn't very helpful for intermittent readers! Back issues can be obtained using the coupon on Page 76. #### CONVERTING THE PROGRAM The extra lines restrict the range of computers on which the program can run, since they require a few extra features. String arrays are needed to run the assembler and disassembler. The stack display requires a screen 40 columns wide, although it could be programmed horizontally if more than 16 lines are available. The listing is for the TRS-80 Model 1 or Video Genie. The complete program requires 16K of BASIC memory. Most of the program is fairly easy to convert, bearing in mind those restrictions and the notes published last month. You may need to alter the DIM statements on line 1030 to dimension each variable separately and to tell the computer how long each string may be (eg DIM D\$(MAX, 10)) Microsoft BASIC string handling is used, as on Apple, Commodore and recent Acom machines. Line 18520 compares #### Listing 1. Extra program lines to provide Easycode with an assembler, a disassembler and stack operations. ``` 100 REM ** EASYCODE Big version. 110 REM ** (C) 1984 Simon Goodwin 1020 MAX=25 ' Highest instruction code 1030 DIM D*(MAX),E(MAX),S(9) 1040 GOSUB 6500 6490 REM ** Set up data for Assm. & Dism. 6500 FOR I=0 TO 25 6510 READ D$(I),E(I) ' Text & instruction No. 6520 NEXT 6530 RETURN 6990 REM ** Push N onto stack 7000 COLUMN=36 7010 ROW=10-STACK 7020 IF ROW=0 THEN 7110 7030 S(STACK)=N 7040 GOSUB 8000 7050 STACK=STACK+1 7060 COLUMN=37 7070 ROW=12 7080 N=STACK 7090 GOSUB 8000 ' Update S display 7100 RETURN 7110 COLUMN=1 7120 ROW=15 7130 GOSUB 6000 ' Prepare for message 7140 PRINT"* Stack full"; 7150 GOTO 11580 ' Leaves 1 GOSUB stacked 7490 REM ** POP N from top of stack 7500 STACK=STACK-1 7500 STHEK-STHEK-1 7510 IF STACK<0 THEN 7580 ' Whoops, error 7520 GOSUB 7060 7530 COLUMN=36 7530 CULUMN=36 7540 ROW=10-STACK 7550 GOSUB 6000 ' Prepare to clear old entry 7560 PRINT" "; ' <2 SPC> 7565 N=S(STACK) 7570 RETURN 7580 PRINT"* Nothing left on stack"; 7590 GOTO 11580 9330 PRINT"EASYCODE (C) 1984 Simon Goodwin."; 9340 COLUMN=33 9350 FOR ROW=1 TO 10 9360 GOSUB 6000 ' Pos 9370 PRINT"()"; Position cursor 6 spaces 9380 NEXT ROW 9390 ROW=11 9400 GOSUB 6000 9410 PRINT"---- 9420 ROW=12 9430 GOSUB 6000 9440 PRINT".(S=00)"; 9450 ROW=13 9460 GOSUB 6000 9480 RETURN 9480 RETURN 10140 IF T$="DIS" THEN 17000 10150 IF T$="ASM" THEN 18000 11080 COLUMN=36 ' Clear stack 11090 FOR ROW=1 TO 10 11100 GOSUB 6000 ' Position cursor 11110 PRINT" "; ' <2 SPC> ``` ``` 11140 N=STACK 11150 COLUMN=37 11160 ROW=12 11170 GOSUB 8000 ' Rewrite stack pointer 11180 K=0 11190 GDTD 5000 ' Write A,X etc. 11645 IF I=21 DR I=23 THEN K=1 11690 DN I-19 GDTD 21300,21300,21400,21400,21500,21600 11690 ON I-19 GOTO 21300,21300,21400,2140 11690 ON I-19 GOTO 21300,21300,21400,2140 14110 PRINT"DIS to disassemble memory" 14110 PRINT"ASM to assemble into memory" 16990 RCM ** Disassemble r- main loop 17000 ROW=14 17010 COLUMN=1 17020 GOSUB 4000 ' Clear prompt line 17030 PRINT "Disassemble from"; 17040 GOSUB 4500 ' Get number 17050 IF N>99 THEN 10000 ' Whoops 17060 CLS ' Clear screen 17070 PRINT"Addr..Value....Disassembly"; 17100 FOR P=2 TO 14 17110 GOSUB 17500 ' Disassemble 1 line 17120 NEXT P 17130 PRINT 17140 PRINT"Continue disassembly (Y/N)"; 17150 INPUT T$ 17150 INPUT T$ 17160 IF T$ 17190 17170 N=N-2 Passure overlap 17170 N=N-2 'Ensure overlap 17180 GOTO 17060 17190 GOSUB 9000 'Re-draw screen 17200 GOTO 10000 'Back to command 17490 REM ** Disassemble the code at N 17500 IF N>99 THEN RETURN 'End of memory 17510 K=M(N) 'Get 1 char. 17520 COLUMN=1 17530 ROW=P 17550 RUW=F 17540 GOSUB 6000 ' Address field 17550 PRINT N: 17560 COLUMN=7 17570 GOSUB 6000 ' Value field 17580 PRINT K; 17580 PRINT K; 17585 J=100 17595 FOR I=0 TO 25 17600 IF K<>ABSY(E(I)) THEN 17630 17610 J=I ' Get instruction text No. 17620 I=100 ' Flag end of loop 17630 NEXT I 17640 IF J>25 THEN 17790 17650 IF E(J)<0 THEN 17710 ' 2 char. instruction 17640 COLUMN=16 17670 GDSUB 6000 ' Instruction field 1/660 CULUMN=16 17670 GOSUB 6000 ' Instruction field 17680 PRINT D$(J); 17690 N=N+1 ' Select next address 17700 RETURN 17710 N=N+1 17720 IF N>99 THEN 17790 17730 K=M(N) 17735 PRINT K; 17740 COLUMN=16 17740 COLUMN=16 17750 GOSUB 6000 ' Instruction field 17760 PRINT D$ (J); 17770 PRINT K; 17780 GOTO 17690 17790 COLUMN=16 17800 GOSUB 6000 ' Instruction field ``` 11130 STACK=0 D\$(I) with the leftmost characters of T\$ (making sure that the number of characters is the same in each). If your BASIC uses fixed-length strings you will need to take trailing spaces into account. The other tricky line is 18535, which sets T1\$ to contain all the characters in T\$ after position T. The '+' operator is used to stick strings together, so that PRINT "Easy"+"code" gives: Easycode This will work on most computers other than Ataris, where devious use of string-slicing will be needed. String '+' is only used in Easycode to make error messages, so it should be possible to make the program work without the feature — so long as you find another way of reporting problems. The DATA in lines 30000 onwards is copied into the arrays D\$() and E(). If your computer won't allow READ and DATA statements, you must use 52 assignments instead (my sympathies). Listing I has been automatically mixed back into the original program. The combination worked at once, so the listings should be compatible unless our layout department have scalpel problems! If you type in the lines and they won't work, please check that you've made compatible changes in both parts of the listing, and you haven't mistyped any line-numbers. #### USING THE ASSEMBLER The assembler converts mnemonics like 'LOAD' and 'HALT' into the numbers recognised by the computer. You type in relatively-readable lines such as 'ADD A;7' and the routine generates the values '5' and '7'. The numbers are put into memory (you can see them appear, just as with the 'STORE' command) and you can type another line. The main difference between the ASM facility and the assembler of a real computer is the lack of 'names' for locations and values. A real assembler would allow you to give a location a name, such as 'TOTAL', and then refer to it by name: STORE A:@TOTAL.
This feature is missing from ASM as it would make the routine slower, less portable and harder to use (you'd have to check for names used before they were identified, for instance). Since Easycode only uses 100 memory locations that lack of naming is not a major drawback. To use the assembler, type ASM in response to the Command prompt. You will be asked where you want to store code, just as with the STORE command. Enter a sensible address or '100', if you want to chicken out. As you type the mnemonic lines, one by one, the computer stores the appropriate codes. To leave the assembler type '100' instead of a mnemonic. There are four possible error messages when you use the assembler. 'Unknown' appears if the computer can't recognise the mnemonic from its list of 26 possibilities. If you entered ADD B; I you'd get the message, since there is no 'B' register. You'd also get it if you typed TWIDDLE THUMBS as there's no Easycode instruction to do that. The only special word you can use is HELP, which prints a list of the mnemonics allowed. If you have trouble, use the HELP command to see the format required — in particular, avoid using extra spaces. The message 'Too long' appears if the computer understands ``` 17810 PRINT"Data code:";K; 17820 GOTO 17690 ' Exit 17990 REM ** ASSEMBLE - main loop 18000 ROW=14 18010 COLUMN=1 18010 COLUMN=1 18020 GOSUB 4000 ' Cursor for prompt 18030 PRINT"Assemble to"; 18040 GOSUB 4500 ' Get address 18050 IF N>99 THEN 10000 ' Error 18060 K=N ' Save start address 18006 K=N ' Save start address 18070 ROW=15 18080 GOSUB 4000 ' Cursor on message line 18090 PRINT"Assembling. Type 100 to stop"; 18100 ROW=14 18105 GOSUB 4000 18105 GOSUB 4000 18110 PRINT K;"="; 18120 INPUT T$ 18130 IF T$="HELP" THEN 19000 18140 IF T$="100" THEN 18180 18150 GOSUB 18500 ' Assemble one line 18160 COLUMN=1 ' Just in case 18170 IF K<100 THEN 18070 ' Re-prompt 18180 ROW=14 18190 GOSUB 4000 18200 ROW=15 18210 GOSUB 4000 18220 IF K>99 THEN PRINT"* End of memory reached"; 18230 GDTO 10000 ' Get new command 18490 REM ** Assemble one line into M(K) from T$ 18490 REM ** Assemble one line into M(K) from 1* 18500 J=100 18510 FOR I=0 TO 25 18520 IF pb(1)<>LEFT*(T*,LEN(D*(I))) THEN 18550 18525 J=E(I) ' Get instruction code 18530 I=LEN(D*(I)) ' Get length of instruction 18535 T1*=MID*(T*,I+1,LEN(T*)-I) ' Get remainder 18540 I=100 ' Flag end of loop 18550 NEXT I 18550 NEXT I 18560 IF J<0 THEN 18740 ' 2 char. instruction 18570 IF J<26 THEN 18660 ' I char. instruction 18580 T$="* Unknown:"+T$ 18590 ROW=15 18590 ROW=15 18600 GOSUB 4000 'Clear old message 18610 PRINT T$; 18620 FOR I=0 TO 1500 18630 NEXT I 18640 GOSUB 4000 'Clear message 18650 RETURN 'Error exit 18660 IF T1$="" THEN 18690 'No trailing junk 18670 T$="* Too long:"+T$ 18680 GOTO 18590 'Print message % return 18690 N=J 18690 N=J 18700 I=K 18710 GOSUB 16500 ' Update display 18720 K=K+1 ' 1 more location used 18730 RETURN ' Success return 18730 RETURN ' Success return 18740 IF K<99 THEN 18770 18750 T$="* Only 1 memory space left" 18760 GOTO 18590 ' Print message 18770 IF T1$<"0" OR T1$>"99" THEN 18840 18780 I=VAL(T1$) ' Check range 0-99 18790 IF I>99 THEN 18840 18800 N=ABS(J) ' Get instruction-code 18840 18810 GOSUB 18700 ° Store N 18820 N=VAL(T1$) ``` ``` 18830 GOTO 18700 ' Store parameter & return 18840 T$="* Incorrect number:"+T1$ 18850 GOTO 18590 ' report error 18990 REM ** HELP for Assembler user 19000 CLS ' Clear screen 19010 PRINT"Valid instructions"; 19020 FOR I=0 TO 12 19030 ROW=I+2 19040 COLUMN=1 19050 GOSUB 6000 19060 PRINT D$(I); 19070 IF E(I)<0 THEN PRINT"nn"; 19080 COLUMN=16 19090 GOSUB 6000 19100 PRINT D$(I+13); 19110 IF E(I+13) <0 THEN PRINT"nn"; 19120 NEXT I 19130 PRINT"'nn' is a number from 0 to 99" 19140 PRINT"Please press (CR) when ready"; 19150 INPUT T$ 19160 GOSUB 9000 ' Re-draw screen 19170 COLUMN=1 17180 GOTO 18070 17180 GOTO 18070 21290 REM ** PUSH Register 21300 N=R(K) 21310 GOSUB 7000 ' Put N on stack 21320 P=P-1 21330 GOTO 11500 21390 REM ** POP register 21400 GOSUB 7500 ' Get N from stack 21410 R(K)=N 21420 P=P-1 21430 GOTO 5000 21490 REM ** CALL; address 21500 N=P ' Save current program counter 21510 GOSUB 7000 ' Push address 21520 P=J ' Start processing there 21530 GOTO 11500 21590 REM ** RETURN 21600 GOSUB 7500 ' Get return address 21610 P=N ' Start processing there 21620 GOTO 11500 21620 GOTO 11500 29990 REM ** Assembler text & codes 30000 DATA STORE A; 3X, 18, LOAD A; 3X, 17 30010 DATA STORE A; 3, -3, STORE X; 3, -13 30020 DATA STORE A; 3, -2, LOAD A; X, 4 30030 DATA SUB A; 3X, 7, LOAD X; 3, -12 30040 DATA LOAD X; 4, 14, ADD A; 3X, 19, JUMPNZ; -6 30050 DATA JUMPNC; -8, LOAD A; -1, LOAD X; -11 30060 DATA PUSH A, 20, PUSH X, 21, RETURN, 25 30070 DATA ADD A; -5, ADD X; -15, SUB A; -6 30080 DATA SUB X; -16, JUMP; -10, POP A, 22 30090 DATA POP X, 23, CALL; -24, HALT, 0 ``` the first part of an instruction but didn't expect the rest. Trailing spaces or words may cause that message. If you try to use a name instead of a number, or type a silly value, the computer comments 'Incorrect number'. Nothing is stored if you make a mistake. You are asked to type the line again. There is one obscure error message. If you try to store an instruction which needs two locations at address 99, the computer displays 'Only one memory space left'. #### THE DISASSEMBLER The disassembler converts numbers back into mnemonics — the opposite of the assembler. Type the command DIS and then tell the computer where in memory you wish the disassembly to begin. Each location will be examined and the appropriate mnemonic printed. If the location contains a value which does not correspond to an instruction the value is assumed to be data, and the mnemonic 'Data code' appears. The disassembler prints the value and name of each instruction. Each disassembly consists of 13 lines, after which you can opt to stop or continue. If you continue there is a deliberate small overlap of addresses. Experiment with the disassembler to see how it works. Try disassembling data as well as programs, and see what happens if you start the disassembly in the middle of a program or instruction. This shows how the computer can produce strange results if programs are RUN from odd places. #### SAME OLD PROBLEMS Last month we set a couple of problems for keen programmers. Listing 2 shows a solution to the second, and simpler, problem — counting the number of occurences of a given value in memory. Hopefully you didn't have much trouble solving this. The comments at the side of the listing should make it fairly easy to understand, especially as it is quite similar to the 'adder' program published last issue. You might like to try out the assembler by entering the mnemonics of Listing 2. Disassemble it to make sure you've made | 0: | 1 | 0 | LOAD A: 0 | Count so far is zero | |-----|----|----|--------------|----------------------------| | 2: | 3 | 99 | STORE A: 099 | Store total | | 4: | 11 | 0 | LOAD X:0 | X is start of search | | 6: | 17 | | LOAD A: DX | Fetch a value | | 7: | 6 | 1 | SUB A: 1 | Compare it with one | | 9: | 9 | 17 | JUMPNZ: 17 | Jump if it doesn't match | | 11: | 2 | 99 | LOAD A: 399 | Fetch count so far | | 13: | 5 | 1 | ADD A: 1 | Add one to the count | | 15: | 3 | 99 | STORE A: 099 | Store the new count | | 17: | 15 | 1 | ADD X:1 | Foint to the next location | | 19: | 9 | 4 | JUMPNZ: 4 | Repeat unless back at zero | | 21: | 0 | | HALT | End of program | #### Listing 2. Searching for a value. no typing errors, and then RUN it from location 0. As written it searches locations 0 to 99 for the value 1. The total is stored (eventually!) at location 99. The other problem — multiply A by X — was rather more difficult especially since the 'real' machine code solution involves shifts and binary arithmetic, which are not available in Easycode. The problem was set so that we can demonstrate how the new instructions introduced this month are useful — next month we will compare the refined Easycode with 'real' solutions for the Z80, 6502 and 6809 microprocessors. Listing 3 uses only the instructions explained so far to perform the multiplication. The result is stored in locations 98 and 99 (the biggest value, 99 x 99, is 9801) and locations 96, 97, 98 and 99 are used for temporary results. The approach used by the program is quite simple. The value in the A register is added to itself repeatedly. Each time, one is subtracted from the value in the X register. When X reaches zero the multiplication is finished. The program consequently doesn't do multiplications involving 0 correctly, but that would be easy to There are a number of more serious complications. The first is that we can't add the old value of A to the running total very easily without making the program alter itself (using ADD A;number and 'plugging' the number into the program). Such a solution is rather messy and prone to error. Terrible things happen if the wrong location is accidentally 'plugged'! Instead we store | 1 | 0: | 1 | 2 | LOAD A; 2 | First No. to be multiplied | |---|-------|------|-------|------------------|--------------------------------| | | 2: | 11 | 2 | LOAD X:2 | Second number (hence 2 x 2!) | | | 4: | 13 | 98 | STORE X: 098 | Save X temporarily | | | 6: | 3 | 99 | STORE A: 099 | Save A too | | | 8: | 11 | 98 | LOAD X:98 | Point X at the old X value | | | 10: | 7 | | SUB A: DX | Compare the old X with A | | | 11: | 8 | 19 | JUMPNC: 19 | Jump if A exceeds the old X | | | 13: | 2 | 98 | LOAD A: 398 | Put old X in A | | | 15: | 12 | 99 | LOAD X: 399 | Put old A in X (swap) | | | 17: | 10 | 23 | JUMP: 23 | Carry on | | | 19: | 2 | 99 | LOAD A: 999 | Restore A | | | 21: | 12 | 98 | LOAD X: 398 | Restore X | | | | | | | Multiply starts here | | | 23: | 3 | 96 | STORE A: 096 | Save A, to be added repeatedly | | | 25: | 1 | O | LOAD A:O | Fetch zero to | | | 271 | 3 | 98 | | Clear the 'hundreds' total | | | 29: | 2 | 96 | LDAD A: 396 | Restore A | | | | | | | The 'adding loop' starts here | | | 31: | 16 | 1 | SUB
X:1 | Count one less loop required | | | 33: | 9 | 38 | JUMPNZ: 38 | Plug on unless we've reached 0 | | | 35: | 3 | 99 | STORE A: 099 | Store the units | | | 37: | 0 | | HALT | That's all folks | | | 38: | 13 | 97 | STORE X: 097 | Save the count for later | | | 401 | 11 | 96 | LOAD X196 | Point X at the multiplier | | | 42: | 19 | | ADD A: DX | Add it to the total yet again | | | 431 | 8 | 55 | JUMPNC: 55 | Jump if it fitted in A | | | 45: | 3 | 99 | STORE A; 099 | It overflowed, save remainder | | | 47: | 2 | 98 | LOAD A: 398 | Fetch 'hundreds' so far | | | 49: | 5 | 1 | ADD A: 1 | One more hundred | | | 511 | 3 | 98 | STORE A1098 | Store the new 'hundreds' total | | | 53: | 2 | 99 | LOAD A; 399 | Fetch remainder (units & tens) | | | 55: | 12 | 97 | LOAD X: 997 | Get the count again | | | 57: | 10 | 31 | JUMP;31 | Do the next add if necessary | | | Listi | ng 3 | . A c | rude multiplier. | | the number at location 96 and point X at it, using the ADD A; @ X instruction. In turn, we then need to use location 97 to save the count which was in X. Whenever we add a value to that in A we must check that the total wasn't more than 99, otherwise an overflow (carry) has occurred and we should add one to the 'hundreds' figure at location 98. Look at Listing 3 if this doesn't make sense. There is one more potential problem. The program so far would calculate 3 \times 9 far more slowly than 9 \times 3, since the first sum would involve nine additions and the second only three (assuming the second figure was loaded into the X register). This snag is easily avoidable. The program automatically compares A and X at the start and makes sure that the lowest value is in the X register, by swapping A and X if need be. #### RUNNING DRY If this program looks rather daunting, don't worry... WE couldn't make it work for a while! Table 1 shows a good way of testing programs like this. The technique is called 'dry running', and it is rather like running the program on paper before you let the computer at it. Dry running is a very useful skill as it can be applied to almost all languages. To dry run a program you start by heading a sheet of paper with the names of all the variables or locations which are altered by the program. In the example these are the registers A and X, plus locations 96 to 99 which are used by the 'multiply' program. Dry runs are best for testing programs with few variables — often true of machine code. You need one extra column to record the program line' — in BASIC this would be the line number, while in Easycode it is the value of the P register. | | | Т | 'ABI | LE l | | | |------|---|---------|---------|------|---------|-------| | P | A | X | 96 | 97 | 98 | 99 | | 0 | 2 | 176F | ***** | | 11940 | 1967 | | 2 | | 2 | 1980 | | - | - | | 4 | | | | | 2 | 1.001 | | 6 | | | | | - | 2 | | 8 | | 98 | | | | | | 10 | O | *** | non- | plan | | - | | 19 | 2 | - | | | | - | | 21 | - | 2 | - | | reset . | - | | 23 | | | 2 | | | - | | 25 | Q | | | MARI | *** | | | 27 | - | | | | O | | | 29 | 2 | taken . | | | | *** | | 31 | | 1 | | | | 2100 | | 38 | | peer | - | 1. | | - | | 40 | | 96 | | | | **** | | 42 | 4 | *** | ALC 195 | 2000 | | - | | 55 | | 1 | ***** | | | ream | | 31 | | O | **** | **** | | - | | 35 | | **** | **** | - | | 4 | | halt | 4 | O | 2 | 1 | 0 | 4 | Work your way through the program, using a new line every time a value is stored. Write down the value of P as you go along, as a 'key'. The first line stores 2 in register A, hence the '2' in the 'A' column. The next line stores '2' in register X. At any time each current value can be seen by consulting the lowest entry in the column concerned (if there is no entry the value is unknown). This technique isn't a good way to test a large program (you'd need a sharp pencil and very big pieces of paper) but it is ideal for testing short complicated sections. Dry run Listing 3 (you'll need 20 lines) and compare your results with Table 1. #### THE JOY OF STACKS If you've typed in the new lines you will have spotted the extra column and register on the display by now! The column is the 'stack' and the new register'S' is called the 'stack pointer'. The stack is an area of memory inside the computer (it could use some of the 100 locations but we chose not to, to avoid confusion). Unlike most memory, you can't put values into the stack willy-nilly—you have to use special instructions. The stack works — as you might expect from its name — rather like a pile of values. You can 'PUSH' numbers onto the 'top' of the stack or 'POP' them off the top (PUSH and POP are the rather odd programmers' words for put-on-stack and take-from-stack respectively). This kind of stack (there are other, less common kinds) is called a 'LIFO stack' — LIFO stands for Last In, First Out, and it means simply that the last value PUSHed is always the first one POPped. Since you can only access the 'top' item on the stack, the computer must have some way of knowing which item is top. This | | 1 | | | | or more constructions to prince | |---|-----|----|----|--------------|--------------------------------------| | 1 | 0: | 1 | 2 | LOAD A:2 | First No. to be multiplied | | ı | 2: | 11 | 2 | LOAD X:2 | Second number (hence 2 x 2!) | | ı | 4: | 21 | | PUSH X | Save X temporarily | | ı | 5: | 20 | | PUSH A | Save A top | | ı | 6: | 13 | 98 | STORE X:398 | We must still save X in memory | | ı | 8: | 11 | 98 | LOAD X:98 | for the indexed comparison | | ı | 10: | 7 | | SUB A: 0X | Compare the old X with A | | ı | 11: | 8 | 17 | JUMPNC: 17 | Jump if A exceeds the old X | | ı | 13: | 23 | | POP X | Put old A in X | | ı | 141 | 22 | | POP A | Put old X in A (swap) | | I | 15: | | 19 | JUMP: 19 | Carry on | | ١ | 17: | | | POP A | Restore A (last in, first out) | | ı | 18: | | | POP X | Restore X | | ı | | | | | Multiply starts here | | ١ | 19: | 3 | 96 | STORE A: 096 | Save A. whatever it is now | | ١ | 21: | | 0 | LOAD ALO | Fetch zero to | | ı | 23: | 3 | 98 | STORE A: 098 | Clear the 'hundreds' total | | | 251 | 2 | 96 | LOAD A: 096 | Restore A | | | | | | | The 'adding loop' starts here | | ١ | 27: | 16 | 1 | SUB X:1 | Count one less loop required | | | 29: | 9 | 34 | JUMPNZ:34 | Plug on unless we've reached 0 | | | 31: | 3 | 99 | STORE A: 099 | Store the units | | ı | 33: | 0 | | HALT | That's all folks | | | 341 | 21 | | PUSH X | Save the count for later | | | 35: | 11 | 96 | LOAD X:96 | Point X at the multiplier | | | 37: | 19 | | ADD A: DX | Add it to the total yet again | | | 38: | 8 | 38 | JUMPNC: 38 | Jump if it fitted in A | | Ì | 40: | 20 | | PUSH A | It overflowed, save remainder | | ı | 41: | 2 | 98 | LOAD A; 398 | Fetch "hundreds" so ⁹ far | | | 43: | 5 | 1 | | One more hundred | | | 45: | 3 | 98 | STORE A; 998 | Store the new 'hundreds' total | | | 47: | 22 | | POP A | Fetch remainder (units & tens) | | | 48: | 23 | | POP X | Get the count again | | | 49: | 10 | 27 | JUMP; 27 | Do the next add if necessary | | | | | | | | #### Listing 4. A better multiplier. is where the stack pointer comes in — it is an index register, rather like X, but it has the special property that its value falls by one whenever it is used to store something. Some computers work the opposite way round, but the principle is the same. The TI-99/4A is the only well-known micro without a stack. If you look at the 'multiply' program you see that we often have to 'save' and then 'restore' a register value. A stack is an ideal place to do this. Stack instructions can be short since they don't need an address (the stack pointer provides one). You can PUSH and POP numbers at will so long as you always retrieve them in the opposite order to that in which you saved them. Listing 4 is a version of the 'multiply' program which uses PUSH and POP instructions to save and restore values. Notice that it is shorter and (hence) quicker than the original. It should also be easier to understand. If this explanation has seemed rather daft, type in the program and try it out. Look closely at the way the 'swap' works now. | OI | 11 | 90 | LOAD X190 | Point X to start | |-----|----|----|-------------|-----------------------------| | 2: | 17 | | LOAD A; ax | Fetch a number | | 31 | 20 | | PUSH A | Save it on the stack | | 4: | 15 | 1 | ADD X;1 | Point to next | | 61 | 9 | 2 | JUMPNZ: 2 | Round again unless finished | | 8: | 11 | 99 | LOAD X:90 | Point back at the start | | 10: | 22 | | POF A | Fetch last value pushed | | 11: | 18 | | STORE A; 0X | Dump it | | 12: | 15 | 1 | ADD X:1 | Advance to the next | | 14: | 9 | 2 | JUMPNZ: 10 | Unless the end is nigh | | 161 | 0 | | HALT | Job done | Listing 5. How to reverse values stored between 90 and 99. #### STACKS OF PROBLEMS Stacks can cause crashes! When you use Easycode the computer prints a message if you try to POP a value when S is 0 — the stack is empty. Another message appears if you try to PUSH when S is 10 — the stack only has room for 10 items. On the popular small micros there is no check for over-running, or POPping values when the stack is empty — the computer just overwrites the location after the stack space, or fetches whatever is stored before the stack space. This is usually a disaster. Stacks are useful but they are also the cause of much confusion, so the more you experiment in the 'safe' environment of Easycode, the better. #### **!ERAWTFOS ESREVER** Unlikely though it may sound, you will often need to reverse the order of values in machine-code programs. One example is the standard way of printing numbers, which involves successively dividing by 10 and printing the remainder. This, unfortunately, gives the answer backwards: ``` 236/10 = 23 remainder 6 23/10 = 2 remainder 3 2/10 = 0 remainder 2 ``` but it is quite easy, using a stack, to reverse the order. Listing 5 does the trick, reversing the values stored between locations 90 and 99. #### DON'T PUSH It may seem rather unfair to be allowed to PUSH the value of A or X, but not P (the usefulness of PUSH S is more debatable).
In fact it would be quite useful to be able to PUSH the value of P. It would be a kind of bookmark — 'this is where I reached when I did the PUSH P'. BASIC uses a kind of PUSH P arrangement to cope with the GOSUB statement, which has to remember 'where it came from' however many times it is used. GOSUB lets you use the same bit of program over and over again — wherever you call it from, a RETURN will always get you back. This is harder to program than you might imagine. You can't just use a 'where I came from' variable, because that won't handle GOSUBs within GOSUBs: ``` 10 GOSUB 30 20 STOP 30 GOSUB 50 40 RETURN : REM (to 20) 50 RETURN : REM (to 40) ``` This program would never get back to line 20 if it used a single variable to store 'where I came from'. The GOSUB in line 30 would scrub the reference to line 20 stored by line 10 (we think!). The answer (as you probably guessed) is to use the dreaded LIFO stack, so that each RETURN matches the most recent GOSUB. And that's exactly what BASIC does, which is why a program like: #### 10 GOSUB 10 slowly eats up memory until you get an error message when the stack is full (usually something like 'Too many GOSUBs' or 'Out of Memory'). Now we've got a stack it is easy to add GOSUB and RETURN instructions, although assemblers tend to prefer words like CALL and JSR (Jump to SubRoutine) instead of GOSUB. Not being total SERIES: Easycode COPY LIVE STORE O: as LOAD X 'points to' each value SUB 4: A: ax Add a value to the total 305: JUMPNZ ;12 STORE A: 099 13: Point X at next Value 14: 10 4 JUMP masochists, we'll use CALL and RETURN. CALL saves the address of the following instruction (to avoid getting knotted up within a RETURN) on the stack. RETURN fetches the last number off the stack and puts it into the 'P' register - in effect, JUMP;@S. To clarify this, try out this Easycode program which is identical in effect to the five line BASIC program: : 4 Go back and fetch it Ø: CALL; 3 2: HALT 3: CALL; 6 18: 5: RETURN (to 2) 6: RETURN (to 5) #### A PRACTICAL EXAMPLE JUMP If you saved Listing 4 you can easily change it into a generalpurpose multiplication subroutine. Just change the 0 at location 33 into a RETURN (code 25). You use the subroutine by loading A and X and then CALLing location 4. If you're sure that X will always be less than A, you could CALL; 19 instead, skipping the swap instructions. The last program of the month (Listing 6) assumes that you have entered Listing 4 and changed the HALT into a RETURN. The program, which should be RUN from location 60, works out the square of the number in the A register (multiplying A by A). The result ends up in locations 98 and 99, as usual. This will be a Whatever size cell you prefer! Put the same number in X Do the multiplication LOAD A:3 60: LOAD A: X 24 64: CALL: 19 Easy, wasn't it! 66: Listing 6. Storing A squared at 98, 99. vastly useful program next time you need to know how many sheets of paper are needed to cover the ceiling of a square room . . . (always assuming you know the area of a sheet: a CT spread covers about 0.124 square metres!). There is one crucial thing to remember about programming using the stack. You must clear away temporary results between a CALL and a RETURN — otherwise the computer could try to RETURN to the place A or X pointed to. You can't CALL a routine that goes PUSH A then RETURN — the value of A would 'get in the way' of the return address so that you'd end up 'returning' to whatever address happened to be in A. There are a few occasions in which this is likely to be useful, but not many The trick is to make sure that you always POP as much as you've PUSHed before returning from a subroutine. A common mistake is to 'save registers' before a CALL and then try to 'restore registers' inside the subroutine. This doesn't work either — the return address gets in the way. #### **NEXT MONTH** In the next, and final, episode of this series we'll take a look at real machine code for three popular processors and we'll compare Easycode with the real thing. Since you're unlikely to be able to write the next 'Visicalc' or 'JetPac' in Easycode, make sure of your copy of the June CT! Genuine phoneme synthesis - not just recorded speech - hence unlimited vocabulary. Programmable pitch for more natural intonation (exclusive to Wm Stuart Systems)- solid tone cabinet for quality sound - integral beep/music amplifier. PLUS expansion socket for BIG EARS voice recognition system. Full instructions technical notes and software supplied with this DEALER ENQUIRIES WELCOME As seen on BBC TV "Computer Programme" #### ***BIG EARS*** outstanding educational unit. SPEECH INPUT **FOR ANY** COMPUTER Hugely successful Speech Regnition Systém. complete with microphone, software and full ONLY £49 **BUILT TESTED & GUARANTEED** PLEASE STATE COMPUTER: UK101, SPECTRUM, ATOM, NASCOM2, Vic 20, Micron ZX80/81, PET, TRS80, MZ80K, APPLE II, BBC MICRO #### ZX81/SPECTRUM MUSIC SYNTHESISER (Stereo) +16 LINE CONTROL PORT 16K RAM Play 3-part music, sound effects, drums etc. Full control of attack, decay and frequency. Input/Output lines provide control and monitor facility for Home Security, Robot Control, Model Railway etc. etc. Works with or without 16K RAM Full instructions/software included. Add keyboard to make a live performance polyphonic synthesiser! AMAZING VALUE AT ONLY £19.50 (KIT) £25.50 (BUILT) **NEW!** VIBRATO CONTROL Note: up to 3 units can be used simultaneously; giving 9 music channels & 48 I/O lines #### TALKING HANGMAN THE COMPOSER Synthesiser Music Programme For Chatterbox! The classic game claims its victims 0 ogramme Enter & play 3 part harmony. Includes demonstrations. (Spectrum/ZX81) recommended £7 123 with a dry vocal accompaniment (Spectrum) £6 #### W ZX ARP/DRUMSEQ A 0 F T R E Fascinating synthesiser demonstrations. Generates automatic sequences and plays from keyboard. Some weird effects (Spectrum) CHROMACODE?????? Can you defuse the bomb by cracking the secret combination before time runs out? With Chatterbox voice 63 output (Spectrum) #### COLOUR MODULATOR RGB in, PAL/UHF out (not for ZX) **KIT £16** BUILT £22 Please add VAT at 15% to prices. Barclay/Access orders accepted by telephone BARCLAYCAHD + VISA All enquiries S.A.E. please WILLIAM STUART SYSTEMS Ltd Quarley Down House Cholderton Nr. Salisbury Wiltshire. SP4 ODZ Tel: 098 064 235 ## Commodore International Computer Art Challenge. ## £150,000 in prizes to be won! The Challenge. Commodore Computers are pleased to announce their first International Computer Art Challenge, and invite entrants to submit their work for judging by June 1st, 1984. Entries for this important new competition must be generated on Commodore 64 or Vic 20 computers, and may consist of either a still picture or of dynamic graphics of no more than 60 seconds duration. There are three age categories: under 12; 12 to 17; and 18 years or over. All entrants must be able to demonstrate their skill on Commodore equipment and explain their methods and development of their entry if required to do so by the panel of judges. Prizes in each of the 3 age groups and the 4 entry classifications (explained in the leaflet) are as follows: 1st Prize. £1,500 worth of Commodore equipment to the winner's choice. 2nd Prize. £1,000 worth of Commodore equipment. 3rd Prize. £7,000 worth of Commodore equipment. In addition, winners will have the opportunity to see their work in a series of unique exhibitions across the world, and a special scholarship worth £5,000 will be awarded to one winner in each participating country to further his or her art education. All entrants will receive a certificate of entry. There are no cash alternatives to any of these prizes. How to enter. Leaflets with full details of the Challenge and the entry form are available at Commodore dealers, Commodore User Clubs, most major retail computer shops and at stores with a computer department. In case of difficulty or for additional copies, please write to: The Commodore International Computer Art Challenge, Granard Communications, 4 Babmaes Street, London SW1Y 6HD, using the coupon provided. | Name | | | |----------|--|--| | Address_ | | | | | | | Believe it or not, computers often suffer from amnesia. 99% start off with large enough memories, but operating functions like text, colour, sound and more particularly high resolution graphics, take large bytes out of them. Leaving very little "useable" memory for programming and games. Not so the new Oric Atmos 48K. This is the one home computer that takes these normal working functions in its stride. Unlike other home computers it uses the highly sophisticated serial attribute handling method used by Viewdata and Teletext, in which the attributes are stored on the screen alongside the data, instead of taking up space in the memory. Thus the Oric Atmos never offers less than a healthy 37K of useable memory – even when the new colour printer and disc drive unit are attached. (Technical buffs see details overleaf). So it rivals the performance of the supposedly larger, more expensive Commodore 64K, which unfortunately loses 26K of its "elephantine" memory in high resolution graphics. It beats its immediate competitors like the Sinclair Spectrum, Dragon 32K, Vic 20 and Atari 600. # ures for esia. It beats the Lynx 48K, which costs over a third more, yet loses 34K. It even beats the Acorn Electron and the BBC Micro which costs more than twice as much, yet loses 23K in high resolution graphics. And while this may surprise you, it's totally in keeping with a company recognised in the computer industry for performance and innovation. Like its predecessor, the Oric-1, the Oric Atmos has the powerful loudspeaker and amplifier unit that prompted "Which Micro" (November issue) to comment..."Its sound facilities have more in common with those of the £400 Beeb, than the rather pathetic beep of the Spectrum. At full volume it can compete with most arcade games..." Yet the Oric Atmos 48K costs a
mere £170, including all the leads and adaptors you need to get it going. So if you're buying a computer, remember our name. We could save you a fortune on bolt-ons... or wastepaper bins. The new Oric Atmos 48K. ## The Perfect Partnership #### The features of this superb desk include - ★ Effective and economical space saving design - ★ Attractive Teak effect finish - ★ Ample desk top space to house the latest Home Computers - ★ Rear cut-outs for connecting cables and leads - ★ Raised section to accommodate portable T.V. - ★ Large shelf and drawer for storage - ★ Stability - ★ Durability - ★ Practical, beautifully made and truly functional - ★ Delivered flat-packed with full instructions for easy assembly - ★ Specifications: Overall: 34½" H, 38¼" W, 18¾" D. Platform: 6" H, 18½" W, 9" D. ★ Excellent value ONLY £39.95 +P&P #### POST THIS COUPON TO: #### **DISCOUNT** Computer Supplies 14 SANDPIT PLACE, LONDON SE7 8HE | omputer Desks at £39.95 + £10 P&P. I enclose payable to DISCOUNT Computer Supplies. | |---| | | | Please allow 28 days for delivery | o be brutally frank, this article has been prompted mainly by self-defence. It doesn't matter how simple a listing is or what machine it is written for: someone, somewhere will not be able to make it work. Human nature being what it is, the immediate conclusion is that it's our fault and pen is put to paper, or mouth to telephone. Occasionally it *is* our fault, but even in these cases the reader could often save himself a great deal of time and teach himself more about computing if he sat down and tried to fix it on the spot instead of asking us. We will, of course, always do our best to help readers experiencing difficulties with our programs (not your own!) but the more enquiries we have to deal with, the less time we have to actually work on the magazine. Thus we get a trifle hot under the collar when enquiries arrive that are patently silly. For example, it may seem bizarre but some people don't appear to read the manual supplied with their computer. Often the answer lies there, and a note to the effect of 'Read Page such-and-such' is sent off with barely-repressed Nevertheless, we can and do take steps to ensure that a program will, under most operating conditions, function without error. The techniques to be described here are, to the best of my knowledge, those most commonly used, and are the ones which will be of greatest assistance if used thoughtfully and correctly. The methods have purposely been described in relation to BASIC, but since the majority of them are simply embodiments of some concept or other, it should be very easy to recognise their more general appeal. The importance of program structure will also be discussed in order to emphasise the way in which structured design can reduce the number of errors introduced and simplify the debugging process if an error does creep in. First, though, let us examine the ways in which a bug can make itself apparent. #### THE EFFECTS OF ERRORS Program errors can — and will! — make themselves known in such a variety of ways that there is no point and little benefit in ## **DEBUGGING** Jamie Clary If you're an Einstein of the programming world or an infallible, letter-perfect copy typist, don't bother going any further. The other 100% of you can carry on reading. sarcasm. (I know pirated software is circulated without documentation, but surely there aren't pirate computers?) Another instance occurred just before Christmas, when a reader experienced trouble with a BBC listing. It being a hectic time of year, we couldn't spare the time to find the fault, so we offered to send a copy of the program if a cassette was supplied (NOTE!! This was a once-only spirit-of-the-season gesture, so don't bother writing in requesting software.) The cassette arrived with a copy of his typed-in version saved on it, so we ran it out of interest. The first thing that came up was 'Missing bracket in line 1860'. Aaarrgh! In an attempt to encourage a spirit of self-help among readers and hopefully, cut down the size of our mailbag, the following techniques should enable you to tackle most problems yourself. Remember, if one of our programs doesn't work then nine times out of 10 it's caused by a typing error on your part. #### THE PROBLEM A bug, depending on which book you read, is either "something which should not happen when you run a program", or more colourfully "a mistake or problem (possibly simple, possibly very deep); an unwanted and unintended property", or simply "an undocumented feature". The **Hacker's Dictionary** (responsible for the second of the above definitions) goes further and gives examples, such as "There's a bug in the editor — it writes things out backwards" and more generally "Fred is a winner, but he has a few bugs" (ie Fred is a good guy, but he has a few personality problems). The latter example has captured it quite nicely, by pointing out that a bug can be a local or global phenomenon, and knows little of restraint and other things accept as basic etiquette. More seriously though, the process of detecting and correcting bugs is an art in itself, and it should be treated with as much reverence as actually *creating* a program. Debugging is a process of improving program performance which can range from correcting simple mistakes introduced through carelessness, to, in its most extreme form, re-writing whole sections of code — even the whole program! The extent to which the debugging process is taken is itself worthy of note. There is practically no way in which any program, excepting the most trivial example, will be tested to a point where it can be considered to be absolutely, 100% bug-free. trying to list them here. It is, however, relatively easy to classify them in terms of their nature, and with regard to the extent to which they can affect the operation of a program. Broadly speaking, errors fall into two main categories. The first comprises syntax errors, where the interpreter is requested to acknowledge and interpret a line or command which is inconsistent with its own internal rules. Examples abound, but one which will serve as an illustration is the case where the PRINT statement is simply mis-spelt, such as: #### 10 PRIN "hello" This may appear to be a trivial example, but if this type of error were to occur in a multi-statement line, it could be quite difficult to detect. Syntax errors trapped by the interpreter are usually the simplest to deal with, since one is immediately furnished with information regarding not only the nature of the error, but the line number as well. One often fails to appreciate the importance and usefulness of the error-message, but consider a situation in which a program, merrily executing, encounters an error and suddenly the machine halts — no message — nothing! By these standards (and in the words of Harold Macmillan), we've never had it so However, the use to which we put this information once it is received is quite another matter. Proper and effective use of errormessages is of great importance, as they are normally the first vital link between problem and solution — this will be demonstrated a little later on. #### ILLOGICAL, CAPTAIN The second category of errors are termed logical errors, of which there are three general cases. 'First-order' logical errors (for want of a better term) are those which allow the program to execute as such, but which produce a discrepancy between the predicted and the *actual* result. 'Second-order' logical errors are those which result in elements of a program attempting 'illegal' operations, such as division by zero, string lengths exceeding the legal limit, and so on, and these generally result in premature termination of the program. Finally, there are 'third-order' logical errors. Detecting this particular breed requires a more intuitive approach than the others, but this does not mean that we are left completely in the dark. For the time being, though, we could do worse than to define this type of error as 'one which distorts the normal flow of program execution and yet does not return control directly to the user'. The causes are many, as we shall discuss a little later on, but simply put, this variety of logical error will usually occur when the interpreter attempts to interact with the machine at a level beyond the interpreter's environmental control. Obvious examples of such interactions are CALL, POKE, and USR instructions, which have a direct effect upon the system, rather than the very indirect effects of most other BASIC commands. The gratest problem to be overcome with this type of error is that no hin, of the error is given until the situation is well beyond the point of no-return (the machine locks-up or does something similarly anti-social!). Fortunately for us, and unlike so many other systems in our world, a program error will always be a logical consequence or product of some preceding action or series of actions (cause-and-effect, don't you know!) and this alone implies that if we can alter the sequence in some way, the error condition can be prevented from ever occurring. Basically, all logical errors arise through attempts to code a faulty algorithm, and this of course, will always result in a fundamental weakness in the program design. Fortunately enough, at least for those among us who derive their pleasure from transcribing program listings from the printed page into the micro, this type of error should never be encountered — not in **Computing Today,** at least! (Editor crosses fingers and prays hard). #### YOU'RE MISTAKEN Before embarking upon a full-blown analysis of methods for isolating the more difficult logical errors, let us first investigate the more obvious errors arising from program/language inconsistencies, and attempt to explain in a little more detail, the causes of the commonest errors. In fact, these
errors are probably more correctly termed 'mistakes', since they generally result from carelessness while entering the code into the machine, or through mis-interpretation of the printed listing. Examples of this type of error are; confusion over the 'O' and the 'O' (zero) characters, confusion over the 'I' and '1' (one) and 'I' (lower-case L) characters, and quite often, confusion over upper and lower-case variables/ procedure names (in BBC BASIC, PROCstart and PROCSTART are not identical procedure identifiers). Luckily enough, the interpreter can often pick up on these errors, and will issue a message pointing to the line containing the offending piece of code. However, this is not the end of the story. For example, in BBC BASIC, if a procedure call is made and the identifier cannot be resolved, as would be the case in the following example: 10 PROCstart 20 END 100 DEFPROCSTART 110 PRINT "PROCSTART, not PROCstart" 120 ENDPROC then the interpreter, rather than exclaiming something along the lines of 'Procedure call error at line 10', indicating that the call at line 10 is incorrect, will in fact issue the message 'no such FN/ PROC at line 10'. This, to my mind at least, suggests that the error is not in the 'call' itself, but in the definition of the procedure. So, although the message is technically correct (there is no procedure called 'start' in this case) it mis-leads you up the garden path, because the same message would have been issued had the procedure appeared thus, with the error now in line 100: 10 PROCSTART 20 END 100 DEFPROCStart 110 PRINT "PROCSTART, not PROCstart" 120 ENDPROC This kind of ambiguity can encourage us to investigate the wrong portion of the program, although one eventually discovers the conditions under which such ambiguities can arise, and we soon learn the correct response and correct action to take in reply to such messages. The techniques to be outlined shortly will contain references to some common mistakes in order to both demonstrate the techniques, and to emphasise the mistakes themselves. And so, let us turn to some of the methods available which will allow us to discover the whereabouts of errors responsible for program failure. Several comparatively tried and trusted techniques for simplifying the process of fault isolation are available to would-be trouble-shooters, and it is these that we shall concentrate upon in this section. First, let us consider a method which is not so trusted, but is notable in computing circles for reasons which will become quite apparent . . . #### TRIAL AND ERROR Just as in any other fault-finding or trouble-shooting exercise, regardless of the discipline, there is always the possibility that a fault will be discovered by simply applying guesswork to ascertain the faulty element in a system. If one were testing a circuit-board, for example, one could quite conceivably remove every component from the board and test each one out of circuit until the recalcitrant component were discovered. A similar technique can be used to isolate an error in a program. The minimal requirements for the trial-and-error approach to fault isolation are a blatent combination of acute perceptiveness and good luck! The process itself works along the following lines: bug-finder, observing that all is not well with his program, cultivates a make-shift hypothesis, and goes off for a quick rummage about in the program segment under suspicion. All of this activity is founded upon the assumption that the blighter will have to come out sooner or later, and this, of course, is the basic flaw of this approach. It fails to recognise that bugs are, in fact, quite capable of remaining dormant for long periods without any apparent loss of effectiveness. But if all else fails . . . #### PENCIL AND PAPER The pencil-and-paper method of debugging can offer very good results if its use is correctly regulated. It does require considerable time and effort, though, and often gives rise to some curious physical sensations because of the intense concentration demanded of its user! The technique involves selecting a suitably small, and yet 'complete' section of code — complete in the sense that it must contribute significantly to the routine, procedure, or whatever chunk of program is under test. The process itself involves working through the selected piece of code by hand, performing the calculations and noting values as the computer would when executing the code, in order to determine whether or not the code actually performs its specified function. The main problem with this method is that a decision has to be made regarding which types of coded operations are suitable for the pencil and paper treatment. Generally, any kind of coded mathematics can be tested in this way, since they can be readily and conveniently simulated by hand. Clearly, one does NOT wish to simulate graphics routines, disc-file updates and so on by hand. Also worth considering is the fact that, by its very nature this method will generate masses of paper, and it is probably well worth investing in a fresh notepad if the piece of code to be tested with this method contains any kind of iterative loop (make that several pads for nested loops!). An added bonus to using the 'pencil and paper' approach, is that it encourages the user to follow the operations of the program step by step, thereby reinforcing his understanding of the language itself, which can't be a bad thing! #### BACKTRACKING In many ways, the process of isolating errors in a program can be made to mirror the original process of program development: by capturing an idea and translating it into another form, we produce a concatenated series of coded events designed to reflect our original idea — a program. Similarly, in attempting to isolate errors — especially those which are due to faulty program design — we can regress from the effects of an error through the preceding program events in an attempt to recapture the subroutine, procedure, line, or whatever, which is reflecting our FEATURE: Debugging original, faulty notion(s). This particular method, known as 'backtracking' is very powerful. However, it does assume that the person responsible for debugging the program is capable of deducing which portions of a program are responsible for resulting events at any given moment. Clearly, this level of detailed knowledge would only be available to the originator of the program (although this could be a subject of some debate), and those who had studied the fine details of a program and knew it virtually inside-out. To show how backtracking works in practice, consider the following program: ``` 10 CLS: REM ** clear screen 20 INPUT "Your word : ",A$ 30 B$="" 40 C$=A$ 50 B$=RIGHT$(A$,1) 60 IF LEN(A$)>0 THEN A$=LEFT$(A$,LEN(A$)-1): GOTO 50 70 PRINT C$; "backwards = ";B$ ``` The program above is designed to accept a string supplied by the user, reverse the order of the characters within the string, and finally print the characters within the string in their original and reverse orders. The problem is that when the program is executed, and a string entered, the string purporting to contain the reverse-ordered characters of the original string, turns out to be nothing of the sort! What is returned is a null, or empty string. A glance at line 70 reveals that the variable which should contain the reverse-string is B\$. Working back from this line we examine line 60, and find that B\$ is not manipulated at all here, and so we can regress to line 50 for the time being, since it has a direct effect upon B\$. In fact we find that B\$ is always made equal to the rightmost character of the string assigned to the string-variable A\$, and this is obviously incorrect! Some further investigation would reveal that line 50 should concatenate a string to 'build-up' the reverse-ordered characters, and should read: #### 50 B\$=B\$+RIGHT\$ (A\$,1) More significantly, however, the example shows how looking back from the point at which the error revealed itself, helped to isolate the cause. Furthermore, it also illustrated that it is possible for an error to occur some time before its effects are exhibited to the outside world. The problems associated with isolating the logical error are often compounded by the fact that there can be a substantial delay between the occurrence of an error, and the manifestation of the symptoms, during which time the program may have progressed considerably. This type of error is an obvious candidate for the backtracking treatment since, under these conditions, it is the only possible technique that can be used, *unless* the error can be brought to our attention the instant that it occurs. And this, quite conveniently, is exactly what the next technique is designed to do. #### FORWARD TRACKING The term 'forward tracking' is a little misleading, as the method simply entails following the execution path of a program until it fails to operate as it should. As such, it is probably more correctly termed simply 'tracking'. The forward tracking process can be readily illustrated by the following example: ``` 10 DIM A(10) 20 FOR I=1 TO 10 30 READ A(I) 40 NEXT I 50 END 100 DATA 123,456,789,123,0,456,789,123,456,789 ``` The program shown is designed to read 10 elements from the data contained at line 100 into a numeric array A(). On execution, the program halts, replying 'No Such Variable at line 30'. Examination of line 30 shows that there are no syntax errors, so where do we turn? We can use several methods to ascertain the cause of the error, but we can start by examining the function of the program itself. Line 10 dimensions a one-dimensional array; line 20 initialises a FOR-NEXT iterative loop (index-variable I); line 30 takes items of data from the list at line 50, placing the values into the Ith element of the array A; line 40 increments the FOR-NEXT loop; line 50 ENDs the program; line 100 contains the data to be read. So we should eventually end up
with an array containing the same numeric values as those in line 100. Now to the error. If we add an extra line to the program to print the value of the index-variable, I, thus: #### 25 PRINT I on execution of the program we find that I reaches a value of 5 before the program fails. This suggests that the data is read into the array right up until the fifth data-element from line 100 is transferred into the array. This in turn suggests that there could be something wrong with the fifth element of data. So, forewarned by the knowledge that the items in the DATA line can only be numeric values (since the array is a numeric and not a string array), we examine the fifth item of data. Is that an 'O' or a 'O' (zero)? We may not be able to say for sure, so we change it to a zero anyway, if only to assure ourselves that it is 'O' (zero) and not the alpha-character 'O'. On execution of the program for a second time, we find that the program runs without error, confirming that we had, by mistake, placed the wrong character in the data line. This underlines two things; how easy it is to confuse the 'O' and the 'O' (zero) characters; and how, by tracking the execution of the program, we can obtain additional information about the operation of the program in order to 'home-in' on the location of the error, even though we are lead to believe by the error message that the fault lies elsewhere. #### THE SNAPSHOT This technique involves sprinkling PRINT statements sparingly (take note!) throughout the program, so that at key points during its execution the values of suspicious-looking variables are printed onto the screen. By noting where exactly in the program the print statements have been added, in the event of a variable possessing a value inconsistent with its expected value, we will have an immediate clue as to the location of the offending piece of code (assuming, of course, that you have placed your PRINT statements suitably near to where the calculations have been performed, and not several hundred lines later!). The most important factors to note about this method are; don't add too many PRINT statements, as the resulting deluge of information could not be assimilated and would be of little use; also, this method assumes that its user is capable of working out by hand the correct values of the variables printed onto the screen. Clearly, there is little advantage to be had from knowing a variable's value if we have no way of testing for its correctness! This technique is of great use throughout all stages of fault isolation, although a word of caution — don't forget where the redundant PRINT statements have been added, as they will crop up at the most awkward and undesirable moments, and can be as much of a headache to weed-out as the errors themselves! #### BREAKPOINTS To be completely accurate, the use of breakpoints within a program (ie inserting additional instructions into a program to suspend the current operation) is another example of forward tracking. However, depending on which machine (and hence which particular implementation of BASIC) is in use, it may or may not be possible to continue execution of the program from the point at which the breakpoint occured, in order to proceed with the tracking process. The commonest example of the breakpoint as implemented in most versions of BASIC, is the STOP statement. As you will probably know, on execution of the STOP statement, the host program containing the instruction will cease execution and issue a message to the effect that a STOP statement has been encountered at a certain line. The programmer can then examine the variables and so forth in order to see if everything is functioning as it should. Using this method, it is possible to predict where in a program an error is occurring, since (and in the finest tradition of most other forward-tracking techniques) if we can assume that everything is running satisfactorily up to a point, yet as soon as execution of the program is restarted an error is observed, the location of the error is confined to being shortly after the last breakpoint. Another method which achieves more or less the same result, works by inserting additional statements (INPUT, GET, INKEY etc) to temporarily suspend the execution of a program until such time as a key is pressed. This enables us to examine the output of a program in fine detail, to see if it conforms to our predictions. If, on the other hand, all is not well, then we can halt the program completely and examine the locale for further evidence of an error. There are two points to note here. First, if you expect to be able to continue execution after a STOP instruction, ensure that your particular version of BASIC supports the CONTinue, RESUME, or some similar command. Second, if you intend to spread redundant INPUT statements throughout your program, DO ensure that the input-variable has an identifier which is NOT used elsewhere in the program, as this is guaranteed to produce some very unexpected results! #### INDUCTION More correctly considered a testing method, induction testing assumes that, if a piece of code works by injecting a certain, known set of values, we can also assume that it will work for ALL input values. These assumptions must be made under certain conditions, as the following example may serve to illustrate. Consider a routine for producing the multiplicand of two integers, each capable of having possible values lying between 0 and 1000. This simple example alone has 1 MILLION possible input/output variations! The practice of induction involves inserting or replacing lines within the area of the program under test, usually a procedure or subroutine, which presets variables and so on to some value which would normally be derived from some preceding calculation. The routine is then executed and halted as and when the procedure or subroutine has been concluded. The programmer can then proceed by comparing the result with the expected result, concluding that the routine is operating correctly or otherwise. If the conclusion is that the routine is not functioning correctly, the programmer can continue his investigation by 'forward tracking' or some other method to deduce the precise cause of the error. This method is of particular value when establishing whether or not a routine, which normally would be executed several times or perhaps several hundred times, works just once. The following example demonstrates this process. It can be shown that the SIN of a value X can be developed from the following arithmetic series: $$SIN(X) = X - (X/2!) + (X/4!) - (X/6!) + . . .$$ The series itself is unimportant. What IS important, however, is that each successive step requires the factorial (!) of the index or power to which X is raised. The expression for factorial any number, n, is defined as - ``` n! = n * (n-1) * (n-2) * . . . * 2 * 1 eg 3 factorial = 3! = 3 * 2 * 1 = 6 4! = 4 * 3 * 2 * 1 = 24 and so on ``` A program written to calculate $SIN\left(X\right)$ to seven terms, would require six factorials to be calculated. If the routine to find the factorial of any number were to be entered thus: ``` 90 REM ** Routine to calculate factorials 100 TV=N 110 N=N-1 120 TV=TV*N 130 IF N<>1 THEN 100 140 N=TV 150 RETURN ``` we would find that our value for SIN(X) would be very wrong indeed! To test this routine for its correctness, we could insert the following lines: ``` 95 N=3: REM ** Does it work for 3? - Induction 145 PRINT "N Factorial = ";N: REM ** Snapshot 148 STOP: REM ** Breakpoint ``` Calling the subroutine gives the value of 3 factorial as 2- quite incorrect! Now that the error has been isolated one could examine the routine further, and we would eventually discover, by pencil and paper perhaps, that line 130 should read ``` 130 IF N<>1 THEN 110 ``` This example also illustrates how several techniques are combined to determine the exact location of the error. #### FIRMWARE DEBUGGING AIDS Most of the methods described thus far are all very DIY and rely largely upon each individual's artfulness. However, there are additional weapons available (at a cost, usually) which can be very useful in a tight spot. The facilities to which I refer are such things as TRACE and FIND functions, as often implemented in add-on toolkit ROMs. The FIND function is an advanced facility which allows the programmer to discover to the exact whereabouts of variables, strings and so on within a program, while the TRACE function is a run-time aid which allows the programmer to follow the execution path of a program by observing the line numbers which are printed onto the screen. Such tools are generally sophisticated versions of the techniques which have already been mentioned, but their use is greatly simplified. Although any programmer worth his salt could probably survive without such aids (just as any REAL programmer would only work with FORTRAN or better still, assembly language!), such functions greatly reduce the amount of tampering we ourselves have to do to the program, which itself increases the possibility of introducing more bugs into the program than we started with. #### **ERROR PREVENTION** It is very easy to say that prevention is easier than cure. However, this maxim precludes the fact that we are quite often not responsible for the production of the software we use. The unfortunate truth of the matter is that, although we may not be the originators of the stuff, we are stuck with the task of debugging it if an error arises, and in this case we would just have to get on with the job. When we are responsible for designing a program, we can go a long way towards saving ourselves both time and energy, by taking care in the process of specifying and designing the program from the outset. We can go further still, and adopt an approach with the design process which will simultaneously reduce the frequency of occurrences of errors, and cannot fail to simplify the debugging process if errors
do creep in (and believe me, they will!). It is normally the case that a program constructed from a number of linked modules will make more effective use of time and energy than a linear or monolithic program. Another reason why modular or structured programming has enjoyed such great success, particularly in commerce and industry, is that program-development work can be farmed out to several individuals very easily. Although I shall not deal with structured programming to any great depth here (see our previous series Elegant Programming), suffice it to say that it does work. The main problem associated with adopting the structured approach is that, by its very nature, it does require the original idea behind the program to be fairly solidly conceived, before the programmer can be allowed even a sniff of the keyboard. Most people find the temptation simply too great to resist! If the concepts discussed in the preceding paragraphs appear a bit shaky, I can only reply by nodding my head in agreement. The bitter truth of the matter is that the act of debugging a program bears a greater resemblance to economic forecasting than it does to a strict engineering discipline and as such, the process of debugging a program can be no more rigorous than the laws of probability will allow. To a lot of people, the Commodore 64 is merely a home computer. A handy, entertaining, semi-serious piece of kit which all the family can enjoy. Few people appreciate, let alone exploit, its hidden applications potential. Because, to be perfectly honest, no one has ever bothered to produce any software to significantly boost its performance and exploit all the exciting possibilities. Well, we're about to change all that. HANDIC have pioneered four programmers aids that really do stretch the imagination and latent potential of your Commodore 64. #### Take a look ... **GRAF 64** With GRAF 64 you can study complicated mathematical functions by their graph. You can also define a function and plot the graph in high resolution within an w-axis range. Graphical areas far from the original can be studied by a blow-up of a specified range. There is also a special routine for computing the integral of a function within a range specified by you. £29-95 MON 64 Machine Code Monitor on cartridge — you do not have to wait while the cassette or diskette is being loaded between runs and debugging attempts. The package includes two (Yes 2!) monitors, so that it is possible to decide what parts of the memory NOT to use. It is, so far, the only monitor on the market that works with all 64K of the CBM 64 memory. MON 64 has built-in help screens and a reset function. There is a command that lets you write ASC11-code directly into the memory. Except for the special functions the MON 64 has the following facilities: Assemble, Breakpoints, Disassemble, Go, Hunt, Interpret, Load, Save, Transfer, Relocate, Display Memory, Display Registers, Walk, Quicktrace, Modify Registers etc. and many others. £39.95 **STAT 64** STAT 64 simplifies your work with statistics and graphic displays. STAT 64 will add 19 commands to your Basic language. For example: bar charts (histograms) horizontally or vertically, plotting with 3871 points (high-res 64000), screen dump even if the screen is in graphic mode (not the high-res mode), statistical commands for mean value, standard deviation, variance and other critical calculations. £29.95 **REL 64** Turn your COMMODORE 64 into a remote Command and Control Centre. Activate burglar alarms, garage doors, locks, electric radiators, switches, thermostats, transmitters, lamps, valves, remote controls, pumps, telephones, accumulators, electric tools, stop watches, central heating systems, ventilators and airconditioning units, humidifiers, televisions, stereos... you name it. £34.95 Stretch your performance and exploit the hidden potential of your '64. For more information contact our 'Programmers Aids Centre' on 0344-778800. Or simply fill in and post the coupon to us. All prices include VAT. All products supplied as plug in cartridge. | Company | Title | |--|------------------| | Address | | | Tel. | anella | | 5 Albert Road, Crowthorne
Berkshire, RG11 7LT
Tel: 0344 778800 Telex: 849426 | software Ltd CT1 | | | Thinking ahead | COMPUTING TODAY MAY 1984 ### The Key to Spectrum Machine Code Success. Picturesque's MACHINE CODE SYSTEM is used and recommended by professional software writers, yet the excellent documentation and the friendly, easy-to-use programs have been highly recommended for beginners. You will only buy one Machine Code System, so buy the best, the one the professionals use. #### **NEW IMPROVED PROGRAMS — MICRODRIVE COMPATIBLE** # EDITOR ASSEMBLER Spectrum 16N & 46K MACHINE CODE SYSTEM The Key to Machine Code Success **ASSEMBLER** Completely self-contained with its own line editor, giving an easy-to-read 40 column tabulated listing. Auto line numbering, line renumbering and auto tabulation make this one of the fastest and easiest Assemblers to use. 5-character label names. Decimal, Hex or ASCII constants. SAVE/LOAD/VERIFY both the listing and Machine Code to cassette/MICRODRIVE/NETWORK. Assemble from cassette or Microdrive into memory for very large programs. Customise to most Centronics printer Interfaces, or RS232 (with Interface 1) for 80 column printout. FAST ASSEMBLY — 1k of code in 7 seconds. Assembler Directives:— ORG, END, DEFB, DEFW, DEFM, EQU, DEFL. (Microdrive and Centronics facilities only operate with 48k machines.) SPECTRUM MONITOR Spectrum fox & ABIK MACHINE CODE SYSTEM AND SUCCESS M **MONITOR** The ideal tool to help the beginner get started, yet it contains all the commands for the experienced programmer to run and de-bug machine code programs. Inspect and alter memory contents in Hex or ASCII. Breakpoints and full Register display. NOW WITH SINGLE STEPPING through RAM or ROM. Disassemble any part of memory, RAM or ROM. Dechex-Dec number converter. Printer output to ZX printer or via RS232 (with Interface 1) or customise to most Centronics printer Interfaces. General memory management commands include Hex dump, Insert, Delete, Fill and Move. Can reside in memory with the Assembler (48K machines only) to give a complete Machine Code programming system. Z/.JU INCI INCL. VAT & P&P. Programs supplied on cassette with option to Save onto Microdrive (cartridge not supplied.) Existing owners can obtain the new programs by returning the **cassette only** to Picturesque, along with a cheque/PO. for £1.50 per program (inc. VAT & P&P). New cassettes will be supplied by return of post. INCL. VAT & P&P. Available from the "SPECTRUM" chain of stores, branches of John Menzies and all good computer shops, or by mail order by sending cheque /PO to: PICTURESQUE, 6 Corkscrew Hill, West Wickham, Kent, BR4 9BB. Send SAE for details. # At last, a magazine that gets to the core of it. As the proud owner of an Apple, you know that really helpful magazines don't grow on trees. But now there's Orchard Computing. Orchard is a brand new quarterly put together specifically to suit the Apple It brings you the very best in useful routines, business and games software. And not a word of it that isn't directly relevant to you. So if you like an Apple a day, take Orchard quarterly. It's just what the doctor ordered. #### THE HR1 THE FINEST PRINTER/TYPEWRITERS MONEY CAN BUY. Compatible with SHARP **OSBORNE APPLE II APPLE III** TELEVIDEO TANDY RRC MIMI **TEXAS 30/30** PET **HEWLETT PACKARD** SUPERBRAIN SIRIUS XEROX IBM In fact most computers! ONLY £595 + VAT #### The HR1 Bi-directional - 17 CPS - some features as below, but without keyboard and lift off facility. CROWN RANIER — The leader of all interfaced daisy wheel printers/typewriters: The unbeatable Crown Ranier is the only heavy duty daisy wheel printer/typewriter which runs on a linear motor — no belts or cables to break, stretch of wear — and uses the IBM ribbon and lift off correctors. The reliability has become legend in these days of expensive electronic typewriter breakdowns CENTRONIC — IEEE — RS232 INTERFACES — Full KSR (keyboard send and receive). At small extra cost, No external boxes — interchangeable daisywheels — variable pitch — three free daisy wheels — automatic whole line correction — easily copes with standard printed forms — 135,000 characters per ribbon (at least twice the average character length) — standard lift off correctors — a printer/typewriter at the flick of a switch. Perfection as a typewriter (now used by local authorities and multi-nationals), perfection as a printer. Beware of lightweight, low cost machines — these can never give long term reliable service. THIS MACHINE WILL!!! The professional machine. Ask your local computer or office equipment dealer for further information, EX-STOCK DELIVERY CROWN BUSINESS CENTRE 56-58 SOUTH ST., EASTBOURNE, SUSSEX. (0323) 639983. DEDDEDDEDDE THE BROTHER CROWN RANIER ONLY £795 + VAT #### MAIL ORDER PROTECTION SCHEME If you order goods from Mail Order Advertisers in this magazine and pay by post in advance of delivery, this publication will consider you for compensation if the advertiser should become insolvent or bankrupt, provided: - You have not received the goods or had your money returned: and - You write to the publisher of this publication explaining the position not earlier than 28 days from the day you sent your order and not later than 2 months from that day. Please do not wait until the last moment to inform us. When you write, we will tell you how to make your claim and what evidence of payment is required. We guarantee to meet claims from readers made in accordance with the above procedure as soon as possible after the advertiser has been declared bankrupt or insolvent to a limit of £1,800 per annum for any one advertiser, so affected, and up to £5,400 p.a. in respect of all insolvent advertisers. Claims may be paid for
higher amounts, or when the above procedures have not been complied with, at the discretion of this publication, but we do not guarantee to do so in view of the need to set some limit to this commitment and to learn quickly of reader's difficulties. This guarantee covers only advance payment sent in direct response to an advertisement in this magazine (not, for example, payments made in response to catalogues, etc, received as a result of answering such advertisements): CLASSIFIED ADVERTISEMENTS ARE EXCLUDED. ## It's easy to complain about an advertisement. Once you know how. One of the ways we keep a check on the advertising that appears in the press, on posters and in the cinema is by responding to consumers' complaints. Any complaint sent to us is considered carefully and, if there's a case to answer, a full investigation is made. If you think you've got good reason to complain about an advertisement, send off for a copy of our free leaflet. It will tell you all you need to know to help us process your complaint as quickly as possible. The Advertising Standards Authority. If an advertisement is wrong, we're here to put it right. ASA Ltd, Dept 1 Brook House, Torrington Place, London WC1E 7HN This space is donated in the interests of high standards of advertising. COMPUTING TODAY MAY 1984 ## SERIOUS SOFTWARE FOR THE # **DATABASE SYSTEM** **WORD PROCESSOR** MAILING LIST, INVOICING, STOCK CONTROL, SALES LEDGER, BOUGHT LEDGER, DIARY, EXPENSES, CHEQUE BOOK! Now there is one program which can handle all these things - MAGPIE - The most powerful Database System for ANY Home Micro! WORDCRAFT 40 gives you all the powerful Word Processing facilities of an office system at a fraction of the cost. WORDCRAFT 40 works with any printer and because it comes on cartridge you can use it with disk or tape files! SEND FOR FURTHER DETAILS NOW! -Audioaenic TO THE SER SERVO WE PLAN DE THE PORTE AND OF THE PORTE AND OF THE PORTE AND OF THE PORTE AND OF ALIDIOCENIC ID n case you don't already know, MSX is the new hardware/software standard that has been designed by Microsoft in the United States and taken enthusiastically by Japanese, who have launched a myriad of machines onto the market in their own country. It has been taken up rather less enthusiastically in the United States - Spectravideo were the first and, so far, only US hardware company to support the standard, and the Consumer Electronics Show in Las Vegas last year had a distinct lack of MSX machines on show. Nevertheless, it the US machine that has been the first to reach these shores. There is also some controversy as to whether the Spectravideo is actually 100% MSX compatible. The story is a little confusing, but it is notable that neither the computer nor any of the packaging sports the MSX logo which licencees are given the rights to. The main point about MSX is that it specifies a range of hardware as well as the BASIC commands. The spec calls for a Z80A CPU, a Texas TMS9918A (or compatible) video display processor, and an AY-3-8910 (or compatible) programmable sound generator, amongst other things. Together with the standard BASIC and I/O structure, the idea is that several manufacturers can produce different machines, all of which can run all MSX-compatible software. Although this sounds like a recipe for a string of identical machines, in fact there is a great diversity in the Japanese machines around the basic specification. It also means that the competition between manufacturers to offer better hardware at lower prices becomes a more dominant market factor, since they all have the same operating system, which must be good news for the consumer. What it will do for software piracy is another matter entirely. #### THE HARDWARE The SV318 arrives in the usual cardboard and polystyrene package, only in rather more bits than you'd normally expect. The basic console looks like a cross between the Atari 400 and a giant Spec- # CHECK THE SPEC Christopher Moss The 'Japanese invasion' of MSX machines has been started by a computer from the United States, the Spectravideo SV318/328. Like the curate's egg, it's good in parts. trum, with a keyboard from the Sord/CGL M5. Overall it's quite a nice-looking machine, cream coloured with dark grey keys. The case is plastic, and the keys are rubber, though the harder type like the aforementioned M5 or Laser 200 rather than the squidgy Spectrum keys. The spacing is similar to that of a full-size typewriter keyboard, but although the keys are the best of the rubber kind, you aren't going to be able to touch-type on them. If your applications make touch-typing a necessity, then you can buy an up-market version called the SV328 which sports a real moving-key keyboard (plus 80K of RAM). This also differs from the SV318 in that it has a numeric keypad on the right-hand side of the keyboard instead of the 318's built-in joystick. The joystick is not just used for one-player games: it controls the cursor position when editing programs, and makes the Microsoft screen editor (which has always been my favourite system) even easier to use. If you find that the stick is a nuisance, it can be pulled out to leave a flat 'joydisc' with indentations around the edge for your finger-tips. This is a nice touch (!). The Spectravideo takes ROM cartridges, and the ROM slot is on the right hand side of the raised area at the back of the keyboard. This is a similar system to the Atari machines, but unlike Atari, Spectravideo have not included a power cut-out switch into the protective flap. Since the manual exhorts you not to insert or remove cartridges when the computer is powered up, this is a potentially dangerous bit of cost-cutting. Moving on to the right hand side of the case, we find two ports for connecting external joysticks (for two player games), an on-off power switch (good), and the power socket. At the back of the case there is a ventilation grille, an expansion bus surrounded by metal plate, the cassette port, and the video monitor output socket. The cassette port is a PCB edge-connector, so you'll have to buy the dedicated cassette recorder if you're Joe Average, or get out the soldering iron and wire up a suitable lead for your own machine if you're feeling brave (the pinouts are given in the manual, though not what the signals on them look like). The computer is one of the larger kind, measuring approximately 16" by 8½" by 3" high at the rear, but even so it needs a lot of other bits to work. The power supply is external, in a small metal box as opposed to the plug/transformer types of power pack favoured by others. You will notice that I said 'monitor output' in the paragraph above — if you want to use your TV, you'll have to plug in the UHF modulator box, which is small and also heavily shielded by metal. Finally, if you want to use your TV for computing and programme viewing without continually swapping aerial leads, there's yet another small box which plugs into your set and lets you switch between signals. It all works very well, but you'd better like lots of wires sprouting everywhere, and it's also a good idea to pick a spot where you can plug everything in once and then leave it. All the heavy shielding does its job, and the design is very nice technically — the picture produced by the review machine was rock-steady and the sound, which is modulated onto the UHF carrier for reproduction through the TV set loudspeaker, was clear and distortion-free. There was no interference at all between sound and picture. It's just a pity the wires and boxes leave a little to be desired from the point of view of ergonomics and aesthetics. We didn't get any of the other peripherals for the SV318 for this review, but the descriptions in the manual, if they come true, are pretty exhaustive. A game function keypad, external joysticks, graphics tablet and Coleco game adaptor all plug into the basic machine, while the addition of a mother board expander allows the use of various expander cartridges - modem, RS232, 80-column cartridge (for the 80-column printer), Centronics, 16K RAM, 64K RAM and disc drives. The 32K RAM and 32K ROM of the basic machine is expandable to 96K ROM and 144K RAM. #### GRAPHICS AND SOUND Anyone who knows the Texas Video Display Processor chips will know what to expect on the graphics front. There are four different modes available, although the BASIC only allows you to use three of them. The fourth would presumably be available to anyone who can decipher the Texas Data Book on the subject and find where in the memory map the VDP is situated — it looks like two bytes to the computer, and res mode you get a screen 256 by 192 pixels with 16 colours all available at once (subject to the limitation that you can only have one foreground and one background colour per horizontal group of eight pixels — the manual doesn't tell you this), nel, and because the chip handles all the note generation itself, it is easy to have sound playing during program execution in parallel with the game action. Don't judge a book by its cover, goes the old saying, and it is certainly borne out by the manual for this computer. The cover is excellent. Once you get inside, standards plummet so fast it makes your ears pop. I have seen many manuals for computers, and very few of them could be described as good at the job they are supposed to fulfil: but this manual is quite definitely the worst specimen it has ever been my misfortune to try to comprehend. Let me take you on a guide through some of the better (depending on your point of view) howlers. I've already mentioned that the manual, to its credit, offers full pin-outs for all its I/O ports, and a rough memory map. Unfortunately it's headed "Appendix E — I/O PIN-TOUTS AND MEMORY MAYS", which would shake anybody's confidence in its accuracy. In the so-called User's Manual section, which is supposed to instruct beginners, we find a reference to the built-in 'marco graphic language'. This one
really threw me until further on I found the section on the Music Macro Language. A quote from the section on graphics: "That ends our introduction to extended BASIC graphics. Now it is time to move on to the extraordinary sound capabilities of the SV318. Sprites are not limited to only 8 by 8 pixels . . ." The sole demonstration program of how to move sprites by using the joystick ends abruptly halfway through the position update routine and I could find no trace of the rest of it anywhere in the manual. An example of uses its own 16K of video RAM. Unfortunately that 16K is included in the 32K that Spectravideo tell you you are buying, so after the operating system has siphoned off its needs you're left with 12816 bytes for user programs. This is a lot less than many machines which do not cost as much: the Electron, the Spectrum, the Commodore 64, the Atmos and the Enterprise, when it's launched. Still, the graphics are excellent for all that. In high and 32 sprites which can have their resolution and pixel size altered to give four different sizes. The best way to appreciate what this means is to plug in Cross-force, one of the games cartridges — hordes of aliens sweep across the screen which has various planets drifting in the background. It's quite impressive. The manual also doesn't mention that the VDP is unable to display more than four sprites on any horizontal line of pixels, which might confuse programmers who haven't read the Texas data sheet and wonder why bits of sprites disappear under certain conditions. It's a minor limitation, though - with enough imagination on the part of the programmer the Texas chip will give graphics as good as most other machines on the market today. The sound chip is also a good choice. The tone through the TV loudspeaker was clear and didn't have the harsh quality that some computers exhibit. It features the standard range of three tone channels plus a noise chan- how to edit a program line has identical 'before' and 'after' digarams I could go on and on in this vein but it's pretty depressing, and rather like shooting fish in a barrel. If the BASIC reference guide and tutorial cassette tape were any better it wouldn't be so bad, but if anything they're worse. I couldn't find a single page that didn't have an error of some kind on it, and the demo examples on tape do absolutely no justice whatsoever to the power of the SV318's sound and graphics. They are pitched at the level of 'the computer picks a random number between 1 and 100, and you have to guess it'. Wow! Unlike other machines with poor manuals, this is not a manifestation of Janalish. The manual is credited to a group of gentlemen with English names who presumably work for Spectravideo in the USA. They should be ashamed of themselves. #### THE BASIC Since the manual is so impenetrable, it is very difficult to go into any great detail about the BASIC. Where keywords are mentioned at all (some aren't!) they are not explained adequately, and there was not sufficient time to work it all out properly myself in time for this issue. Nevertheless, it's possible to give an overview of the BASIC so that you can get the flavour of it. The graphics commands are fair, though by no means as comprehensive as a 32K ROM would lead you to believe. LINE allows you to draw a line or, with single letter extensions, draw a box and fill it up. The same applies to CIRCLE, which like most other micros doesn't actually give a circle but an ellipse, due to the aspect ratio of the pixels. The nice thing on the Specscreen. Irregular objects may be drawn using the DRAW command, which uses a string consisting of graphics commands from the Graphics Macro language (for example, DRAW "U50R50D50L50" gives a box 50 units on a side). Irregular shapes can be filled using the PAINT command. You can set the screen width, but only to 39 or 40 characters. The sound functions are utilised by a Music Macro language in the same way that the graphics are - by coding the required notes, tempos and waveforms into a string, which is then PLAYed. Programmers will find the standard. tools available; AUTO, RENUMBER, DELETE and MERGE are present, but there's no FIND and no DUMP. There are some interesting new additions to Microsoft's repertoire in MSX BASIC. You can work in binary, octal or hexadecimal if you wish. You can convert two, four and eight-digit strings to integer, single precision and double precision numbers respectively, and vice versa. You can find the carriage position of the line printer. As well as the usual Boolean operations, there is bitwise implication and equivalence. There are interrupt-driven ON-GOSUBs using joystick triggering, sprite collision and an interval timer. Of great potential to educationalists is the control, from BASIC, of the cassette motor and the cassette audio output, which can be ported through to the TV loudspeaker travideo is that the CIRCLE command has an eccentricity parameter, so you make a circle a real circle by drawing an ellipse (got that?). It seems almost churlish to point out that the ellipses can only be drawn with their major axis along the X or Y axes of the Clock 3.57MHz ROM 32K expandable to 96K RAM 32K expandable to 144K Language Microsoft BASIC Keyboard 71 keys, hard rubber type 10 function keys built-in joystick/cursor control Display 24 lines of 40 characters on TV or monitor Graphics 64 by 48 low res 256 by 192 high res 16 colours 32 sprites I/O Cassette port (1200 or 2400 baud) Expansion bus Two joystick ports Monitor Cartridae Sound Three channels plus noise: eight octaves Options Centronics Dual disc drives Modem Extra RAM and ROM Coleco game adaptor Graphics tablet Cost £186 RRP Supplier Spectravideo Ltd, 165 Garth Road, Morden, Surrey SM4 4LM. Telephone 01-330 0101. Spectravideo SV-318 Z80A via the computer if desired. suggests excellent possibilities for synchronising audio tapes to the program for teaching purposes. On the whole, however, FACTSHEET CPU Microsoft seems to have been much less adventurous with their 'home computer' BASIC than with their Microsoft Windows for business users. There are no new commands to allow structured programming; no REPEAT-UNTIL, no procedures, no DO-WHILE. Why, I wonder: you can never have enough keywords, in my opinion, and surely there's room in that 32K ROM for a few more? #### CONCLUSION From the hardware point of view, the Spectravideo is a very nice machine. The SV318 offers good graphics and sound for the games enthusiast, as well as the facility for some decent, easyto-use cartridge software. For the businessman, the addition of disc drives to the SV328 will give a system with a decent keyboard and CP/M capability, opening the door to a wide range of off-the-shelf business software. If you can put up with rubber keys on one hand, or the absence of the built-in joystick on the other, one machine can fulfil either role with equal ease. What lets the computer down badly is its shoddy documentation. The rank beginner will be totally baffled and even an experienced user is going to have to dia for the information he needs. It seems a shame that such a nice system has been saddled with this manual, and my advice to Spectravideo Ltd would be to get a revised manual written and put into all their stock of machines as soon as possible. Even if they don't, the book publishers will have their authors working on Spectravideo Explained' and suchlike (I understand Granada already have such a manuscript ready). But in a market where there are so many machines in this price range offering computing power of a similar level, it will do Spectravideo no good at all to be known as the company whose machines need another £5-10 book before they can even be used properly. #### This team would cost you about £45,000 p.a. #### And they'd all like BUPA. Business accounting no longer need piles of paper, banks of filing, and a clerical army to control it all. Just one small disc, a plain-English manual, and two Harness Pegasus Business Software to any of a dozen leading microcomputers, and watch. At your command, Pegasus will record sales. Issue invoices. Update stocks. Process your payroll. It can list, file . . . perform, in fact, any one of the thousand functions that today's complex business accounting demands. All with perfect accuracy. And at a speed you won't believe until you see it. Yet for all its pace, Pegasus puts you in control. It processes information only at the rate you want. Prompts you politely through every step in its programme. Not with complicated codes, but in simple, direct English. With the versatile seven-module Pegasus system, you can start small, and grow. Begin, for example, with Sales Ledger. Then build on it module by module, to match your needs. It's not difficult to see why thousands of organisations large and small have purchased almost 20,000 modules in less than 2 years. This is business software structured by experts sensitive to the user's needs, and programmed by professionals steeped in computer Any one of the 500 or so Pegasus #### This team will cost you less than £1250 p.a.* #### And it never goes sick. Approved Dealers across the country is ready now to put Pegasus Software through its paces for you. To start planning your team, simply clip and return the coupon. The Seven-Module System Sales Ledger, Purchase Ledger, Nominal Ledger, Invoicing/Sales Order Processing, Stock Control, | ish.
us system, you | I would like
and tell me v | to see Pegasus Software in action. Please send me further informatiwhere I can see the system in operation. | on | |------------------------|-------------------------------|---|--------| | ple, with Sales | Name | Title | | | | Company | | | | to a | XXX | Address | | | s of his | | | | | sed W | | BLOCK CAPITALS PLEASE | | | l | | Tel Telex | | | by | | Type of business Our microcomputer is
□ Sirius □ Victor □ Apricot □ IBM PC | | | uter PEGA | SUS | □ DEC Rainbow □ NCR DMV □ Wang PC □ TI Professional □ Canon AS-100 □ CBM 8000 □ CBM 700 □ HP 150 □ Duet-16 | | | SOFTV | | ☐ We don't own a computer | | | | | No time to fill in the coupon? Just attach your business card. | BM/2/7 | | Harness i | the pov | | | ## DRAGON'S BREADTH S.M. Gee Is twice as much twice as good? The Dragon 64 is here at last and, coupled with disc drives and the new OS9 operating system, it turns out to be a formidable beast. his review covers three distinct items — the new version of the Dragon, the Dragon 64; the Dragon disc system including DragonDos; and the powerful Unix-like operating system OS9. The Dragon disc system is of interest to existing Dragon 32 owners as it can be used with both versions of the Dragon, but OS9 needs 64K of RAM so it is restricted to the Dragon 64. Dragon's first machine had considerable success as a home computer, mainly because it offered a good performance for a reasonable price. The points that counted in its favour at the time that it was introduced included a proper keyboard, a range of low and high resolution graphics modes, a flexible sound generator, dual analogue joystick inputs, a Centronics printer interface and a full 32K of RAM. However, since the Dragon 32 was introduced prices have fallen and the average performance of home computers has increased. To a certain extent this has reduced the appeal of the machine but it is still one of the few low-cost computers that looks as though it might be able to handle a serious application. However on examination it suffers from a number of small but important defects. For example, it takes very little time to discover that the keyboard is not really made for fast typing, there is no repeat key, the text screen doesn't display enough characters or enough lines and the restriction to upper case characters makes text processing almost impossible. The new Dragon 64 offers the same set of positive features as the Dragon 32 but the question is how far does it go in making up for its limitations? ## TWO MACHINES IN ONE You can buy a Dragon 64 without any fears that it might be incompatible with the Dragon 32 because when it is first switched on it is essentially identical to the Dragon 32. In this mode you can load and run any existing software that you have, but of course you cannot make use of any of the machine's extra features. Before going on to describe these extra features available in the Dragon 64 mode it is worth giving a short sketch of the standard features of the Dragon 32 for readers less familiar with the original machine. In the Dragon 32 there is 32K of RAM, used to provide the memory-mapped video display and to hold BASIC programs. The rest of the address space is used for a 16K ROM containing BASIC, various memory-mapped I/O devices and 8K of empty space for optional ROM cartridges: see the 32K mode memory map in Fig. 1. Processing is handled by a microprocessor that is relatively unfamiliar in home computers — the Motorola 6809. The fact that a 6809 is used, rather than a Z80 or a 6502, makes very little difference to the BASIC programmer apart from a good speed of execution. The display modes include a 32 character by 16 line text and low resolution 64 by 32 graphics screen. The low resolution graphics can be in as many as nine colours but there are restrictions on how colours can be placed within one character location. The high resolution modes are given in Table 1. The amount of memory used for any mode increases with the resolution and the number of colours available. The colours | | TABLE 1 | | |-------------------------------|--|------------------------| | MODE
0
1
2
3
4 | RESOLUTION 128 by 96 128 by 96 192 by 128 192 by 128 256 by 192 | COLOURS 2 4 2 4 2 4 2 | that can be used in any mode are fixed to one of two subsets of the nine possible colours and this can be somewhat restricting. A good feature is that the BASIC high resolution commands treat all of the high resolution screens as if they were 256 by 192. This makes trying out programs at different resolutions easy. The overall quality of the display is quite good and there is an RGB monitor connection if you need a really sharp image. The main problem with the graphics display modes is the absence of any standard way of writing text on the high resolution screens. This can be overcome by various extras but an unmodified Dragon will insist on changing modes back to the text screen to print any system messages #### PERIPHERALS standard peripherals supported by the Dragon 32 and 64 are a pair of joystick inputs (in fact a six-bit, fourchannel A-to-D converter); a single channel D-to-A converter used for sound generation; a Centronics parallel printer interface and a tape interface for a single cassette recorder. The sound generator is almost entirely a creation of software and while there are no built-in commands for sound effects they are certainly possible. Indeed, you can buy a software package that uses the D-to-A converter as a speech synthesiser. However, from BASIC you can only produce 'pure' tones on a single channel. The sound that the Dragon produces is fed to the UHF modulator and reproduced over the loudspeaker of the TV set. In my opinion this is by far the best way to produce computer sound because it allows you to use a reasonable size speaker, amplifier and volume control for no extra cost! The cassette interface includes a motor control relay and is easy and reliable to use. Some- times the Dragon cassette interface doesn't work well with tape recorders that have sensitive automatic volume controls, the reason for this being that the tape format uses a leader tone that is far 64K MODE 32K MODE FFFF FFFF I/O AND VECTORS I/O AND VECTORS FF00 E000 BASIC CARTRIDGE ROM C000 C000 16K BASIC ROM 8000 48K RAM 32K RAM Fig. 1 Memory map of the Dragon 64 in 32 and 64 modes. too short for the level to adjust and settle. The Dragon 32 (and the Dragon 64 in 32 mode) perform well and are easy to use from BASIC. There is plenty of software, literature and support for the machine, partly because it is almost identical to the popular Tandy Colour Computer and partly because of its own established success as a home computer. #### 64 MODE If you have a Dragon 64, then by typing a single command you can move from 32K mode to 64K mode. Typing EXEC the system reorganise itself so that the 16K of ROM vanishes from the memory map to be replaced by an extra 32K of RAM (all but a few hundred bytes, that is: see the 64K memory map in Fig. 1). This 32K of RAM not only occupies the address space that was allocated to the ROM, it also takes the area that was allocated to ROM cartridges and part of the I/O area. This means that program cartridges cannot be used in 64K mode, but of course there is nothing to stop you from switching back to 32K mode to use them. You may be wondering what happens to BASIC when the ROM that contains it is not part of the memory map? The answer is that its contents are copied to the top 16K of RAM where it will run just as effectively as when it is stored in ROM. This is possible because 6809 machine code can be written in such a way that it can be loaded into and executed from any area of memory. This is called Position Independent Code or PIC difficult to achieve using other micros such as the Z80 or the 6502. Thus in the 64K mode the BASIC programmer has an extra 16K of memory to play with, making the user and display area 48K. This in itself makes the Dragon 64 more attractive than the 32. There are two main advantages to storing BASIC in RAM rather than ROM. The most obvious is that if you don't need it you can claim back the 16K of RAM that it occupies and use almost 64K of RAM for whatever you like! The other main advantage is less obvious but still important. Having the BASIC interpreter in RAM means that you can modify it to include new commands and so on. Unfortunately this doesn't seem to be the route taken by Dragon to add the disc commands in DragonDos (see later). Apart from the increased amount of RAM available in BASIC the only other enhancement that the Dragon 64 offers is a serial interface. This can be used from both 32K and 64K modes and there are two new commands to make this possible. DLOAD and DLOADM can be used to load BASIC programs in ASCII format and machine code programs from another computer equipped with a serial interface respectively. Apart from these the serial interface has to be manipulated using PEEKs and POKEs. However, We enter the Dragon! you can select the serial interface as the output port used by LLIST and PRINT#-2 to list programs and print data respectively. The baud rate is software-selectable from 50 to 19200 baud, which should be a large enough range for anyone! The data format is one start bit, eight data bits, two stop bits and no parity bit. The connection to the serial interface itself is made via a sevenpin DIN plug which provides the most common subset of the RS232 signals - TX data, RX data, CTS, DTR and two DC voltage pins, one at -12V and the other at +12V. The presence of CTS and DTR means that the Dragon can support high data transfer rates using 'handshaking'. housed in a case that is identical to the old Dragon 32 case apart from its colour, the electronics inside have been completely reworked. Even the keyboard, although it has the same key layout, has been improved. The main PCB contains more or less the same collection of components that made up the Dragon 32 — that is one 6809 CPU, one 6883 SAM (Synchronous Address Multiplexer), one 6847 video display chip, and two 6821 PIAs. The only major change is the use of eight 4864 dynamic RAMs to provide the 64K, and the only major addition is a 6551 ACIA that provides the baud rate generator and the RS232 interface. The changes to the overall board
FACTSHEET Dragon 64 CPU 6809 Clock 0.89MHz 16K ROM RAM 64K Language Microsoft Extended Colour BASIC Keyboard 53 key standard layout with auto-repeat Display 16 lines of 32 characters on TV or monitor Block mapped graphics on 32 by 64 grid Dot resolution graphics to 192 by 256 16 block graphics characters Eight colours plus black 1500 baud with independent motor control Cassette I/O Two joystick ports Parallel (Centronics) printer port ROM cartridge slot RS232C Serial interface Sound generator Options Joystick unit (pair) £14.95 51/4" disc drive (single) £275 51/4" disc drive (double) £389 OS9 operating system £39.95 Costs Dragon 64 £225 Manufacturer Dragon Data Ltd, Kenfig Industrial Estate, Margam, Port Talbot, West Glamorgan, SA13 2PE (phone 0656 744700). There are also a few enhancements and changes to the code in the ROM. The most important is a keyboard autorepeat facility. This is automatically enabled when the 64K mode is selected but can be selected in the 32K mode with a few lines of BASIC. The presence of autorepeat certainly makes typing corrections easier. #### THE DRAGON 64'S HARDWARE The interesting thing about the Dragon 64 is that, while it is layout have managed to introduce an additional 24-pin chip without cramming components together and without losing quality of construction. #### DRAGON DISC AND DOS Although Dragon discs and their associated operating system DragonDos are not only intended for use with the Dragon 64, it is this combination that is likely to be popular. The disc interface is connected via the program cartridge connector and in Inside the disc interface. appearance is not unlike a large cartridge. Inside there are a few TTL chips, a WD2797 disc controller and 8K of ROM that contains the extensions to BASIC that constitute DragonDos. The disc interface is connected to the disc drives via the usual ribbon cable. Thus installing the Dragon disc system is trivial — plug in the interface to the cartridge slot and connect the cable to the disc drives. When the disc system is fitted, switching on the Dragon first gives the usual sign-on message and then a second message informing you that DragonDos is active. Dragon-Dos is not a true DOS (Disc Operating System) in the sense of CP/M, say, but is more a collection of extensions to BASIC. There are all the usual and necessary commands that allow you to SAVE, LOAD and RUN programs from disc. You can also copy, back-up and initialise discs. However, the extra commands for creating and manipulating data files are particularly interesting. The commands FREAD and FWRITE (standing for FileREAD and FileWRITE) will read and write variables from named files without having the use an open command or a channel number. For example, FREAD "MYDATA"; A will read a numeric value from the file called MYDATA and store it in the variable A. This is a particularly easy way of dealing with file operations. If you want a program to process a number of different files then all you have to do is to specify the filename in a string variable. For example: 10 INPUT F\$ 20 FREAD F\$; A will read A from the file whose name is stored in F\$. What is even more surprising and pleasing is that the FREAD and FWRITE commands can also be used to handle random access files. The command: FREAD "filename",FROM start, FOR length; variable list will read data from the file called 'filename' starting at byte 'start' and will read 'length' bytes no matter how many variables are in the variable list'. A similar form of the FWRITE command allows data records to be written to any position in the file. Random access is usually an afterthought and very difficult to use so it is nice to see that DragonDos includes this easyto-use facility. As well as the file handling commands, DragonDos adds a number of general purpose commands to BASIC. The most important of these is ERROR GOTO x, which will transfer control to line x when an error occurs. This is the sort of statement that is essential if the Dragon is going to be used in any serious BASIC applications. Compared to this command the other additions are icing on the cake. The BEEP command will make a 'decent sounding' beep, WAIT n will cause the program to pause for n milliseconds, SWAP X,Y will swap the contents of variables X and Y, AUTO will provide line numbers automatically, FRE\$ is a function that returns the amount of space available for strings and HIMEM returns the address of the top of memory. The Dragon discs and DragonDos can be used with the Dragon 32 or the Dragon 64. Indeed there seems to be no advantage in using a Dragon 64 with the discs if all you intend to do is run DragonDos as it will only work in the 32K mode. This is because the DragonDos 8K ROM occupies the address space allocated to cartridge software. In 32K mode the MEM function returns a value of 24809 bytes for usable memory and with DragonDos installed this goes down to 23335. #### A REAL OPERATING SYSTEM Where the Dragon 64 plus discs scores over the Dragon 32 plus discs is that only the 64 can run the OS9 operating system. It is difficult to describe how important this is because OS9 is part of a new generation of operating systems that go far beyond what home users have been familiar with. Perhaps the best known of these new operating systems is the much-discussed UNIX. Although UNIX is a powerful operating system it is very expensive, both in terms of the amount of memory and processing power it needs and its cost. OS9 is best described as being a UNIX-like operating system designed to work with smaller computers based on the 6809. For the features it offers OS9 is also reasonably priced at £39.95. Getting OS9 running on the Dragon 64 is simply a matter of inserting a system diskette and typing BOOT. After a few seconds of disc operation, OS9 announces itself and asks for the date and time. Following this you are in OS9 and can execute programs, copy and maintain files and perform a whole range of tasks that 'housekeeping' would take too long to explain here. The most important features of OS9 from the user's point of view are multi-user/ multi-tasking, deviceindependent I/O and easy I/O redirection, and a multilevel directory. The trouble is that these are all unfamiliar terms that are difficult to describe briefly. The multi-tasking facility means that you can give the Dragon 64 more than one program to run at a time. For example, typing: DCHECK DO will test the disc in drive 0 and keep you waiting while it does it but DCHECK DO>RESULT & will also check the disc but will return control to you before it has finished so that you can get on with doing something else. Ending any command with '&' is taken to mean that you don't want to wait for the task to finish before being able to issue another command. The '>RESULT' part of the above command is an example of 'I/O redirection'. The program DCHECK produces various results while it is running that are normally listed on the screen. To avoid this happening while you are getting on with another job the output is redirected to a text file called RESULT that you can list later on when you are ready. In OS9 all devices keyboard, screen, discs, printer - are treated in the same way and the output of a program can be redirected to any output device and the input taken from any input device. #### ON THE LEVELS One of the main advantages of OS9 is its multi-level disc directory. If you have ever used a large capacity disc drive under a simple operating system you will have discovered the phenomenon of 'file confusion'. If all the files on a disc are recorded in a single directory, then finding the name of a file can be very confusing and a catalogue seems to go on for ever. A REVIEW: Dragon 64 multi-level directory is better because it allows the user to divide up the directory into a number of named 'subdirectories'. For example, all the system command programs in OS9 are stored in a directory called CMDS. On the same disc that holds CMDS you could set up a directory called GAMES where you store any games programs you might have. The command DIR CMDS will give you a list of all the commands in the CMDS directory and DIR GAMES will similarly give you a list of all the games in the GAMES directory. This use of different directories for different types of file makes keeping things orderly very easy and if more than one person is using the same disc it is essential! #### I LIKE UNIX — LIKE OS9 I have used UNIX on largish computers and another 6809 UNIX-like operating system, UNIFLEX, with a small system using 8" discs, but sitting in front of the Dragon 64 with a pair of 51/4" drives running OS9 was an odd experience. Using an operating system that behaved in a way that I have come to associate with large computers on a machine that I cannot help thinking of as a small computer is a disorientating experience. After a few minutes I have to admit that I liked it! An enhancement that is worth its weight in gold — a 51 character by 24 line display with both upper and lower case characters can be selected at any time while OS9 is running. This really does help make the Dragon 64 look like a big This machine. improved screen is produced by using the high resolution graphics screen to draw limited definition characters. Hence the quality of the display is not perfect but it is very acceptable. I am impressed by OS9 but there are a number of problems. The first thing to say is that OS9 seems to be slow when performing simple disc operations when compared to other 6809 operating systems such as FLEX or even Dragon-Dos. Also there are a number of implementation bugs on the version I tested that while, being minor, were irritating. For example, when another task that uses the disc exten- sively was set running it proved almost impossible to type in another command with the 51 by 24 line screen selec-The keyboard was extremely sluggish and this suggests that Dragon need to pay some attention to their keyboard driver.
When I tried to conduct the test model with the usual screen selected the problem was even worse in that a section of the keyboard being was incorrectly decoded, giving double characters for each key press. However, this problem seemed to come and go each time I re-booted the system very strange. Once again, it sounds as though Dragon need to attend to their implementation of the OS9 keyboard drivers. Implementation problems apart, I have to say that I am very optimistic about the OS9. There is a great deal of good quality software that will run under it - BASIC 09, C com-Pascal, piler, Dynacalc (spread sheet), Stylograph processor), record management, cash and VAT and stock recording - all for reasonable prices between £49 to £79. OS9 is so like UNIX that anyone that has used UNIX will soon settle down with OS9 and vice versa. If Dragon get rid of the few bugs in the software and offer some faster disc drives OS9 will be unstoppable! #### BETTER? The opening paragraph of this review posed the question of whether or not the Dragon 64 has overcome the problems inherent in Dragon 32. If the Dragon 64 is taken on its own then the answer must be that it is better but not much better. Essentially it offers 24K of extra user memory, a serial interface and an auto-repeat facility. When added to the Dragon disc drives and Dragon Dos then the memory advantage seems to vanish and the only difference between the Dragon 32 and the Dragon 64 is the serial interface. But if you add the extra ingredient of OS9 the Dragon 64 really moves into a class of its own and the answer to the question must be yes! OS9 transforms the Dragon 64 into a super computer and provides a taste of things to come. #### EPROM - PROGRAMMERS - PRINT BUFFER - SUPERBOARD 33 FOR YOUR - BBC - PET - VIC - APPLE - ACORN - COMPUTERS **EPROM PROGRAMMERS** Read-Programme-Verify-copy and more MODEL A for the BBC-Pet-Acorn-Apple MODEL A £110.00. MODEL B&C £53.50 BATTERY BACKUP £10.00 2K RAMS POA NEW SUPERBOARD 33 £56.70 Superboard 33 is a new version of our most popular Pet utility board. *Select upto 8 ROMs or Eproms under software control from any ROM socket. *Use your Superboard 33 is a 16K RAM-ROM* by inserting your own 2K RAM chips. Each 2K RAM chip is fully software selectable. *RAM data is fully retained after power down with battery backup option. Please specify 40 or 80 column Pet when ordering. NEW PRINT BUFFER. PET IEEE OR CENTRONICS £110.00 NEW PRINT BUFFER. PET IEEE OR CENTRONICS £110.00 *The Printer Buffer is an intelligent buffering device which connects between your computer and printer. It is designed to free your computer from the tedious task of printing to a slow printer by buffering upto 15000 characters of data. *Internal processors with upto 16K of user RAM. *Auto self check on start-up with optional printout. *Auto letter repeat. Buffer status leds and more. *IEEE to IEEE impleme:ts full Pet primary and secondary addressing. *IEEE to Centronics allows your Pet to work on the popular Centronics printers. *Centronics to Centronics for Apple Dragon BBC CBM 64 etc. with power supply. *Standard buffer is supplied with 6K of RAM installed, user expandable to 16K. *NEW APPLE COMMUNICATIONS BOARD SINGLE£27.90 DOUBLE£36.50 *This new board allows your apple to communicate with the outside world. *6821 via chip with 2*8 bit ports with 4 handshaking lines and 2 IRQ outputs. *Onboard Eprom socket located from \$COOO to \$CFF and \$COnO to \$COnF. *\$CFFF switch off with board on-off led indicator. *The Apple communications board can hold upto two 6821 via's. Computer IC's — connectors — cables — RAMS — or any of your computer needs. Computer IC's - connectors - cables - RAMS - or any of your computer needs. Please add £2.50 p&p VAT all orders. Official orders welcome. Note. Please specify computer type and model when ordering. CID COMPUTER INTERFACE DESIGNS, 4 ALBERT ROAD, MARGATE, #### INTERESTED IN MACHINE CODE? **BUT WONDERING WHERE TO START?** AT LAST A MACHINE CODE MONITOR DESIGNED WITH YOU IN MIND "CODESCAN" #### THE FRIENDLY MONITOR FOR - **COMMODORE 64** - SPECTRUM - ZX81 16K "Codescan" comes to you with an impressive specification, a single display showing on-screen instructions and all facilities, and a user guide which contains a step-by-step test schedule. #### UNBEATABLE VALUE FOR A FLYING START | Cheques/P.O. | | | | | | |--------------|-------|-------|--------|--------|-----| | 9 Parliament | Road, | Thame | , Oxor | n. OX9 | 3TE | | COMMODORE 64 | | |--------------|--| | | | | SPECTRUM | | □ ZX81 16K | £7.25 | | |-------|---| | £5.25 | | | £5.25 | Г | Total (Inc. VAT, P&P) | Name: | · · | |----------|-----| | Address: | | | | | Postcode: CT ## Electronequip Authorised BBC Dealer's Service Centre SPECIAL OFFERS | A SAME | | | |---|---------|---------| | Torch Z80 Disc Pack (800K Dual + Z80) | 730.00 | 839.50 | | Torch Computer twin floppies (CF240) | 2950.00 | 3392.50 | | Torch Computer 10Mb Winchester CF240/10 | 4745.25 | 5457.04 | | Torch Computer 21Mb Winchester CF240/21 | 5220.25 | 6003.29 | | Torch Z80 Second Processor for BBC | 213.75 | 245.81 | | Torch CPN BBC Basic (Z80) | 104.50 | 120.18 | | Torch CNP Multiplan (Spread sheet) | 179.55 | 206.48 | | Torch CPN Perfect Software Set | 285.00 | 327.75 | | Torch CPN Plannercalc (spreadsheet) | 80.75 | 92.86 | | Torch CPN Prospero Fortran | 209.00 | 240.35 | | Torch CPN Prospero Pascal V2.1 | 209.00 | 240.35 | | Torch CP/N Wordstar Wordprocessing | | 300.44 | | | | | SIDEWISE FITTED SIDEWAYS ROM BOARD FOR BBC (no soldering) only 38.00+vat **Trade enquiries** welcome. ACORN COMPUTER PHONE FOR DETAILS | Ref. | Description (BBC Micros) | Exc. VAT | Inc. VAT | |--------|--|----------|----------| | ANA01 | BBC Model Computer | 261.30 | 299.00 | | ANA02 | BBC Model A with Econet Interface | 310.86 | 356.00 | | ANA32 | BBC Model A Micro with 32K | 291.30 | 333.50 | | ANA33 | BBC Model A Micro with 32K and VIA | 296.52 | 339.50 | | ABA01 | BBC Model B Micro Computer | 348.26 | 399.00 | | ANB02 | BBC Model B with Econet Interface | 389.14 | 446.00 | | ANB03 | BBC Model B with Disc Interface | 426.59 | 489.00 | | ANB04 | BBC Model B with Disc & Econet Interface | 467.54 | 536.00 | | SYBWP1 | BBC Wordprocessor View Disc Daisy Print | 1092.50 | 1256.38 | Large Stocks, Vast range of Software (not just games), BBC A&B in stock All printers and Disc drives are supplied with all connecting cables, formatting discs, cases, documentation etc. **EPSON** | Printers | I A. | OU | | |----------|--|--------|--| | TFX80 | Epson FX80 160cps Printer | 365.09 | | | TFX100 | Epson FX100 160cps Printer | 493.05 | | | TJ6100 | Junki Daisy Wheel Printer 18cps | 365.09 | | | TJP101 | BBC Spark-Jet Printer | 284.05 | | | TMX100 | Epson MX100 Type 3 Printer | 422.75 | | | TMX80 | Epson MX-80 80cps Dot matrix printer | 350.55 | | | TRX80 | Epson RX-80 Printer 100cps | 257.00 | | | TRX80FT | Epson RX-80FT Printer 100cps (T/Fric) | 280.25 | | | | The same of sa | | | | G 111 | | | | |-----------------------------|--|--------------------------|----------------------------| | Monitors
MNK12A | Kaga K12A 12" Orange Monitor | 107.35 | 123.45 | | MNK12B
MNK12G
MNKVIS2 | Kaga 12" Black/White Monitor
Kaga K12G 12" Green Monitor
Kaga 12" RGB Monitor Vision II (Medium) | 94.05
94.05
270.75 | 108.16
108.16
311.36 | | MNKVIS3
MNM.1431 | Kaga 12" RGB Monitor Vision III (Hi) BBC 14" Colour Monitor (Microvitec 1431) | 379.05
215.00 | 435.91 | | MNM1441
MNM1451 | Microvitec 1441 High Res 14" BBC Monitor
Microvitec 1451 Medium Res 14" BBC Mon | 474.05
355.30 | 545.16
408.60 | | MNN1434
MNN3434 | 14" TV/Monitor Nordmende
14" TV/Monitor Normende with remote cont. | 214.70
224.10 | 246.90
257.72 |
 MNSM12N | Sanyo SM12N Green Monitor 15MHz | 75.05 | 86.31 | Access & Barclaycard welcome. Large discounts for educational orders. Trade enquiries welcome. Carriage 50p to \$3.50. Kings Lynn Branch Tel: 0553 3782 Electronequip (0329) 230670 36-38 West Street, Fareham, Hants ## At last, a magazine that gets to the core of it. As the proud owner of an Apple, you know that really helpful magazines don't grow on trees. But now there's Orchard Computing. Orchard is a brand new quarterly put together specifically to suit the Apple It brings you the very best in useful routines, business and games software. And not a word of it that isn't directly relevant to you. > So if you like an Apple a day, take Orchard quarterly. It's just what the doctor ordered. #### **DOT MATRIX PRINTERS** ALL PRINTERS HAVE CENTRONIC PARALLEL INTERFACE UNLESS OTHERWISE STATED. ALL PRINTERS HAVE HI-RES. DOT ADDRESSABLE GRAPHIC MODE, PLEASE SEND SAE FOR FULL DETAILS. | EPSON The Strain of the Strain of the Strain of the Strain of Stra | £344 * VAT = £395
£431 * VAT = £495
£261 * VAT = £299
£234 * VAT = £269
£29 * VAT = £33
£60 * VAT = £69
£7 * VAT = £7
£12 * VAT = £13 | |--|--| | STAR Gemini 10X 120 CPS 10" wide fric & tract feed Gemini 15X 120 CPS, 15" wide frict & tract Delta 10 160 CPS, 10" wide frict & tract teed Delta 15 160 CPS, 15" wide frict & tract teed Delta 15 160 CPS, 15" wide frict & tract feed Radix-10 200 CPS, NLO 16K Buffer Par & serial miterface, downloadable characters, Flatix-15 15" wide version of Radix-10 | £200 + VAT = £229
£295 + VAT = £339
£327 + VAT = £375
£414 + VAT = £475
£431 - VAT = £495
£518 + VAT = £595 | | SEIKOSHA GP100A 50 CPS, 10" wide tractor feed GP250X 50 CPS, 10" wide tractor feed GP250X 50 CPS, 10" wide tractor feed ser & par GP500A 50 CPS, 10" wide tractor feed ser & par GP500A 50 CPS, 10" wide fractor feed GP550A 50 CPS, 10" wide fractor feed GP50A | £156 + VAT = £179
£196 + VAT = £225
£174 + VAT = £199
£187 + VAT = £215
£234 + VAT = £269
£174 + VAT = £199 | | SHINWA CP80: 80 CPS, 10" wide friction & tract. feed Spare ribbon cartridge for CP80 RITEMAN Compact: 120 CPS, 80 col. frict. & tract. feed | £187 + VAT = £215
£6 + VAT = £6
£200 + VAT = £229 | | CANON PW1080A: 160 CPS: 10" wide: 27 CPS NLO 24 x 16 matrix PW1156A: 160 CPS: 15" wide: 27 CPS NLO 24 x 16 matrix | £283 + VAT = £325
£347 + VAT = £399 | | COLOUR PRINTERS Seikosha GP700A: 7 colour, 50 CPS printer Canon PJ1080A: 7 colour, 40 CPS ink jet printer CPP40: 40 column 4 colour battery operated | 347 + VAT = £399
£391 + VAT = £449
£118 + VAT = £135 | #### DAISYWHEEL PRINTERS ALL OUR PRINTERS HAVE 1 YEAR WARRANTY | The contract of the second | | |--|--| | JUKI 6100 | | | 20 CPS Bi-Directional Logic seeking 10.12
Spacing. 2K buffer bes selling Daisywhe
Singer sheet feeder unit
Tractor Unit
RS 232 Interface
Spare Daisywheel | 2.15 CP1 + PS
el £349 + VAT = £395
£217 + VAT = £249
£95 + VAT = £109
£52 + VAT = £59
£17 + VAT = £19 | | BROTHER HR-15
13 CPS. Bi-directional. 10.12.15 CP1 • PS
Keyboard Unit
Single Sheet Feeder Unit
Tractor Unit | £344 • VAT = £395
£139 • VAT = £159
£217 • VAT = £249
£95 • VAT = £109 | | DAISY STEP 2000
20 CPS Unidirectional 10.12.15 CP1 | £260 - VAT - £299 | | SMITH CORONA TP1
12 CPS, 10.12, CP1, unidirectional | £208 - VAT - £239 | #### **PROFESSIONAL** MONITORS - *SANYO *MICROVITEC - *FIDELITY PHOENIX Phoenix High Res. 12" Green Monitor Phoenix High Res. 12" Amber Monitor £66 · VAT £75 £187 · VAT £215 #### **BBC MICROCOMPUTER SYSTEM** #### WE ARE AN OFFICIAL BBC COMPUTER DISTRIBUTOR DEALER ENQUIRIES ARE WELCOMED ### Acorn Electron £199 INC WE SUPPLY FREE 30 HOUR BASIC BOOK AND A DUST COVER WITH EACH COMPUTER This is the best microcomputer currently on the market 32K RAM 32K ROM 8 modes of operation full colour full-size keyboard internal expansions such as disc interface speech synthesizer Econet interface in short it is a personal computer capable of expanding into a small business system. | BBC Microcomputer Model B
BBC Mod B - disk interface
BBC Mod B - Econet interface
BBC Mod B - disk and Econet interfaces
BBC Mod B - disk and Econet interfaces
BBC disk BONG disk drive
Torch 280 disk pack including 280 2nd
processor 64k RAM and CPN operating | £348 · VAT £399
£409 · VAT £469
£389 · VAT £447
£450 · VAT £517
£230 · VAT £264
£699 · VAT £803 | |--|---| | system - Free Perfect Software BBC Teletext receiver (Aug.) BBC cassette recorder and lead Disk interface kit free fitting) Six interface kit free fitting) Six interface kit free fitting) Fitting charge for A of upgrade kit Software (Aug.) (Aug. | 696 - VAT 2799 £196 - VAT 225 £26 - VAT 225 £26 - VAT 229 £27 - VAT 280 £27 - VAT 280 £27 - VAT 280 £27 - VAT 281 £11 - VAT £12 £89 - VAT £12 £89 - VAT £12 £199 - VAT £22 £100 - VAT £34 £10 - VAT £34 £10 - VAT £31 £52 - VAT £31 £52 - VAT £31 £552 - VAT £31 £552 - VAT £37 | WE STOCK A LARGE RANGE OF SOFTWARE FOR BBC MICRO INCLUDING ACORNSOFT BBC SOFTWARE FOR BBC MICRO PLEASE SEND LARGE STAMPED ADDRESSED ENVELOPE FOR FULL DETAILS #### **TORCH Z80 2nd
PROCESSOR** For only £347 + VAT Torch 2nd Processor Z80 is supplied with perfect writer (a powerful Word Processor), perfect speller (spelling checking program - I should have used one for making this advertly. Perfect File: (A Database Program), Perfect Calc (Spread Sneet). It includes 64K memory (Almost 80K available to user). Fits inside BBC Computer. £347 + VAT = £399 Z80 2nd Process + Perfect Software Z80 Processor + Perfect Software + Dual 800K Disk Drives £695 + VAT = £799 #### **GUARANTEED LOWEST PRICES** #### 100% BBC COMPATIBLE MITSUBISHI AND TEAC SLIMLINE DISK DRIVES hese drives are supplied ready cased with all the necesary cables, primating program and User Guide. Professional supplies the control of Single drive 100K 40 trks. single Sided Dual drive 200K 40 trks. single sided Single drive 200K 40 trks. double sided Single drive 200K 40 trks. double sided Single drive 400K 80 trks. double sided Single drive 400K 400 trks. double sided Dual drive 800K 80 trks. double sided Dual drive 800K 40/80 trks. switchable. DS Dual drive 800K 40/80 trks. switchable. DS All above drives are low power slimline. (0.3 A typ. at + 12v and 0.4 A at + 5v per drive). Normally extra power supply is not required. the BBC Computer bower supply is designed to drive two low power drive. (IT IS NOT DESIGNED TO DRIVE INTERNAL ROM BOARD). 10 Track SD DD disketts (10 Box). 11 Exp. 10 DRIVE INTERNAL ROM BOARD). 12 VAT = \$20 AT \$2 #### YOUR CONTACTS AT AKHTER ARE DEALER/BULK ENQUIRIES TELEPHONE ORDERS DEALER ORDERS BUSINESS SYSTEMS ENQUIRIES EXPORT ENQUIRIES ECONET SYSTEM TECHNICAL ENQUIRIES ACCOUNTS DESPATCH HAMAYUN MUGHAL TONY GLOVER DENNIS SUTCH MAHAMAD EDIB ALAN LAFFOLEY CARON ANDREWS JOHN MAULE #### **BUSINESS SYSTEMS** #### APRICOT - SIRIUS - SANYO IBM — TEXAS — TORCH APRICOT "Portable Executive Computer" 16 Bit Micro. 256K RAM, up to 1.44 megabytes floppy disk storage. 31%" Sony disks. Portable brief case styling. Modem with auto dialler (optional) hard disk optional. Vast software library (compatible with Sirius 1) Apricot with Single Drive and Motitor Apricot with Double Drive and Monitor and Free Printer or 2nd Monitor £1890 + VAT SANYO PROFESSIONAL COMPUTER 16 Bit Micro 128K RAM expandable to 256K. Single or Double Disk Drive built in full Colour graphics (640 x 200 pixels in 8 colours) IBM compatible. Free software. Sanyo MBC 550 128K RAM single drive and free software including Wordstar and Calcistar XSANYO MBCS55 128K double drive and free software including Wordstar, Calcistar. Inforstar Datastar etc. XSANYO MBCS55 128K double drive and free software including Wordstar, XSANYO MBCS55 128K double drive and free software including Wordstar, XSANYO MBCS55 128K double drive and free software including Wordstar, XSANYO MBCS55 128K double drive and free software including Wordstar, XSANYO MBCS55 128K double drive and free software including Wordstar, XSANYO MBCS55 128K double drive and free software including Wordstar, XSANYO MBCS55 128K double drive and free software including Wordstar, XSANYO MBCS55 128K double drive and free software. SIRIUS 1 Sirius 1 Computer with 128K RAM and 1.2 megabyte Floppy disc storage including CP/M 86. MS DOS and Microsoft Basic Sirius 1 Computer with 256K RAM and 2.4 megabyte Floppy disk storage Including C C/M 86 MS DOS & Microsoft Basic £2895 + VAT OSCH OFSON COMPUTER with colour monitor includes Twin 400K disks. Torched Operating System free perfect software (perfect writer, perfect speller perfect calic perfect field. (Electronic Mail). Torch Mars (Financial modelling with graphics). Torchiel (Viewdata Access System) Executive Aid (Menu System) Datel 800 (Link to outside mainframe services i.e. 100 (Link to outside mainframe services). £2950 + VAT TEXAS INSTRUMENTS PROFESSIONAL COMPUTER TI 502 Dual 320KB Drives 256K RAM. Up to 10 megabyte on board storage possible TI speech commands HAM. Up to 10 megabyte on board storage risendliness to computing. Allows voice operated keyboard control (Optional) MAINTENANCE CONTRACTS ARE AVAILABLE. #### COMPLETE WORDPROCESSING SYSTEMS INCLUDING DAISYWHEEL PRINTER From £695 + VAT SYSTEM 1BBC Micro model B. Wordwise, Phoenix monitor, Smith Corona TP1 Daisywheel Printer, Cassett Recorder + all the necessary cables and £696 + VAT - £799.25 SYSTEM 2. BBC Micro model B + Disk Interface. Phoenix Monitor. 100K Single Disk Drive. Wordwise. Smith Corona Daisywheel Printer. + all the necessary cables and documentation. Price only £895 + VAT = £1029.25 SYSTEM 3. BBC Micro model B + Disk Interface, Phoenix Monitor, Dual Disk Drives 200K, Wordwise, Smith Corona Daisywheel Printer + all the necessary cables and documentation. Price £999 + VAT = £1148.85 SYSTEM 4. BBC Micro model B + Disk Interface. Sanyo High-Res Green Monitor, Wordwise (or view), Juki 6100 Daisywheel Printer. Single 400K Disk Drive + all the necessary cables and documentation. £1049 + VAT = £1206.35 SYSTEM 5. BBC Mod B Micro + Disk Interface. Sanyo High Res Green Monitor. Wordwise (or view). Juki 6100 Daisywheel Printer. Dual Disk Drive 800K + all the necessary cables and documentation. Price £1135 + VAT = £1374.25 SYSTEM 6. Sanyo 16 Bit. IMB oc Compatible Micro. 128K RAM. Single Disk Drive 160K. Wordstar. Cale Star. Sanyo High Res. Green Monitor. Juki 6100 Daisywheel Printer + all cable and documentation. Price Only £1095 + VAT = £1259.25 SYSTEM 7. Sanyo 16 Bit. IBM pc Compatible Micro 128K RAM. Dual Disks Drives 360K. Wordstar: Calc Star. Mailmerge. Infostar: Spelistar Datastar. Sanyo High Res Green Monitor: Juki 6100 Daisywheel Printer * and all necessary cables and documentation. Price \$1306 - VAT = CARDER. Price £1295 + VAT = £1489.25 SYSTEM 8. All the components of System 6 but with Sanyo High Res Colour Monitor and Wordstar with Colour Facilities, Price £1395 + VAT = £1604.25 **SYSTEM 9.** All the components of System 7 but with Sanyo High Res Colour Monitor and Wordstar with Colour Facilities. es. Price £1595 + VAT = **£1834.25** WE CAN ALSO SUPPLY PACKAGES WITH COMPONENTS OF YOUR OWN CHOICE. PLEASE PHONE (0279) 412639 AND ASK FOR HAMAYUN MUGHAL FOR A PRICE. AKHTER INSTRUMENTS LTD T A FIDELITY Colour Monitor CM14 14" RGB RGBY Composite sound col #### COMPUTER GROUP HARLOW, ESSEX. CM20 2HU U.K. Tel. HARLOW (0279) 443521 Telex: 818894 AKHTER G #### ORDERING INFORMATION: We accept official orders from UK Government and Education establishments. Carriage is Free (UK only) for normal delivery If express delivery is required please add £8.00 + VAT per parcel. We accept telephone orders on Barclay and Access Card please ring (0279) 443521 (10 lines). All cheques made payable to "AKHTER INSTRUMENTS). N.B. ALL VAT INCLUDED PRICES ARE THE CORRECT PRICES, EXCL. VAT PRICES HAVE BEEN ROUNDED UP TO NEAREST POUND. OPENING HOURS: MON-FRI 9am-6.30pm, SAT 10am-5pm We welcome callers, no parking problems. ## ELECTRONIC MAIL Julian Allason When the mail service first started, it was possible to write a letter, get a reply the same day and mail your own response too. Progress has changed all that, but now technology means that the good old days of quick delivery and quick response may be back again. magine posting a letter and receiving a reply the same day. My aunt Lola used to when she lived in London before the war. These days, she is lucky to get a reply in less than three days. And that is by first class post. But what if you could have a reply within five minutes, and for less than the cost of a second class stamp? Well, you can, using electronic mail. You will need a little more equipment than the traditional fountain pen and bottle of Quink Permanent Blue-Black ink, of course. But the chances are you already own most of it. For electronic mail is simply the passing of messages from one computer to another. Sometimes the message will travel over the public switched telephone network, in which case an acoustic coupler or modem will be required to connect the computer to the telephone line. Alternatively, many companies with more than one microcomputer are linking them directly together into a Local Area Network. In this case, no modem is necessary, and no special software either, since electronic mail is normally provided as a standard feature of the networking system itself. #### LOCAL AREA NETWORKS This sort of networked electronic mail enables you to send memos, letters, tables of figures, even data files from one terminal on the system to another. This is fine when communication is only required between individuals in the same or adjacent building. Most local area networks have a maximum geographi- cal distance and are limited to a distance of between one and 10 kilometres. So if you need to communicate with computers that are physically remote, or perhaps belong to people outside your own organisation, it may be better to consider one of the public electronic mail services. There are several of these, the best known of which is British Telecom's own national electronic mail service. Telecom Gold. Many personal computer owners will know this as Micromail, the name for ACT's single sourced service which includes userfriendly software capable of dialling the user's mailbox up automatically. This package costs £95 plus VAT for Sirius, Apricot and IBM Personal Computers, or £295 including an autodial modem card that fits inside the computer. The next most popular ## HOW TO POST AN ELECTRONIC LETTER To send a message via one of the public electronic mail networks, it is first necessary to dial up the central mailbox computer. This may be done manually by the user, or automatically by the computer if an autodial modem is fitted. If the subscriber is more than a local telephone call away from the mailbox computer, he should be able to dial the number of the nearest entry point for British Telecom's Packet Switchedstream Service. Known as PSS, it enables information from computers to be sent down high speed data lines without incurring long distance telephone charges. Once a connection is established,
the central mailbox computer will identify itself and display a message on the screen inviting the user to log on with his identity number and personal password. A prompt then appears on the screen, to which the user responds by typing "Mail" or the name of whatever other services is required (these can include facilities like electronic diary). If Mail is selected, the system responds by asking if you wish to SEND, READ or SCAN. The last named command enables one to review the subjects of incoming letters and the names of senders. Normally, however, a user would simply READ all new letters in turn. Once read, the message may be deleted, filed under a particular heading, replied to or simply left on the system as a letter that has been read. One then proceeds to the next item of mail, replying where a response is required. Sending an electronic letter is simply a question of responding to prompts asking for the name, or mailbox number of the addressee and the subject of the message. If a name is given, the central computer automatically ensures that it goes to the correct mailbox. Users can maintain their own circulation lists so that copies could be sent to, say, all executive directors, all dealers, or a named list of up to 500 subscribers. Once the text of the message has been typed in, it can be edited before being set. If, however, the message is a long one it is easier and cheaper to prepare it offline using an ordinary word processing program and simply dump the text file down the line instead of typing the message in live on the system. nationwide system is **Comet,** operated by BL Systems. Similar to the basic Telecom Gold, it enables subscribers to send and receive messages from each other, but not from Telecom Gold/Micromail. Both services work on a store-and-forward bureau basis. That is to say that each subscriber has his own electronic mailbox to which mail is sent. Typically he will dial it up two or three times in a working day to read, and perhaps print out, messages that have come in in the interim. A single page 400 word message could be sent by a subscriber in Manchester to one in London for 17p. A reply sent off-peak could cost as little as 12p using Telecom Gold. By comparison, a telex message of the same length would cost three times as much, one sent by facsimile transmission about five times as much, and Datapost no less than 20 times as much. ## PRESTEL AND MICRONET At the cheap and cheerful end of the market is the **Prestel** service's own mailbox facility. Both this and the electronic mail service offered by Prestel information provider, **Micro-Net 800**, suffer a number of limitations which make them unsuitable for other than occasional business use. The first of these is the restricted number of words per- mitted by the Prestel screen format. This effectively limits the length of a message to 400 characters, about 70 words, as only a single screenful can be sent at a time. Mailboxes are very popular with home computer owners subscribing to MicroNet. #### OTHER ELECTRONIC MAIL SERVICES British Telecom offers a sort of electronic mail service of its own. The disadvantage is that the message is transported electronically for only part of the way. The **Telemessage** service replaces the late lamented telegram, which it closely resembles. The text of the message is dictated over the telephone to an operator. Thereafter it is transmitted by wire to the Telemessage centre nearest to its addressee. The printout is then consigned to the mercies of first class mail in the ordinary way. The cost of sending a 200 word electronic letter by Telemessage would be £7.50 plus VAT #### **FACSIMILE** The term electronic mail is also bandied about by marketing men seeking to promote the public Fax services of British Telecom and the Post Office. Neither enjoy the cost or speed benefits of true electronic mail, since the original document must be taken to the sending station and delivered onwards from the receiving station by hand, or more often these days, by motorbike. Fax does enjoy one advantage over electronic mail and that is that it enables drawings and signatures, not just alphanumeric characters, to be transmitted. Future electronic mail development is, however, likely to include some graphics capability. The principal stumbling block is the varying graphics standards used by different types of computers. #### TELETEX The fourth alternative is **Teletex**, often described as super telex system. Like local area networks, but unlike everything else, this permits electronic letters to be sent directly from point to point, as opposed to being dumped into a central mailbox computer. In consequence each Teletex terminal has to include the full message handling software, making it a relatively expensive proposition. It is also necessary to leave the terminal switched on #### THE HARDWARE YOU NEED Virtually all but the cheapest home computers can be used as electronic mail terminals. Two things are needed: a special program to handle the communications and a means of connecting the computer to the phone line. The cheapest of these are **Prestel** adaptors. Priced from £50 upwards, they are essentially simple modem devices with special software to handle the unique Prestel character set. They are **not** suitable for use with other forms of electronic mail. Acoustic couplers, which cost from £150, used to be the cheapest way of connecting a computer to the telephone. Operating at 300 bits per second (equivalent to about 250 words a minute), they can be used with an ordinary telephone handset which is inserted in the coupler's rubber cups. A new low-cost modem called the Buzzbox is now being marketed at just under £100, however. This plugs into a telephone jack socket in place of the telephone and directly modulates the electronic current carried by the telephone line. In practice such devices operate at around twice the speed of the acoustic coupler, which must convert the digital signal from the computer into audible pulses. External modems operating at faster speeds are available but tend to be pricey. A better bet is the onboard autodial modems now being offered by some microcomputer manufacturers. Fitted inside the microcomputer, these will dial the mailbox computer automatically. Typical price: around £300, although for slightly less than this **Micromail** offer an onboard modem, software and subscription to their Telecom Gold based service — but only for Sirius and Apricot at present. Some microcomputers, notably the Torch range, have a modem fitted as standard. It is probable that most manufacturers will follow their lead in due course. #### **OUR EXPERIENCE** We tested electronic mail on Prestel using a Tandata adaptor, Telecom Gold on an Epson HX-20 portable computer with a Sendata acoustic coupler, Micromail on a Sirius with an Anderson-Jacobsen acoustic coupler, and Torchmail point-to-point communication between Torches using the built-in modem. All the systems tested displayed erroneous characters at some stage, displaying a lack of tolerance for our doubtless less-than-perfect telephone lines. We had the most trouble with the Epson which used a technique of continuously squirting characters down the line to the host computer, without waiting for a response. This was probably the reason why the Epson proved the least tolerant of noisy lines. A pity, since the combination of Epson and Sendata acoustic coupler (powered off the HX20's battery) was the only one remotely small enough to be used as a portable terminal. We understand that the software has since been improved, however, so this problem may now have been resolved. The Torch also displayed occasional temperament if the telephone line was not to its liking. A further problem arose whereby all text displayed on the screen became garbled. Our initial suspicion that this was due to a software fault gave way to a conviction that the problem lay in the keyboard, a fault Torch subsequently conceded knowledge of. This, too, has since been rectified, we understand. Difficulties were only experienced when accessing Telecom Gold. Point-topoint communication between Torches performed without a hitch, and the company are to be congratulated on their imaginative use of colour on the Torchmail screens. Such communication does, however, presuppose that the computer being called is connected to the telephone more or less permanently. The Tandata adaptor performed well and proved as tolerant of our telephone lines as the more expensive Sony and Plessey systems tested for comparison. Our biggest problem was with the restricted Prestel screen format which limited the number of words in a message. None of the Prestel adaptors and terminals we tested were satisfactory for touch typing (although Sony do offer a typewriter keyboard as an optional extra). This hardly mattered as messages were of necessity short. The friendly Micromail software took the pain out of logging onto Telecom Gold, but could do nothing to ameliorate the latter's obsolete text editor. It proved cheaper and in every way more satisfactory to prepare all but the shortest messages offline, using a word processing program and send the text file. At present there are only about 40,000 people on Telecom Gold so it won't replace telex or the postman overnight. But in the long run it could well be the winner. all the time. Right now Teletex looks distinctly green around the gills. Several of the original manufacturers participating in the scheme have dropped out, while the majority of those left in have experienced problems getting their hardware approved by British Telecom for use over ordinary telephone lines. It is our belief that unless a major microcomputer manufacturer steps in and includes Teletex software as standard, this system will never take off. Our advice is therefore to opt for a Local Area Network, if your requirement is to communicate with computers that are not
physically remote from each other. The best and most user-friendly national electronic mail service is undoubtedly Micromail — but only if you own an ACT or IBM personal computer. (I'm sure that Julian's connection with ACT in no way influences this decision! — Ed). Otherwise Telecom Gold looks to be a slightly better bet than Comet. Home computer users will find MicroNet 800's mailbox service fun to use, and of course they will still have access to all the standard Prestel services as well as MicroNet 800's bank of free software. Sure! More than 10 tasks simultaneously and, in some cases, up to 300 times faster! That's what replacing the basic ROM with the new FORTH does for the ZX81 – and more! The brains behind the breakthrough belong to David Husband, and he's building Skywave Software on the strength of it. Already orders are flooding in and it's easy to see why. The ZX81-FORTH ROM gives you a totally new system. In addition to multi-tasking and split screen window capability, you can also edit a program while three or four others are executing, schedule tasks to run from 50 times a second to once a year, and with a further modification switch between FORTH and BASIC whenever you like. The ZX81-FORTH ROM gives you a normal keyboard with a 64 character buffer and repeat, it supports the 16k, 32k, 64k RAM packs, it is fig-FORTH compatible and it supports the ZX printer. The price, too, is almost unbelievable. As a "fit it yourself Eprom", complete with manual, it's just £25+VAT. Add £2 p&p UK (£5 Europe, £10 outside Europe) and send your order to the address below. David Husband 73 Curzon Road, Bournemouth, BH1 4PW, ENGLAND. Tel: (0202) 302385. International +44 202 302385. ## TEXAS TI994A NEW Adventure No. 1 Hangman Address Book Home Accounts Optical Illusions all at £4.50 each including P&P Buy any 2 and receive Optical Illusions **FREE** #### LINCO DATA 30 BROWN CRESCENT, SUTTON-IN-ASHFIELD, NOTTINGHAM NG14 7GY. # MAKE MONEY WITH YOUR MICROCOMPUTER Most people buy a micro either to play games, like Invaders, on it ... or to learn more about computers ... or as an educational aid for their children. But now, there is another — potentially far more exciting — way to use your microcomputer. The fact is, your micro can do the same amount of work it took several people many hours to do only a few years ago . . . in a matter of minutes. What's more, most of your expenses are already covered — electricity, rent, rates and even the computer itself . . . they're all paid for. So any money you bring in with your micro should be almost pure profit. All you need now is the 'inside track' on who needs which services where, how to get them to sign on with you and what to charge. #### **New Guide Tells All** "Make Money With Your Micro" is a new, working manual that answers all these questions ... and a lot more besides. Like how to set up a small computer business ... what books to keep ... when to call in professional help ... how to arrange your workspace to maximum advantage ... why the right micro based business can be unusually profitable, and what you need to climb on the bandwagon ... before it really gets rolling. Here is a brief sampling of what else you can expect to learn from this special report: #### What You Will Learn - * Where to find customers . . . and what to offer them. - * Why word processing is different . . . and some rather surprising, little-known, ways to make it pay big. - * How to save businesses money ... and make yourself a small fortune in the - process. Which number services pay best . . . and how to perform them efficiently. - * Where to get referrals . . . and why they - Managing your time ... always important, but vital if you plan a part time operation. - * Preparing mailing lists ... why this is potentially one of the most profitable services you'll be offering. - * And much, much more. #### Where Do I Find Customers? In addition to taking you through the very necessary steps that precede any truly successful microcomputer-based business, "Make Money With Your Microcomputer" gives you the low-down on exactly which businesses want what services, and how best to get these firms as big paying customers. Working from this profession-byprofession section, you can find several openings available right now to suit your circumstances — areas where you, with your micro, can really *coin* money . . . giving people and businesses in your part of the country what they want and need to become more efficient . . . and, therefore, more profitable. #### Do I Need Capital? You don't require any 'capital' as such to get started in this microcomputer business ... remember, what we are talking about here is primarily a service industry. You can work from home, in your own time at your own pace ... starting with just a couple of evenings a week only, if you like. There's no need for 'staff'... your micro does the hard work for you... and your 'office' is already paid for because this, more than any other business in the world, takes very little space ... almost any quiet corner will do. #### Must I Be An Expert? It really doesn't matter if you don't know a lot about computers, because there are plenty (almost too many!) 'ready-made' programmes already on the market . . . most of them with built-in instructions . . . covering just about every and any computer job you are likely to encounter in your new business. But, naturally, if you can design your own programmes, and that is what you enjoy, there's nothing to stop you doing so — although, frankly, the chances are there's a better, less expensive programme already in existence. #### Which Micro Do I Need? Almost any modern micro will do, because most programmes these days are — or can be made — compatible with just about any other microcomputer. If you haven't yet bought your own micro, you'll find the cost surprisingly low . . . and certainly very small compared to its earning potential. However, either way, you may need a few 'add-ons' . . . although, again, these cost very little when you consider how much money they can make for you. #### **An Alternative Service** If you prefer offering a service direct to the public, you'll also find in this new manual a special section devoted to areas where you can do just that. But, it's only fair to tell you now, you are likely to make much more money helping companies and the professions (e.g. Doctors, Architects, etc. etc.) than you ever could selling services direct to the public. #### **Get There First** As with any other business, to be successful you must find a need and fill it. Right now, there are literally dozens of companies and professions in your area that urgently need micro based help. The *big* money in this field will be made by those men and women, young or old, who are first to sign these businesses on as customers, and then grow with them. #### **Your Guarantee** "Make Money With Your Microcomputer", the practical, working manual that can guide you into this exciting new field, costs just £10, post paid. There is a 30 day satisfaction-or-your-money-back guarantee, so all you are risking to find out more about what could be the fastest growing part of our economy over the next few years is a few postage stamps. #### **How To Order** To order your copy now, just complete the form below and return it here. And, remember — the sooner you get it, the sooner you too can "make money with YOUR microcomputer!" © Chartsearch Ltd 1984 • 11 Blomfield Street, London, EC2M 7AY | To: Chartsearch Ltd., 11 | Blomfield Street, London, EC2M 7AY. | |---|--| | Please send me one copy | of "Make Money With Your Microcomputer"
ch I enclose payment of £10 | | ☐ Cheque/Postal Order of☐ Please charge my Credit | t Card as follows: | | A/C number | (Access/Visa/Diners/Amex) | | From:
Name | BLOCK | | | BLOCK
CAPITALS
PLEASE | | Name | CAPITALS | # READER'S SURVEY Here's your chance to tell us what you think of the magazine once again, but this year the survey form has a business reply service format, so you really don't have any excuse not to send it back. As you may have noticed, from this issue Computing Today has been merged with MicroComputer Printout and Business Micro, so changes are afoot. If you want to influence those changes, turn the page and start filling in the boxes. We've made as much of the survey multiple-choice as possible, to make things even easier for you. However, we can't think of everything and space has been provided for any additional comments you might like to make. Please feel free to be as nice or as nasty as you wish. Because this survey is reply-paid, a little more origami is required than in previous years. First, pull out the survey form from the magazine and fold it along the page fold. Then fold along the line at the centre of this page. Finally, fold the two flaps marked second and third folds, tuck one into the other, and make sure you've done it so that the address and licence number are showing. Please refrain from 'making sure' by using staples, sticky tape, Blu-tack or anything else — it takes us ages to get the things open without tearing them! FIRST FOLD THIRD FOLD Do not affix Postage Stamps if posted in Gt Britain, Channel Islands, N Ireland or the Isle of Man Postage will be paid by licensee BUSINESS REPLY SERVICE Licence No. WC 3970 COMPUTING TODAY SURVEY, ARGUS SPECIALIST PUBLICATIONS LTD, NO. 1, GOLDEN SQUARE, LONDON. UNITED KINGDOM W1R 3AB SECOND FOLD TUCK IN | | 1 2 3 | |--|--| | ISSUE ISSUES | Named Files for NAS-SYS (Jan 84) | | 1. Please rate the general features below which have appeared in
the last year. Leave all the boxes blank if you | Atari Disc Library (Jan 84) | | didn't read an article. Ratings are 1-Poor: 2-Fair: 3-Good: | TRS-80 Screen Editor (Jan 84) | | 4-Excellent. 1 2 3 4 | Make a Date (Jan 84) | | NASPEN Append (Apr) | Using MX-80 Graphics (Feb 84) | | Froglet (Apr) | Colour Genie Monitor (Feb 84) | | Valley Variations (Apr) | Non-random Numbers (Feb 84) | | Pascal Profile (Apr) | Notes on the Apple Pt. 2 (Feb 84) | | Micro Database (Apr) | Two PET Utilities (Feb 84) | | Lower case UK101 (Apr) | Program Recovery on the | | Into Atari's BASIC (May 84) | Commodore 64 (Feb 84) | | Going FORTH Again (May) | BBC Poker (Mar 84) | | Micro Interruptions (June) | Genie Utilities (Mar 84) | | Making Music (June) | Spectrum Centronics | | Tube Cube (June) | Interface (Mar 84) | | Beating the RS232 Blues (June) | Poker Part 2 (Apr 84) | | Indexer (June) | TORCITUITE 2 (Apr 04) | | Atari Renumber (June) | Gerile Gerilliands (7 tp. 6 17 | | Sweet Sixteen (July) | Disassembly recimiques (i.e. c.) | | Bomb Proof Tandy (July) | 11000131011 (11p1 0 1) | | Genie Space Saver (July) | Dobagging (may 0.7 | | Format Converter (July) | Electronic Mail (May 84) | | 16-Bit Survey (July) | Upgrading Your WP (May 84) | | Micro Interruptions (Aug) | Your Questions Answered (May 84) | | Sharp Speed Up (Aug) | Computers and the Commons (May 84) \Box \Box \Box | | BBC String Store (Aug) | Z80 Text Compactor (May 84) | | Planetfall (Aug) | Word-wrapping (May 84) | | FELIX Knowledge Shops (Sep) | 2. Please rate the features below which appear more or | | Software Protection (Sep) | less regularly in Computing Today. | | ZX81 Backgammon (Sep) | News | | Dragon Character Generator (Sep) | Printout | | Slingshot (Oct) | Trintout | | Non-destructive Cursor (Oct) | Cido Can | | | 1 110 copillion | | 200 21000000000000000000000000000000000 | Book Page | | 7, 50000 71100 00 10 10 | | | BBC Word Processor (Nov) | Please rate the following series which have appeared in
Computing Today over the past year. If you didn't read | | Rescuing Source Code (Nov) | the series, leave the boxes blank. | | Adventures Part 1 (Nov) | Getting More From The 64 | | FORTH Floating Point (Nov) | Going FORTH Again | | Tape Append (Nov) | Languages in Use | | Dragon 'Graphicks' (Dec) | Learning FORTH | | MCBAS Converter (Dec) | Problem Page | | Adventures Part 2 (Dec) | Easycode | | Curve-Fitting (Dec) | | | BBC Touch Typing Tutor (Dec) | 4. How do you rate our hardware reviews, in general? ☐ ☐ ☐ ☐ ☐ ☐ | | The Programmer's Aid (Jan 84) | 5. How do you rate our software reviews, in general? | | | 5. How do you rate our software reviews, in general: | | 6. We cover a wide range
think we should pay mor-
following, or if you think | e or less a | ttention | to any of the | 17. How much do you intend to spend on computers this year? | |--|---------------------------|----------------|----------------|---| | please indicate below. | More of | do ess u | III IIII | Up to £100 \Box £400 to £800 \Box £100 to £200 \Box £800 to £1500 \Box £200 to £400 \Box More than £1500 \Box | | | 2 | 'S' | in the | | | | More | ~85° | All | 18. How much do you plan to spend on peripherals this year? | | Educational features | | | | Up to £100 ☐ £400 to £800 ☐ | | Programming features | | | | £100 to £200 \square £800 to £1500 \square £200 to £400 \square More than £1500 \square | | Hardware features | | | | 2230 to 2100 = | | Games software | | | | 19. What type of peripherals are you planning to buy? | | Applications software | | | | Memory ☐ Modem ☐ Printer ☐ Prestel/Teletext ☐ | | Equipment reviews | | | | Discs Monitor | | Software reviews | | | | Graphics unit | | Book reviews | | | | | | News | | | | 20. Which of the following areas of activity do you use your personal computer for? | | | | | | Home use/games ☐ Business ☐ | | 7. We regularly publish litype in. How do make use | stings of people of these | orograms
? | for readers to | Scientific Educational Please indicate the main use only. | | Do you type them in exac | ctly as list | ed? | | 21. Do you belong to a computer club? | | Do you make small chang | es to suit | you? | | Yes □ No □ | | Do you rewrite completel | y for othe | er l | | WORK | | machines? | | | | 22. Do you use a computer in your job?
Yes □ No □ | | READING HABITS | | | | What is your job title? | | 8. Do you consider yourse Computing Today? | elf to be a | regular r | eader of | | | Yes | No | | | 23. Do you make purchasing decisions on equipment | | 9. If Yes, how long have y | ou boon r | ooding th | 0 | and software?
Yes □ No □ | | Less than six months | ou been i | eading th | e magazine? | | | Six months to a year One to two years | | | | 24. If yes, what is your annual budget? | | More than two years | | | | ADVERTISING AWARENESS | | 10. How many copies of the past year? | he magazi | ine have y | ou bought in | 25. Do you read the advertisments in Computing Today? Yes No No | | | | | | 26. Have you ever ordered any of the following goods | | 11. If you have been readi | ng the las | t 12 issue | s of the | from an advertiser in Computing Today? | | magazine, do you think we | e've | | | Computer | | Improved ☐ Got | worse \square | Staye | ed the same | Disc drive ☐ Business software ☐ | | 12. How long do you keep | | | | Discs ☐ Games software ☐ Graphics unit ☐ Systems software ☐ | | One month 12 months | Long | e months
er | | Other (please specify) | | 12 If you are not | | | | | | 13. If you are not a subscr
At a local newsagent | | | our copy | 27. Any comments on the service you received? | | On your way to work, at a
Have it delivered by a new | station e | | | | | Pick it up when you see it | sagent | | | | | 14. How many other peop | le read yo | ur copy? | | PERSONAL PROFILE The questions in this section are of a personal nature. | | COMPUTERS AND YO | OU | | | Although we do not want your name or address, please | | HOME
15. Do you own a home co | mn+2 | | | feel free to ignore any question you would prefer not to answer. | | Yes | No No | | | to answer. | | 16. If yes, please indicate v | | | | 28. How old are you?
15 or under □ 46 to 55 □ | | 10. If yes, please mulcate v | villen mak | Ce It Is. | | 16 to 25 □ 56 to 65 □ | | | | | | 26 to 35 | | | | | | , | | 29. What sex are you? | | 24. Do you hold a gradit sand? | |--|--|---| | Male Fema | le 🗆 | 34. Do you hold a credit card? Yes □ No □ | | 30 What is your marital status? Single ☐ Marrie | ed 🗆 | 35. Education. PLease tick in the first column the standard of education you have already reached, and in the second column if you are still studying for a qualification (full or part time). | | 31. Do you have any children?
Yes □ No | | No formal qualifications CSE O level | | 32. Employment At school At sixth form or technical college Student in higher education Employed | | A level/Scottish Higher/IB | | Self-employed
Unemployed
Retired | | 36. Does any part of your course involve computing? Yes □ No □ | | | | 37. Do you read a newspaper? If so, indicate which one. | | 33. If employed or self-employed pearnings. Under £4500 per annum | please indicate your | Times | | THE COMPETITION 38. Listed below are some of our condicate roughly how often you reathey compare to Computing Today the magazine, leave all the boxes blooming the magazine. | ad them, and how
v. If you don't read | | | | Regulary | Much better About equal Poor Regulariy | | Personal Computer World Practical Computing MicroDecision Your Computer Electronics and Computing Monthl Computer and Video Games What Micro? Which Micro and Software Review BBC Micro User Commodore User Dragon User Electron User Acorn User Sinclair User Micro User What Computer? Which Computer? Personal Computer Games Personal Computing Weekly | | Sinclair Programs Sinclair Projects Commodore Computing International Computer Answers Computer Choice Byte Datalink MicroScope 80 Micro Your Spectrum Computing Computer Weekly Micro Adventurer Personal Computing Today Home Computing ZX Computing CX Computing COmputing CX C | 39. What do you like or dislike about Computing Today? What improvements could you suggest? Any other comments? Thank you for your help. ## ## LORDS OF TIME Joins our range of acclaimed pure-text puzzle adventures, at £9.90, for: BBC 32K COMMODORE 64 SPECTRUM 48K LYNX 48K NASCOM 32K ORIC 48K ATARI 32K #### ADVENTURE REVIEWS "Adventures which have a fast response time, are spectacular in the amount of detail and number of locations, and are available to cassette owners . . Simply smashing!" - Soft, Sept 83 "Colossal Adventure is included in Practical Computing's top ten games choice for 1983: "Poetic, moving and tough as hell." - PC, Dec
83 "Colossal Adventure . . For once here's a program that lives up to its name . . a masterful feat. Thoroughly recommended" - Computer Choice, Dec 83 "Colossal Adventure is one of the best in its class. I would recommend it to any adventurer." - Acorn User, Feb 84 "Adventure Quest . . This has always been one of the best adventures for me as it seems to contain the lot. In all it took me about eight months to solve." - PCW, 18th Jan 84 "To sum up, Adventure Quest is a wonderful program, fast, exciting and challenging. If you like adventures then this one is for you" - NILUG issue 1.3 "Colossal Adventure is simply superb.. For those who want to move onto another adventure of similar high quality, **Dungeon Adventure** is recommended. With more than 200 locations, 700 messages and 100 objects it will tease and delight!" - Educational Computing, Nov 83 #### ADVENTURE REVIEWS "Colossal Adventure .. undoubtedly the best Adventure game around. Level 9 Computing have worked wonders to cram all this into 32K . . Finally **Dungeon Adventure**, last but by no means least. This is the best of the lot – a truly massive adventure – you'll have to play it yourselves to belive it." - CBM 64 Users Club Newsletter "The puzzles are logical and the program is enthralling. Snowball is well worth the money which, for a computer program, is a high recommendation." - Micro Adventurer, Dec 83 "Snowball .. As in all Level 9's adventures, the real pleasure comes not from scoring points but in exploring the world in which the game is set and learning about its denziens .. this program goes to prove that the mental pictures conjured up by a good textual adventure can be far more vivid than the graphics available on home computers." - Which Micro?, Feb 84 "Lords of Time. This program, writen by newcomer Sue Gazzard, joins my favourite series and is an extremely good addition to Level 9's consistently good catalogue. As we have come to expect from Level 9, the program is executed with wonderful style – none of those boring "You can't do that" messages! Highly recommended." - PCW, 1st Feb 84 #### MIDDLE EARTH ADVENTURES #### 1: COLOSSAL ADVENTURE A complete, full size version of the classic mainframe game "Adventure" with 70 bonus locations added. #### 2: ADVENTURE QUEST Centuries have passed since the time of Colossal Adventure and evil armies have invaded The Land. The way is long and dangerous; but with cunning you can overcome all obstacles on the way to the Black Tower, source of their demonic power, and destroy it. #### 3: DUNGEON ADVENTURE The trilogy is completed by this superb adventure, set in the Dungeons beneath the shattered Black Tower. A sense of humour is essential! #### THE FIRST SILICON DREAM ADVENTURE #### 1: SNOWBALL The first of Pete Austin's second trilogy. The giant colony starship, Snowball 9, has been sabotaged and is heading for the sun in this massive game with 7000 locations. #### THE LORDS OF TIME SAGA #### 7: LORDS OF TIME Our congratulations to Sue Gazzard for her super design for this new time travel adventure through the ages of world history. Chill to the Ice-age, go romin' with Caesar's legions, shed light on the Dark Ages. etc. #### Price: £9.90 each (inclusive) Level 9 adventures are available from good computer shops, or mail-order from us at no extra charge. Please send order, or SAE for catalogue, to: #### LEVEL 9 COMPUTING Dept C, 229 Hughenden Road, High Wycombe, Bucks HP13 5PG Please describe your computer # EXTENDING THE 64'S BASIC Tony Cross How often have you wished "Why isn't that command in the BASIC?" — especially on the Commodore 64 where the graphics and sound are all controlled by POKEs. Here's the answer to your problems: write your own keywords! I'm sure that everybody knows by now that although the Commodore 64's sound and graphics features are fairly advanced, its BASIC is . . . well . . . fairly backward. My wife summed it up very nicely when she said that it sounded rather like fitting propellers to Concorde! To compensate for this weakness, many enterprising software houses have started producing 'Commodore 64 BASIC extensions'. These are either tapes or cartridges which, when loaded, add varying numbers of new command keywords to the existing CBM BASIC. Now these ready-made 'bolt on BASICs' are fine: certainly the two or three that I have seen perform very well indeed. The problem with all of them is that you get the extra commands that the software author **thought** you wanted — and not necessarily the ones that you really did want. You see, as your programming tastes and skills change, the way you use BASIC also changes. So what you really need is a version of BASIC that can change with you. This idea of an 'extendable' rather than a simply 'extended' BASIC forms the main subject of this series of articles. In it I will be showing you not only how you can add your own command keywords to the existing CBM BASIC, but I'll also be delving deep into the BASIC ROM to reveal and explain all the really useful routines. To complete the picture I will also be looking at the way the BASIC text and variables are stored and manipulated, and at the way the floating point maths routines work. Even if you are not interested in adding your own keywords, this series will give you an insight into how and why CBM BASIC works, and that alone should help you to use the language more effectively. #### BASIC BASIC Before we can begin to think about adding to our keywords, we need to take a look at the way BASIC deals with the existing ones. So let's start this month by looking at how BASIC keywords are stored and interpreted. The BASIC ROM contains many separate routines, but they are grouped together into two major systems, the Editor and the Interpreter. The Editor controls the entry of programs, both direct commands (with no line number) and numbered program lines. Whenever a user program is not running, the Editor is in control of the machine. The Interpreter, on the other hand, controls the running of programs, again both direct commands and numbered programs. The Interpreter is invoked whenever you type the command RUN, and it remains in control until either the program finishes, or until the STOP key is pressed. Looking at the way that each of these systems is used, you can see that we want the Interpreter to run as fast as possible, in order to speed up the execution time. On the other hand, we can allow the Editor to run fairly slowly, because it only has to deal with the human user — and we're not very fast at the best of times! Obviously, then, we want to transfer as much work as possible from the Interpreter to the Editor. And the task which takes up the most time is the checking which must be done to see if the current line contains a keyword. Briefly, this involves comparing each word in the current line against a table of BASIC keywords called the 'reserved words list'. There are more than 70 keywords in this table and the Interpreter would be extremely slow if it had to do all the checking. #### WORKING THE EDITOR HARDER! So, what is needed is some way of transferring this work to the Editor, where we can afford the time taken to check each line for keywords. This has been achieved by partly decoding the keywords as they are entered into the Editor. Each keyword, regardless of its length, is converted to a single byte value called a 'token'. The token is stored in memory in place of the much longer keyword. The value of the token is chosen so that it can be used by the Interpreter as an index into a table of addresses. This table, called the 'routine address list', contains the start address for each keyword routine. The tokens are generated by a special routine which is called whenever the Return key is pressed (ie whenever a line has been entered, either for a direct command or a numbered line). It works by comparing each word in the input buffer with the keywords in the reserved words list. If a match is found, the position of the keyword in the list is used as the value of the token. In addition, to distinguish the tokens from the other characters in the line, the high bit of tokens is always set to 1. For example, if a word in the input buffer matches the fifth word in the reserved words list, then the token value would be \$85. (\$85 is the digit 5 with its high bit set. This is actually the token for INPUT). All the other characters in the input buffer are stored in memory exactly as they are typed, in standard ASCII format. (See Table 1 for a list of the BASIC tokens and Table 2 for a copy of the ASCII character set). Now let's have a look at the way the BASIC program lines, tokens and all, are stored in memory. The best way to illustrate this is with a simple example, so have a look at this: #### 10 PRINT "FRED" This line of code would be stored in RAM as follows: Ø8Ø1 ØE Ø8 ØA ØØ 99 2Ø 22 46 52 45 44 22 ØØ (Note — these are all hex values.) At first sight this listing is pretty meaningless, but the following explanations should make it clearer. The '0801' at the start of the listing is the address, in hex, where the first byte of the line is stored. (All BASIC programs start at address \$0801). The next two bytes '0E 08' can be ignored for the moment — I'll come back to them later. #### TABLE 1 A list of the existing BASIC token values. | Hex token value 80 81 82 83 84 85 86 87 88 89 8A 8B 8C 8D 8E 8F 90 91 92 93 94 95 96 97 98 99 9A 9B 9C 9D 9E 9F AO A1 A2 A3 A4 A5 A6 | Keyword name END FOR NEXT DATA INPUT# INPUT DIM READ LET GOTO RUN IF RESTORE GOSUB RETURN REM STOP ON WAIT LOAD SAVE VERIFY DEF POKE PRINT# PRINT CONT LIST CLR CMD SYS OPEN CLOSE GET NEW TAB(TO FN SPC(| Hex token value A7 A8 A9 AA AB AC AD AE AF B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 BA BB BC BD BE BF C0 C1 C2 C3 C4 C5 C7 C8 C9 CA CB to FE | Keyword name THEN NOT STEP + - * / 1 AND OR > = < SGN INT ABS USR FRE POS SQR RND LOG EXP COS SIN TAN ATN PEEK LEN STR\$ VAL CHR\$ LEFT\$ RIGHT\$ MID\$ Unused at present PI |
|--|--|---|---| |--|--|---|---| The third and fourth bytes, 'OA OO', are the line number, in standard low/high format. (000A hex is the same as 10 decimal). The next byte, '99', is the token for the PRINT keyword. (Notice that this is the only character on the line with its high bit set). The next seven bytes, '20 22 46 52 45 44 22', are the ASCII characters for "FRED" (preceded by a space). The final byte, '00', indicates that this is the end of the line. All lines of BASIC end with a null (00) byte. #### INTERPRETING BASIC I said earlier that tokenised keywords help to speed up the Interpreter, so now let's have a look at how they are dealt with. When the Interpreter 'scans' a program line, any character with its high bit set is assumed to be a token. (Unless it's in a quoted string). When the Interpreter encounters a token, it removes the high bit (it only indicates that this is a token and serves no other purpose) and uses the rest of the token as an index into the routine address list. Control is then passed to the keyword routine whose address was found at this location. The keyword routine performs the actions required of the particular keyword and can, if necessary, read parameters from the rest of the program line. In the previous example, for instance, the PRINT keyword routine will read the string "FRED" from the program line and print it. (I will be showing you how to do this in later articles). When the keyword routine has finished, it returns control to the Interpreter which then begins scanning the next line (or the rest of this one if there is more to come). #### TABLE 2 The ASCII character set (the part used by CBM BASIC). | Hex code 00 to 1F 20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D | Character Unused Space ! " # \$ % & , () * + , - | Hex code 40 41 42 43 44 45 46 47 48 49 4A 4B 4C 4D 4E 4F | Character A B C D E F G H I J K L M N O | |--|---|--|---| | 2F
30
31
32
33
34
35
36
37
38
39
3A
3B | /
0
1
2
3
4
5
6
7
8
9 | 50
51
52
53
54
55
56
57
58
59
5A
5B | P
Q
R
S
T
U
V
W
X
Y
Z | | 3C
3D
3E
3F | 9 : ; < = > ? | 5E
5F
60 to 7F | ↓
←
Unused | | | | | | I'm sure that you can now see that the Interpreter spends much less time executing tokens than it would if it had to decode the whole keyword. In addition, the single byte tokens occupy less space than the keywords, thus giving us a saving in memory! #### LARGER PROGRAMS In the previous example we saw how a single line of BASIC is stored. Now we'll increase the complexity slightly and look at how several lines of code are stored. We have already established that each line of BASIC ends with a null. It should be no surprise, then, to find that the next line of code begins on the byte following this null, and that this process is repeated for every line in the program. Now this system is very convenient for the Interpreter, because it scans the lines a character at a time and the null is a clear indication of where one line ends and another begins. However, it makes life very difficult for the Editor, because it treats lines as complete entities rather than as individual characters. For example, consider what happens when the Editor needs to insert a new line (say, line 25) in between two existing lines (say, lines 20 and 30). The Editor needs to know where line 20 ends and line 30 begins so that it can open up a gap for the new line 25. Since there are null bytes at places other than the ends of lines (in line numbers for example) there is no way that the Editor can hope to find this point. Clearly, some additional method of indicating the beginning of lines is needed. This is where the two 'extra' bytes (0E 08) in the previous example come in. These two bytes are pointers and they point to the address of the start of the next line (low byte specified first). So, looking back at the previous example, the next line will begin at address \$080E. Let's expand this example so that we can see the use of line pointers more clearly: 10 PRINT "FRED" 20 LET A=34*2 30 GOTO 10 This program will be stored in memory as follows: Ø8ØØ ØØ ØE Ø8 ØA ØØ 99 2Ø 22 46 52 45 44 22 ØØ 1B Ø8 Ø81Ø 14 ØØ 88 2Ø 41 B2 33 34 AC 32 ØØ 24 Ø8 1E ØØ 89 Ø82Ø 2Ø 31 3Ø ØØ ØØ ØØ To make the line pointers more obvious I have marked them with an underline. Check that you can start at address \$0801 and follow the line pointers through the program. There are one or two things which you may have noticed as you did this. First, I said earlier that BASIC programs start at address \$0801, and yet I have started the listing above at address \$0800. Well, the truth of the matter is that BASIC programs actually start at address \$0800 — but this first byte is always null, so effectively, programs do start at address \$0801. Second, the last three bytes in the program are all null. Now, we know that the first of these nulls indicates the end of line 30, and so the next two nulls are where we would expect to find the line pointer for the next line. Obviously, there can never be a line pointer to address \$0000, and so two nulls in the line pointer bytes are used to indicate the end of the program. Third, even the '=' and '*' signs have been tokenised in line 20. Although this doesn't save any memory space it does make them execute much faster. (I will be showing you how tokenised expressions like this are dealt with in a later article). This method of storing BASIC text with pointers in the next line is a very common data structure. It is called a LINKED LIST because each item in the list (each line in this case) is linked to the next by a pointer. Figure 1 shows a diagram of this linked list principle. #### MULTI-STATEMENT LINES Up to now I have assumed that each program line only contains one statement, so now let's have a look at how multi-statement lines are handled. The different statements on multi-statement lines are separated by the colon character (:), like the following example: 10 PRINT "FR:ED" : LET A=34*2 : GOTO 10 This program will be stored in memory as follows: 0800 00 20 08 0A 00 99 20 22 46 52 3A 45 44 22 20 3A 0810 20 88 20 41 B2 33 34 AC 32 20 3A 20 89 31 30 00 0820 00 00 The main thing that I want you to notice from this listing is that the colons which separate the statements have not been tokenised. To illustrate this, I have included an extra colon in the PRINT string, and you can see that all the colons in the program are the same (\$3A). Fortunately, the Interpreter can tell the difference between a printable colon and a statement separator! It does this by assuming that colons within quoted strings are ordinary printable colons, and that colons anywhere else on the line are statement separators. When the Interpreter encounters a statement-separating colon it acts as though an end of line (null) had been reached, except that it doesn't look for a line pointer or a line number before the next statement. #### LISTING TOKENISED PROGRAMS Converting keywords to tokens is all very well, but what happens when you want to LIST the program? Obviously, we don't want the token characters to be printed, we want the actual keywords. So, the LIST routine will have convert the tokens back into keywords again. Actually this is a fairly simple process because the token can be used as an index back into the reserved words list. This table contains printable characters for all the keywords, the only problem being that there is no way of knowing in advance how long each keyword is. To overcome this problem, the high bit of the last byte of each keyword in the table has been set to 1. So, all the LIST routine needs to do is to use the token as an index into the reserved words list, and then keep on printing characters until it finds one with the high bit set. When it finds this character it must strip off the high bit, print the word and then return to printing the rest of the line. #### **NEW TOKENISED KEYWORDS** Having seen how the existing keywords are handled we are now in a position to look at how new keywords can be added. In fact there are several ways of adding new keywords to Commodore BASIC, some more efficient than others. The system that I have developed 'copies' the existing BASIC as much as possible by using tokens for the new keywords. In next month's article I will be explaining how this 'Extendable BASIC System' works and how you can use it to add
your own keywords. ## **Software News** ## TRS 80-GENIE SOFTWARE from the professionals # Info-Scan Info-Scan is an information reference and retrieval utility. It combines the features of a data base manager, a word processor and display utility. Each information record is composed, using the word processing feature, in any format that is meaningful to the user. It is no longer necessary to sculpt your data to the requirements of the data base. The information can be stored in a record in almost any format required. Indeed, forms themselves can be used. A utility in Info-Scan allows the operator to compose a form and file it on disk, recalling it for completion as and when required. Each record is allocated a key phrase or word, so that it can be re-called at will. About 1,800 characters may be entered per record, and 350 records may be held to a file. Any number of files may be maintained. Info-Scan is written in machine language for high speed operation. As with all data bases, the contents of the records may be changed at any time. They may also be deleted and have information added to them. The record contents may be printed out to any standard line printer. In addition to the above, Info-Scan features a full screen editor, extremely comprehensive error trapping and recovery, plus a demonstration file to get you going. Info-Scan removes the shackles from the data base user. No longer does he have to abide by the format rules of the data base. Information is entered, retained and displayed in a form chosen by the user and one which is uniquely meaningful to him. Info-Scan is compatible with TRS-80 Model I, III and Model 4 in mode III, plus compatible Genie machines. Info-Scan will operate with any TRSDOS compatible disk operating system including LDOS, Dosplus and Multidos. INFO-SCAN (disk) ... £39.00 + VAT = £44.85VAT inclusive, 75p P & P TEL: [0424] 220391/223636 MOLIMERX LTD A J HARDING (MOLIMERX) TELEX 86736 SOTEX G 1 BUCKHURST ROAD, TOWN HALL SQUARE, BEXHILL-ON-SEA, EAST SUSSEX. TRS-80 & VIDEO GENIE SOFTWARE CATALOGUE £2.00 plus £1.00 postage (postage refundable on order). # Subscriptions Personally, we think you'll like our approach to microcomputing. Each month, we invite our readers to join us in an abundance of feature articles, projects, general topics, software listings, news and reviews — all to help committed micro users make more of their microcomputers at home or at work. However, if you've ever missed a copy of Computing Today on the newstands, you'll not need us to tell you how valuable a subscription can be. Subscribe to CT and for a whole year you can sit back, assured that each issue, lovingly wrapped, will find its way through your letter box. And it's not difficult! All you have to do is fill in the form below, cut it out and send it (or a photocopy) with your cheque or Postal Order (made payable to ASP Ltd) to: ### COMPUTING TODAY Subscriptions, Overseas Air Mail Infonet Ltd, Times House, 179 The Marlowes, Hemel Hempstead, Herts HP1 1BB. Alternatively, you can pay by Access or Barclaycard in which case, simply fill in your card number, sign the form and send it off. Please don't send in your card. Looking for a magazine with a professional approach with material written by micro users for micro users? Why not do yourself a favour and make 1984 the year you subscribe to Computing Today and we'll give you a truly personal approach to microcomputing. #### I am enclosing my (delete as necessary) cheque/Postal Order/International Money SUBSCRIPTION Order for £. h wiking bus (made payable to ASP Ltd) ORDER FORM BARCLAYCARD OF Debit my Access/ Barclaycard* (*delete as necessary) VISA Cut out and SEND TO: COMPUTING TODAY Subscriptions INFONET LTD, Please use BLOCK CAPITALS and include postcodes. TIMES HOUSE 179 THE MARLOWES, NAME (Mr/ Mrs/ Miss) HEMEL HEMPSTEAD, ADDRESS HERTS HP1 1BB. Please commence my subscription to Computing Today with the issue. £13.30 for 12 issues POSTCODE SUBSCRIPTION UK RATES Signature £16.95 for 12 issues (tick as Overseas Surface appropriate) £36.60 for 12 issues ## THE ATMOS STRIKES BACK Samuel Watts Repackaged, reROMed and relaunched, the new Atmos is the latest offering from Oric. Is it an exciting new machine, or just a sheep in wolf's clothing? It is no secret that the Oric Atmos is essentially a modified and enhanced Oric 1 in a smart new case. The real questions to be answered are how great an improvement is the new version, does it really overcome all the bugs present in Oric's initial offering and how serious a challenger is it to micros in its price bracket? ## INSPECTING THE PACKAGE Starting at the top of the list, even the most obvious aspects of the repackaging constitute worthwhile improvements. There is no gainsaying the fact that with its clean black, white and red colours, the Atmos is an extremely attractive looking machine. But more importantly the new keyboard is satisfying and pleasant to use. It follows the layout of the Oric 1 but has 'proper' typewriter style keys with 4 mm travel for the technically minded! The layout itself is a perfectly sensible and acceptable arrangement even the arrow keys (positioned on the very bottom line at either side of the space bar) are in a convenient place for most applications, although seasoned computer game players may find absence of the familiar cross' layout for the cursor keys confusing. Along the rear of the case are a range of sockets that are used to connect the Atmos to the outside world. Power is supplied through a separate unit with a built-in 13 amp plug and fairly long cable. Video output is provided as a UHF signal that will drive a standard TV set or as an RGB signal for a colour monitor. The fact that the Atmos can drive a colour monitor without any extra electronics may give it an advantage in some appli- cations, although as its display is limited to 40 characters per line a standard TV set gives an adequate display. A connector for a Centronics-compatible printer is another feature which may give the Atmos an edge over its competitors — a good keyboard and a printer interface as standard is the minimum requirement for a low-cost word processing system. A 7-pin DIN socket is used to connect a standard cassette recorder for program and data storage. One problem is that the cassette lead supplied with the Atmos is terminated by a 3-pin DIN socket, apparently on the grounds that most cassette recorders have such a connection. However, in my experience most low cost recorders have miniature jack sockets for earphone and microphone rather than a DIN connector. The use of a 3-pin DIN connec tor also means that the cassette's remote control (if any) isn't used, even though the Atmos includes a relay and the software to start and stop the tape automatically. All this suggests that one of the first things to do is make or buy a new cassette lead for your Atmos! The final connector is an expansion interface used to connect such things as the Oric 3" disc drives. One interesting feature is that the manual (see later) goes to great lengths to describe how to interface custom devices to the Atmos using the expansion interface — a trend that other computer manufacturers should follow. #### INSIDE THE BOX Taking the Atmos apart — something that I can't encourage the reader to do for himself as it invalidates the warranty on the machine concerned — reveals that the internal layout of the Atmos is virtually identical to that of the Oric l — indeed, as our photo reveals the Atmos we were supplied had sufficient of an identity crisis to believe that it was an "Oric l, issue 4"!! Comparing the components and PCB layout with a fairly old Oric l reveals no obvious circuit changes — something that will make Oric l owners breathe a sigh of relief. The only noticeable change is the use of a single ROM in the Atmos compared to a pair of EPROMs in the Oric l. This is a reflection of the fact that most of the newness of the Atmos is to be found in its software and this is described later. #### HARD FACTS As far as hardware is concerned the Atmos is a straightforward 6502 design. The only unusual chip to be found is the custom-built ULA that seems to turn up so often in electronics these days. In this case the purpose of the ULA is to generate the video display. There seems to be no way to 'tinker' with the setting up of the ULA and so the Atmos is restricted to its two standard modes — text/low-res and hi-res graphics (unlike the Dragon, say, that seems to have more undiscovered display modes than the ones it admits The other 'big chips' in the system are a 6522 VIA that pro- . Fig. 1 The memory map of the 48K Atmos in text mode. vides the keyboard, Centronics printer interface and controls the sound generator chip; and the sound generator chip AY-3-8192 itself. The fact that the VIA has three on-board timers, one of which isn't designated for system use makes it surprising that Atmos BASIC doesn't have a timer function or command. However, it is not difficult to produce one using DEEK and DOKE (16-bit versions of PEEK and POKE). The amazing AY-3-8912 sound generator chip is used to good effect in the Atmos, which can claim to be one of the loudest computers on the market! Although the sound specification on the Atmos is superficially similar to the BBC Micro, that is, three tone channels and one noise channel, it is interesting to notice the different ways that it is achieved. The BBC Micro uses a fairly simple sound effects chip and a great deal of software to make it into a superb sound effects system. The Atmos uses a complex sound effects chip and a very simple software driver. The difference from the user's point of view is that the software-based sound generator is more flexible but of course the hardware intensive system is simpler. The final components of the Atmos are eight 64K dynamic RAM chips and the 16K ROM that holds the system routines and Atmos BASIC. ###
WORDS ABOUT WORDS Before we leave the subject of the new packaging it is certainly worthwhile taking a good look at the new Atmos Manual. This is a hefty volume of around 300 pages. The main part of the manual is a guide to the action of each of the BASIC keywords along with one or two short examples. What is remarkable about this new manual is that it includes the sort of information that normally takes a great deal of experimentation to discover. For example, for assembly language programmers it includes details of the I/O routines that Oric have had to add to the core of Microsoft BASIC to produce Atmos BASIC. There is a full list of all memory locations used to hold system values and constants. For the hardware enthusiast there is plenty of help on how to go about connecting special equipment using the expansion interface. #### BEATING THE BUGS — ATMOS BASIC Probably the main rationale for launching the Atmos as a micro with a new identity was to put as much emphasis as possible on the fact that it had got rid of the bugs in the Oric 1's ROM. For those readers who have not paid attention to the details of these bugs, suffice it to say that the STR\$ function no longer adds an odd control code to the front of its results, the TAB function now works, and the printer no longer adds spurious characters to listings etc. Probably the most important omission rectified by the Atmos is achieved by the PRINT @ command. This allows the text cursor to be positioned at any point on the screen, and so not only provides a way of settina the position that data will be printed, it also allows control over where input will appear on the screen. For example, PRINT @x,y;:INPUT A will move the text cursor to x, y and then allow the user to type the digits of the value of A. Previously this sort of input positioning had only been possible by direct modification of the system variables using POKE. (It is worth mentioning that this older method of cursor position still seems to work on the Atmos.) There has been some criticism that the Atmos's TAB function still doesn't work because it overwrites anything on the line that is being 'tabbed along' with blanks. However this is NOT a bug and in most versions of BASIC (eg ZX BASIC) this is exactly how the TAB function is supposed to work!) (Matter of opinion: I say it is a bug! — Ed). The only other brand new Atmos command is EDIT. All this command does is to list a line and then position the cursor at its start so that it can be edited. This is such a simple command it hardly seems worth mentioning as an addition to Atmos BASIC, but in practice it is extremely useful. Apart from its own unique I/O commands, Atmos BASIC is a fairly standard variety of Microsoft BASIC. That is, it has IF... THEN . . ELSE and REPEAT . UNTIL, but the only method it offers for forming modules is by the traditional BASIC keywords GOSUB and RETURN. The special I/O commands for handling the graphics and sound are generally easy to use, although if you are familiar with another computer it might take a little time to come to terms with the Atmos's set of commands. They are very logical but it just takes a little thinking about to decide what each one is for For example, 'PLOT x,y, string' will print a string of characters at x,y on the text screen in the same way as 'PRINT @ x,y, string'. The question is, which instruction should you use when? The answer is that the PLOT command doesn't disturb the text cursor but PRINT @ does. The high resolution commands also take a little time to organise into a coherent set suitable for programming — but they are all there. #### THE TAPE SYSTEM One of the features of the Atmos that I was keen to test was its cassette filing system. While there has certainly been an improvement on the original Oric I's performance, my own experience certainly suggests that the Atmos has not yet overcome all the problems. I have to admit to disliking cassette storage at the best of times — I've been spoilt by disc systems Is it a bird, is it a plane? No, it's the Oric-1 Issue 4! over too long a period and I am not prepared to come to my final conclusions about the Atmos until I've had a chance to test it with its disc drives. So we will all have to wait until the second part of the review which looks at "The Atmos for Applications" and covers its use in conjunction with its 3" drives and four-colour printer. The Atmos claims to have improved error checking over the Oric 1 and certainly it did seem to generate more 'errors found' messages than the Oric 1! Most of these errors had no effect on the program loaded in other words the errors must have been in the tape header or somewhere unimportant - but the fact that the error message appeared generated a sense of untrustworthiness. Additional commands have been added to enable entire arrays to be saved and there is also a nondestructive verify option to make sure that the data has been correctly saved. Even so, I had many of the troubles that I encountered when trying to load tapes on the Oric 1. For example, I occasionally lost control of the machine in the middle of loading and often a program would have spurious lines appended on it. It is true that if a program loaded without an "errors found" message it was OK, but then most of the programs that loaded with "errors found" messages were also OK — very puzzling! My advice is to stick to the slower speed and to make multiple copies of programs you want to keep. #### COMPATIBILITY As part of my testing of the Atmos I spent quite a lot of time loading old Oric 1 programs to see if they still worked. This is also something that is important to those intending to purchase an Atmos—there is quite a lot of Oric software about and it's a shame not to take advantage of it. I chose as my source material **The Oric Book of Games**, a collection of 21 full colour graphics games by Mike James, S.M. Gee and Kay Ewbank, published by Granada (which I just happened to have the cassette tapes for!!). Eventually, with lots of patience (and some undeniable frustration) I did get every single program to load and having loaded they all ran properly without modification. As a result I can assure readers that software originally written for the Oric 1 does work on the Atmos. However, given that such software had to employ some crafty techniques to get round the Oric's bugs it cannot be regarded as being written in best Atmos BASIC. Hence it is all the more surprising that the programs worked without modification! (A new version of the book, written and lower case characters and the familiar teletext block graphics characters. With both upper and lower case characters the Atmos is suitable for serious applications, but the 40-column screen is something of a limitation. However, the display is fairly clear even on a standard UHF TV set and this would not be the case with an 80-column display! The Atmos can display eight different colours, using no more memory than for a black and white display, but there are restrictions. The colour is controlled by storing 'attribute codes' in memory locations that would otherwise be used to store character codes: ie serial attributes are used. An attribute code effects the colour of all the characters on the same line and to its right unless it is 'overridden' by another attribute code on the same line. So to display the word BLUE in blue and the word RED in red the screen would have to contain data as shown in Fig. 2. Notice that the attribute codes take up a screen location that would otherwise hold a character. As attribute codes are displayed as blanks or spaces in the current back- the Apple II or the Atari. The display is easy to control using Atmos BASIC as long as you restrict yourself to two colours. Unfortunately the serial attributes method of controlling the colour has been extended to the high resolution mode and here it seems less natural. The trouble is that, just as in text mode, to change the colour of the pixels you have to store an attribute code into a screen memory location that would normally control six pixels on the screen. Once again an attribute effects all of the pixels to its right and on the same line. The screen location where it is stored is displayed as a row of six pixels in the background. colour and hence high resolution graphics are subject to the same colour restrictions that apply to low resolution graphics. After using serial attributes for some time I have to say that occasionally they actually make graphics easier. On balance, however, apart from limited text and low resolution graphics I would rather have a method of colour control that was not so restricting. Of course, I would also rather have the extra memory that the space-saving serial attribute method frees! ### THE CONSUMER'S CHOICE The real question is where does the Atmos fit into the current range of micro? It is undeniably a low-cost machine with the possibility of expansion to 3" disc and printer making it an proposition. The attractive unexpanded machine compares favourably with the Spectrum - it has a real keyboard and better sound although in my opinion its graphics are more difficult to use. Against the Electron its only real advantage is that it has a built-in printer port. The Atmos certainly fills a gap in the market but for real applications it has to be seen as one component in a system. This is what I intend to do more fully in the second part of my review when we will look at how the Atmos plus its peripherals can be expected to perform. Fig. 2 Screen location contents to display the word BLUE in blue and RED in red. $\,$ using Atmos BASIC, is about to be published.) ## GRAPHICS AND SOUND The most important thing to say about the Atmos is that it uses a system of 'serial attribute' graphics based on the teletext system. This is also the feature that sets it apart from other computers in its price range. In its low resolution text and graphics mode the Atmos can
display 27 lines of 40 characters. There are two character sets provided and as both are stored in RAM they are completely user-definable. They are initialised to the standard ASCII upper ground colour, the two words 'BLUE" and "RED" are displayed with a space between them, and there is no way to remove this space and still change the colour. Hence the main restriction of serial attributes is that whenever the colour changes there has to be a space. It is worth mentioning that this restriction doesn't seem to stop the teletext graphics artists employed by Ceefax. Oracle and Prestel from producing some excellent displays! Attribute codes can also produce double height and flashing characters. The high resolution display is 240 by 200 pixels with two text lines at the bottom in the style of | ATMOS
SPECTRUM
ATMOS | 2.1 | BM2
17.8
9.0 | 29.7 | 32.1 | 38.7 | 52.7 | 78.8 | 23.6 | | |--|-----|---------------------------|------|------|------|------|------|------|--| | (with keyboard inhibited) Table 1. The results of Benchmark t | | 14.0 | 23.3 | 25.1 | 30.4 | 41.3 | 61.6 | 18.5 | | ITL's Byte Drive 500 3" F.D.D. has already done wonders for Oric. Now for BBC Model B (with D.F.S.) we can offer a proven system consisting of: *** DRIVE UNIT * INTERFACE CABLE** ***** ZAP SOFTWARE PACKAGE ***** MANUAL All at an introductory price of £190 (+ VAT) CONTACT YOUR LOCAL PERSONAL COMPUTER RETAILER. SUPPLIES NOW BEING DELIVERED TO U.K. & EUROPE. IN CASE OF DIFFICULTY CONTACT: ITL Kathmill Ltd The Old Courthouse, New Road, Chatham, Kent ME4 4QJ. Tel: 0634 409433 SYSTEM DESIGNED & ASSEMBLED IN U. After 30 Hour BASIC - ## Structured BASIC Advanced BASIC programming course containing two types of material: first, on program style, design and structure and second, techniques of programming. Uses BBC BASIC but includes a special appendix on how to write structured programs in BASICs without structured features. > Book £7.50 Software £11.50 inc VAT ## **Beyond BASIC** 6502 Assembly language on the BBC micro — how to make the most of the 6502 instruction set and write programs to perform arithmetic calculations, use loops and decisions, create lists and tables and perform complex operations on BASIC variables. Includes assembly language routine for graphics and sound. > Book £7.50 Software £11.50 inc VAT NATIONAL EXTENSION COLLEGE 18 Brooklands Avenue, Cambridge CB2 2HN TRANSFORMS THE COMMODORE 64 INTO A FULL-FEATURED AND PROFESSIONAL DATABASE SYSTEM! WITH UP TO 1000 CHARACTERS PER RECORD ON UP TO 4 SCREENS... AND UP TO 128 ITEMS PER RECORD. DEFINABLE AS KEY, TEXT, SUPERBASE EVEN HAS SPREADSHEET AND CALCULATOR CAPABILITY, CALENDAR FUNCTIONS, EASY INPUT FROM WORDPROCESSOR/DATA FILES, BOTH MENU-DRIVEN AND ROGRAM OPTIONS, SORTING/SEARCHING, FULLY DEFINABLE OUTPUTS.. SUPERBASE 64 IS ESSENTIAL IF YOU WANT THE MOST FROM YOUR 64! SUPPLIED ON CBM 1541 DISK WITH EXCELLENT TUTORIAL/REFERENCE MANUAL, EX-STOCK NOW! OUR PRICE ONLY 199.25 £88! NOW AVAILABLE ON CARTRIDGE, VIZAWRITE 64 IS A HIGH-PERFORMANCE, LOW-COST WORD PERFORMANCE, LOW-COST WORD PROCESSOR, WITH ON-SCREEN FORMATTING, THAT TAKES FULL ADVANTAGE OF THE 64'S COLOUR, GRAPHICS AND MEMORY FEATURES... AND SUPPORTS VIRTUALLY ANY PRINTER! WITH A COMPREHENSIVE AND EASY-TO-FOLLOW USER MANUAL, VIZAWRITE OFFERS THE ULTIMATE IN PERSONAL COMPUTER WORD PROCESSING! ALSO AVAILABLE ON DISK (OUR PRICE 1999 168!), OR COMBINED WITH VIZASPELL (OUR PRICE 1999 185!). OUR PRICE ONLY £89.95 £75! MASTER 64 IS A TOTALLY NEW CONCEPT... A COMPLETE PROGRAM DEVELOMENT PACKAGE, THAT'S AVAILABLE NOW FOR THE CBM 64. MASTER HAS 85 NEW COMMANDS... AND BASIC IV TOO! PLUS PROGRAMMER'S TOOLKIT, MACHINE CODE MONITOR, BUSINESS BASIC, KEYED DISK ACCESS, SCREEN MANAGEMENT, USER-DEFINABLE INPUT ZONES, REPORT GENERATOR, 22-PLACE ARITHMETIC, DATE CONTROL, STRING FUNCTIONS, DISK DATA COMPRESSION, SCREEN PLOTTING, SCREEN DUMP, AND MORE... IN FACT EVERTHING YOU NEED TO PROGRAM YOUR 64 TO TOP PROFESSIONAL STANDARDS! (SCREEN MANAGEMENT, TOOLKIT, HI-RES GRAPHICS AND DOS SUPPORT ARE AVAILABLE SEPARATELY ON CARTRIDGE - 149,50). MASTER IS ALSO AVAILABLE FOR CBM 700 (1339,25) AND CBM 4032/8032/8096 (1399.25) 22551). SPECIAL OFFER PRICE £143-75 £115! THESE ARE JUST SOME OF OUR FINE SOFTWARE PRODUCTS FOR COMMODORE COMPUTERS... PLEASE TELEPHONE OR WRITE FOR FREE DATA SHEETS! PRICES SHOWN INCLUDE 15% VAT AND ARE CORRECT AT TIME OF GOING TO PRESS. ORDER BY POST/TELEPHONE/PRESTEL, USING CHEGUE, ACCESS, BARCLAY CARD OR OFFICIAL OPDER. TELEPHONE 01-546-7256 FOR SAME-DAY DESPATCH! POST FREE EXCEPT ON CREDIT/OVERSEAS ORDERS. (REF A25) LAKESIDE HOUSE, KINGSTON HILL, SURREY KT2 7QT TEL 01-546-7256 ASPEN is the name of Nascom/Lucas computer's word processor, and although produced in 1980, it remains a remarkably sturdy utility, and very "user-friendly" as the cliche goes. In 1980 computer was extremely expensive and the fact that NASPEN was only 2K in size was a distinct advantage - it left plenty of room for the text file. However, you cannot get everything into 2K of memory, and so NASPEN does not have a REPLACE command. Furthermore, the file will not accept graphic character codes, even though the Nascom keyboard produces them, and the number of words in a file cannot be automatically counted. It is all too easy to think of things that could be added to a word processor but the manufacturers cannot satisfy the requirements of every potential user, and so there comes a time when you may have to add a utility There are really two sets of utilities in this package. The first set are the extensions to the NASPEN word processor, and will only work with that processor. I have taken into account that the user might have a modified version of NASPEN - it might, for example, have been moved to RAM at 1000 hex with a file starting at 2020 hex - and if this is thecase the utilities will still work. The second set of utilities work independently of NASPEN, and thus may be used with different processors. All word processors must be instructed on the address of the printer driver and in a Nascom system it is commonly OEOO hex. To yourself. # UPGRADING YOUR WP Richard Sargent Our text, my brethren, concerns an add-on utility for the Nascom NASPEN, with some "Print-Time" routines which are applicable to other word processors. run the utilities which operate at print-time, all that is necessary is to make sure that the character to be printed is sent to the routine NEWPRINT. From within NEWPRINT, the character (changed or unchanged) will eventually be sent to the real printer driver at 0E00 hex or wherever. #### THE NASPEN UPGRADE The Nascom memory map decrees that NASPEN be in a ROM at B800 hex. (An assembler is at C000 hex and a BASIC at E000hex). It has workspace at 1000-1010F and at ODOO-ODFF The text file begins at 1020 hex. The upgrade is placed in RAM at BOOO hex. Since NASPEN is in ROM it cannot be altered, but fortunately this doesn't matter. NASPEN can be safely left at any time by pressing the Nascom reset button. All the extra utility routines return control to the NASPEN warm start at The upgrade routines are: - A global replace facility with counter. - Creation of three instant letter-headings. - Automatic insertion of "difficult" code 1B hex. - A word counter. and the print-time routines which are: - Hexadecimal numbers converted to decimal. - Graphic symbols printed from simple on-screen code. #### REPLACE NASPEN's FIND command is used once, the string specified being the 'target' strong. Allow NASPEN to find this string, then press RESET, followed by the monitor command EB000. The FIND command is now used again, but this time the string specified is the substitute sting. Entering a question (control/shift/z) is taken to mean that the target string should be removed without replacement. this. latest string is actually found is irrelevant. The next step is to set the text cursor to the start of the file or the position where you wish the REPLACE to begin. RESET is pressed followed by EB003 and a global replace will occur automatically, starting at the cursor position and continuing until the end of the file is reached. The number of replacements (or removals) made will be recorded in HEX upon the screen and pressing any key will warm-start #### HEADER The monitor command EB006 will create a small NASPEN file, which, typically, could be a company logo or letter-head or any such heading that is used frequently. Such a heading might include complicated printer control commands which are difficult to remember and tedious to type in. As many as three such files may be created and this is how it is done. NASPEN is cold-started, and a small amount of text is typed in, complete with printer controls and with all the line width information, page size and so on which NASPEN allows you to set up. Next the Nascom monitor is entered and the test and file information that you typed in is blockmoved to one of three storage areas inside the utility program: C(opy) 1000 B21F 0100. The heading overwrites a NASPEN file, so the command EB006 is lethal! Instead of having three separate headings resting at B21F hex, B31F hex and B41F hex a. single large heading could be stored at B21F hex, since the Listing 1. (Left) Hex dump of the four NASPEN-specific utilities. Listing 2. (Above) Hex dump of the two "print-time" utilities. EB006 command is intelligent enough to move the complete NASPEN header into place, not merely the first 256 bytes of it. #### SYMBOL EXCHANGE The writing of this routine was prompted by the fact that you cannot easily type the code 1B hex into a NASPEN file. 1B is the escape code and is seen by NASPEN as a desire to break out of a NASPEN routine! Unfortunately it happens also to be a very important control code for Epson and other makes of printer, and it needs to be typed into the text quite frequently. So, whenever an escape-code is required a different code is typed
in, for example OC hex, and this is changed to 1B hex just prior to printing by RESET, EBOOF hex. The bytes B018 hex and B019 hex hold Listing 3. Here is a listing of the sections of this utility which you may wish to change. Note! This is not a complete source code listing — refer to the hex dumps for the entire code. | B666 | - NIACDENI D | CUICITED : | INCORPORATING PRINT-TIME | | |-------------|---------------|---------------|---|----------------| | | ; NASPEN K | EVISITED | INCURPORATING PRINT-TIME | B5 | | B666 | ; CONVERSI | ON ROUTINES : | R SARGENT 1983 | B. | | B666 | LISTING | DE SECTIONS L | WHICH THE USER MAY WISH TO | | | B666 | CHONCE | DEEED TO | EX DUMP FOR ENTIRE CODE | B | | | ; LHANGE - | - KEFER TU HE | EX DUMP FUR ENTIRE CODE | B | | B666 | | | | B5 | | B000 | | ORG OBOOOH | | B. | | | | | | | | B000 | | LOAD OBOOOH | | B5 | | B000 | | | | B5 | | 0D06 | FBUF | EQU ODOOH+6 | | | | | | | | B | | OCBO | NEBUE | EQU OCBOH | | B5 | | OCAO | RBUF | EQU OCAOH | | B5 | | | | | | | | OOFF | FSYM | EQU OFFH | | B5 | | 005F | ENDW | EQU 5FH | | B ^s | | 005F | | | | B | | | - | | | | | 005F | ; B ENTRY | PUINIS | | B5 | | 005F | | | | B5 | | B000 C3E8B0 | | JP GET_TARG | | B: | | | | | | | | B003 C307B1 | | JP INJ_SUB | | B: | | B006 C35BB0 | | JP \$HEAD1 | | B ^s | | B009 C361B0 | | JP \$HEAD2 | | D. | | | | | | B: | | BOOC C399BO | | JP \$HEAD3 | | B: | | BOOF C328BO | | JP \$FLIP | | B: | | B012 C32EB0 | | JP \$FLOP | | | | | | | | B | | B015 C395B0 | | JP \$COUNT | | B | | B015 | | | | B | | | CVM7 | DR OCH | ene's sheige | | | B018 OC | SYM7 | | ser's choice | B | | B019 1B | SYM8 | DB 1BH ;U | ser's choice normally 1BH | B: | | B01A 1A10 | \$EOF | DW 1010H - 5 | tandard end of file location | B | | | | DH TOTHE ;5 | candard end of fire location | | | B01C 1810 | \$CUR | DW 1018H ;5 | tandard cursor in text location | B: | | B01E 2010 | STFILE | DW 1020H :5 | tandard start of file-TEXT | B | | B020 0010 | PREFILE | | tandard start of file-RAM | B | | | | | | | | B022 06BB | \$WARM | DW OBBOAH; S | tandard warm start | B | | B022 | | | | B | | B022 | | | | B | | | | | | | | B022 | ; PART A | | | B: | | B022 | · NASPEN S | UPPORT ROUTI | NES | B | | | | | III. | | | B022 | ; NOT LIST | | | B | | B21F | | LIST 1 | | B: | | B21F | FIN3 | EQU \$ | | B | | | LINO | ERO > | | | | B21F | | | | B | | B21F | IMAG1 | DS 100H ; Sp | ace for | B | | B31F | IMAG2 | | | В | | | | DS 100H ;pr | e-Mi I C Cell | | | B41F | IMAG3 | DS 100H ;le | tter headings etc | В | | B41F | ;End of F | | | B | | | , Lind Of I | ai c n | | В | | B41F | | | | | | B41F | : ****** | ***** | ******** | В | | B41F | PART B | | | В | | | | | DOCUMENTAL PACE | | | B41F | ; GRAPHICS | PRINIER, IN | CORPORATING BASE | В | | B41F | : CONVERSI | ON HEX TO D | EC | В | | B41F | | EPSON RX80 | | В | | | , SEI FUR | | Time - / the soution process | | | B51F | | LIST 1 | ;The purpose of the routine PROCESS | В | | B51F 3E3D | PROCESS | LD A, "=" | is to print out the = sign | В | | B521 CDA3B5 | | CALL PRINT | ; and then take the 4 digit binary | В | | | | CHLL PRINT | , and then take the 4 digit officery | | | B524 3A9FB5 | | LD A, (RAM1) | ;number out of its 4 storage | В | | B527 CB27 | | SLA A | ;locations, convert it to a 16 bit | В | | B529 CB27 | | SLA A | ;binary number and then to a decimal | В | | | | | , Diriar y Humber and Chen to a decimal | | | B52B CB27 | | SLA A | ;number which gets printed out | В | | B52D CB27 | | SLA A | :The time taken to do the conversion | В | | B52F 67 | | LD H,A | ; is in direct proportion to the size | В | | | | | | | | B530 3AA0B5 | | LD A, (RAM2) | of the HEX number | В | | B530 | | ;etc etc | The rest of the routine is | В | | B599 | | LIST 1 | ;long and irrelevant | В | | | | | , rong and irrelevant | | | B599 00 | SW | DB O | ;Switch1 :if ON do number conversion | В | | B59A 00 | SW2 | DB O | ;Switch2 :if ON do graphic conversion | В | | B59B 00 | CC | DB O | :Counter checking for 4 hex digits | В | | | | | ; counter checking for 4 hex digits | | | B59C 00 | TYPE | DB O | | В | | B59D 9FB5 | STORE | DW RAM1 | :Pointer into RAM1-RAM4 area | В | | | | | | | | B59F 00 | RAM1 | DB O | ;Hex digits stored here | В | | B5A0 00 | RAM2 | DB O | | В | | B5A1 00 | RAM3 | DB O | | В | | | | | | | | B5A2 00 | RAM4 | DB O | | В | | 000B | SYM | EQU OBH | ; (downarrow) | В | | 005C | SYM2 | EQU 5CH | ; (backslash) | В | | | 31112 | 200 0011 | , | | | 005C | | | | В | | B5A3 F5 | PRINT | PUSH AF | ; PUT THE | В | | B5A4 CDOOOE | USER2 | CALL OFOOH | ; ADDRESS OF YOUR | В | | | Julia | | PRINTER DRIVER | В | | B5A7 F1 | | POP AF | | В | | B5A8 C9 | | RET | ; HERE AS CD 11 hh | | | | | | | | | | | | | | ``` CALL PRINT BIT O,(IX+O); Consider switch 1 and if ON JP NZ CONT2; jump to CONT2 LD HL,RAM1; else LD (STORE); HL;reset some XDR A; pointers LD (CC),A; and switches LD (CC),A; and switches LD (CC),A; and exit JP BYE; via BYE CP "H" JIf H for HEX detected in the JP Z PROCESS; text then we are ready CP "h"; to process the HEX number JP Z PROCESS; into DECIMAL, but if H/h not LD C,A; read, then routine is still reading LD A,(CC); the hex digits and unless 4 of CP 4; them are found an exit will be made JR Z EXITX; and the conversion will not occur LD AL, CTORE); Set up pointer into RAM area CP "O"; and begin to check hex digits for JR C NOTNUM; validity CP "9"+1; JR NC NOTNUM; validity CP "9"+1; JR NC NOTNUM; validity CP "A"; More checks JR C EXITX; More checks JR C EXITX; SUB 37H; A-F valid, so change ASCII to BINARY CP "A"; A-F valid, so change ASCII to BINARY INC HL, a and store pointer INC (IX+2); Therement hex-digit counter JR BYE; sand exit B5AB | B5AB | CONT3 | B5AB | CONT3 | B5AB | CONT3 | B5BB | CONT3 | B5BB | CONT3 | CONT3 | B5BB | CONT3 8856 229085 8599 AF 8589 AF 8580 329985 8500 (347985) 8500 (347985) 8500 (347985) 8500 (347985) 8500 (447985) 8500 A-F valid, so change ASCII to BINARY and store the binary Advance pointer and store pointer increment hex-digit counter and exit VALID SET O, (IX+O) POP IX POP AF POP BC POP HL POP DE RET Turn ON switch 1 to show that a number conversion will apply on the next few passes the the NEWPRINT routine BYE and EXIT4 are various exits from this and other routines through EXIT4 8002 D7 8003 D9 8004 D33401 INCBY 8007 18F4 8007 8007 8007 8007 8007 8007 8008 8009 D5 NEWPR 8008 E5 8008 D5 D6 8 INC (IX+1) ;Switch 2 is toggled to JR BYE ;indicate that following text should ;be treated either as text if BITO(IX+1)=0 ;or should be converted to graphics if ;BITO(IX+1)=1 INCBYE PUSH DE;<-- PUSH HL PUSH BC PUSH AF PUSH IX NEWPRINT PUSH AF PUSH IX LD IX,SW LD IX,SW LD IX,SW JR Z SIG_EX CP SYM2 JR Z INCBYE BIT 0,(IX+1) JR Z CONT3 ;considering CP "0" +1 JR RC OUTR ADD A,50H JR EXITG CP 20H JR C BYE SET 7,A CALL PRINT JR BYE LIST 1 EOU # ;Point IX to switch area ;Look for number-conversion code ;Jump if detected, if not ;look for graphics-conversion code ;Jump if detected, if not ;consider switch 2 and if it ;is OFF continue, else we are text which must be converted to ;graphics and if the text is in the ;range 3OH to 4FH then convert to ;RXBO graphic codes by adding 5OH ;For other printers a value other ;than 5OH might be appropriate, ;and get it printed via EXITG ;Wasn't 3OH-4FH so is it a control ;character 0-IFH ? If so don't print ;else convert to graphic by adding BOH ;and print it ;and exit via BYE CBFF 8633 CDA3B5 8636 18C5 8638 8638 EXITG ROUTEND ``` Fig. 2 Epson RX 80 conversion table for the graphics routine. the symbols involved, so any two may be used. EBOOF swaps them round throughout the whole file (FLIP), and EBO12 swops them back again (FLOP), should that be required. #### WORD COUNTER The word count starts at the current cursor position, and continues until either a marker is found or the end of file is reached. A suitable marker is code 05 hex (a cross in a square). The monitor command EB015 starts the count, and the result is displayed in HEX on the screen. Pressing any key then returns control to NASPEN. ####
GRAPHICS PRINTER This utility requires nothing as drastic as the pressing of the reset button, but it does require a suitable printer! The software that controls this routine is shown in the source listing and it may be modified to suit printers other than the Epson RX80, for which the routine has been written. The instruction to change would be the one at label USER1. address B629 hex, which converts a text code comir a from the word processor into a graphic code going to the printer. It works like this: when the printer software encounters a reversed slash symbol (\) it converts the characters following into graphic codes and prints them. When the next slash is encountered, everything reverts to normal. The slash thus has a toggle action. Figure 1 shows, first, what the screen displays, and second, what the printer prints out. Figure 2 shows the conversion table which applies to the Epson RX80. Remember. though, to put your printer into graphics mode otherwise you will get some very peculiar results. #### NUMBER BASE CONVERSION This is another automatic routine, and it prints the decimal equivalent of any hexadecimal number. If a conversion is required, the hex number is preceded by a down arrow (\downarrow), code 0B hex. So \downarrow B012 hex prints AS B012 hex = 45074. Any number of conversions can be made, but unless the numbers are in a list, one beneath the other, the format of the lines will be spoilt, as extra characters are put into the line. #### OTHER SYSTEMS - 1) Put the address of your printer-driving software in at label USER2, location B5A5/B5A6 hex, and put the address of NEWPRINT into your word processor's printer vector. - 2) If you are running a nonstandard NASPEN change the addresses in locations BO1A-BO23 hex. - 3) The code dealing with graphics-conversion has been deliberately placed at the end of the system, so that it may be extended. Try not to alter the addresses of BYE or EXIT4 since those exits are used by other routines! - 4) The entire system is given as two hex dumps. NASPEN users must use both, and save the code to tape as one entire block, while other word processor users should use the second hex dump only. If any reader wants a complete source listing badly, send us a stamped addressed A4 envelope. In days gone by, falconry was the sport of gentlemen and kings — this noble and time-honoured tradition is not so prevalent in these technological times, and it is quite a pity, too. Just imagine the pride you'd feel standing in your own back yard while your very own hunting falcon swooped down upon unsuspecting dogs, cats and Ford Sierras. For a limited time only, Computing Today is offering you the chance to experience the thrill of commanding your own bird of prey, with the new CT Hunting Falcon/ Magazine Binder. Swift of wing, sure of eye and made of genuine vinyl and cardboard, the Computing Today Hunting Falcon/Magazine Binder is the spitting image of the hunting birds of old to anybody suffering from cataracts. Release it from your arm, and it dives just like a traditional hawk. If it lands on a small animal, it will probably stun it. Also, when you tire of the sport, and would rather hunt hedgehogs with your Ford Sierra, your CT Hunting Falcon converts into a useful magazine binder that holds a full year's supply of Computing Today. The new CT Hunting Falcon/Magazine Binder will cost you not a farthing more than the old binder alone used to: just £5.00. This includes postage and packing, so your falcon won't have to tire itself out flying to your abode. Cut out and send to: #### COMPUTING TODAY HUNTING FALCON/MAGAZINE BINDER, INFONET LTD, TIMES HOUSE, 179 THE MARLOWES, HEMEL HEMPSTEAD, HERTS HP1 1BB, ENGLAND I am enclosing my (delete as necessary) Cheque/Postal Order/International Money Order for £..... (made payable to ASP Ltd) OR Debit my Access/Barclaycard* | Deb | it my Acces
(*delete as | s/Barcla
necessa | ycard*
ry) | | | | |-----------------|----------------------------|---------------------|---------------|--------------|-------------|------| | Insert card no. | | | | | | | | | Please use | BLOCK CA | PITALS a | nd include p | post codes. | | | Name (Mr. | /Mrs/Miss | | | | |
 | | | | | | | |
 | | | | | | | |
 | | Signature | | | | | |
 | | Data | | | | | | | Event Counter Timer Project for BBC Model B, Commodore 64 and VIC20 Oric Interfacing Techniques The ZX Microdrive: Will it last? Commodore 64 Universal Cassette Interface Amplifier and Programmable Noise Source for the Spectrum ## YOUR QUESTIONS ANSWERED I am interested in putting electronic mail on my micro — what sort of modem do I need to buy? The short answer is that you need to ask the supplier of the electronic mail system you wish to subscribe to. Telecom Gold, for example, will advise you on 01-403 6777. However, here is some general advice. The operation of a modem (or acoustic coupler — which doesn't have to be permanently installed next to one phone) is specified by four parameters: - Baud Rate. A 300 baud modem transmits data at a rate of 300 bits per second, which translates to just over 30 characters of information or about five words. The faster the baud rate, the lower your telephone charges will be - although faster modems cost more money and may be more susceptible to occasional transmission errors. However, the determining factor is that computers at both ends of the telephone line must communicate at the same speed: it's no use transmitting at 1200 baud if the receiving machine is expecting 300. Some modems feature a switch to select different speeds, which is very useful for communicating with a variety of systems. - Duplex. For electronic mail applications, where you will be both sending and receiving data, you need a full-duplex modem. - Originate/answer. This is a confusing term, since it has nothing whatsoever to do with the ability of the modem either to send and receive data. An originate only modem is suitable for communicating with a large central mainframe computer such as Telecom Gold. If you wish to send documents direct from a microcomputer in your office to another microcomputer without going through a central machine (of course you'll need special software), then both microcomputers require an **originate** and answer modem. The latter features a twoposition switch on the front of the device, and one office must have it switched to 'originate' and the other to 'answer'. By convention, the person who makes the call (ie dials the number) uses 'originate'. This, however, is pure convention - it would work perfectly well the other way round. The originate/ answer label merely has to do with the means by which the connection is established the originate device sends out a tone which the other acknowledges, and then data can be sent in either direction. #### Autodial/auto-answer. An **auto-dial** modem cuts out the need to physically dial the number of your other office or the central computer. It permits the computer to store all commonly used numbers, which can then be dialled up by the applications program. Having an auto-answer modem means that, providing the computer is switched on, an operator doesn't need to be present to receive the transmissions. You say that an operating system is invisible to the end user. Does this mean it doesn't matter what operating system comes with my micro? The operating system is a piece of software, a collection of routines, which looks after the internal operation of the computer, and which provides all the simple functions (such as getting a character from the keyboard) which will be needed by an applications package. So when your applications program is running (be it a word processor, database or whatever), the operating is 'invisible' (transparent is the conventional phrase) - even though the application depends heavily on it. Some microcomputers, for example the Commodore range, use their own unique operating system, while other machines go for proprietry operating systems available on several computers, and usually written by an independent software house. The advantage of the latter approach is that the hardware manufacturer ensures that more software packages will run on his machine (applications software either has to be written to run on one or more specific computers, or one or more specific operating systems). If you're buying your first computer or application, then as you know, we recommend choosing the software first which may then dictate your choice of hardware. What, however, if you are still left with a choice: a common example would be between CP/M-36 and MS-DOS running on the Sirius? Well, to be honest, providing you stick to the common operating systems it doesn't make a great deal of difference! The software authors may advise you that the package runs faster on one system than on another. There are differences, of course, and these are most noticeable on the occasions when the user does deal directly with the operating system ie when he isn't running an applications program. This is usually for housekeeping tasks such as preparing a new floppy disc (formatting), calling up the directory to see what files you have on a disc, erasing old or unwanted files, and making backup copies of files or whole discs. All operating systems feature these commands, though some are a good deal more logical and user-friendly in operation than To repeat our advice: not a subject to lose sleep over, but if you get the chance to view more than one system, or talk to someone who knows them all intimately, so much the better. YOUR OUESTIONS ANSWERED is our practical help page — in which we try to deal with the most common misunderstandings that arise when buying or using a business micro. If you have any queries either as a complete beginner or as an experienced user, please feel free to throw them at our panel of experts. We'll answer as many as we can each month. (We regret, however, that we can't guarantee
to send personal answers). Please write to: Your Questions Answered, Computing Today, No. 1 Golden Square, London WIR 3AB. #### ADVENTURE COMPETITION NO. 1 To be honest, we were a little disappointed by the response to this competition. We only received 20 entries: of those, two produced syntax errors when RUN, one wouldn't let us pick anything up (bit difficult to play, that one!), and most of the others used fairly standard plots, or else plots that were not consistent or not challenging enough. Time being the scarce commodity it is, and not wishing to keep the entrants waiting weeks and weeks for a verdict, the following judging procedure was adopted. The game was loaded and played blind for about an hour to get the feel of it. Then we opened the solutions to see how the plot was resolved and whether the whole game had a satisfactory structure, was fair, and dealt with its scenario consistently. Some people hadn't read our features on writing Adventures! Eventually the choice came down to two games, both of which were practically in a publishable form, requiring only minor tidying up of screen formatting, spelling, and so on. We eventually decided on Stagefright because of the originality of the plot and the presentation. Since half-a-dozen of the entries were deemed publishable if sufficent re-writing were done by the authors, following guidelines that we are sending them, we though the joint authors of the winning entry should receive something extra, on top of the royalties from their game when published. So we are giving each of them a cash prize of £25. Since the number of entries was so small, we feel that an honorary mention is due to # ADVENTURE WINNERS everyone who bothered to take part. Our two first prize winners are Andrew Pargeter and Stan Willey of Birmingham, who wrote Stagefright on the Spectrum. Dave Cockram of Merseyside came second with Ouest for Eternity. The other entrants were Paul Bunyee of Leicester; R. Patterson of Leicester; Bruce Goldie of Aberdeen; Aurthur Woodworth and David Haslam of Stockport; P. Knibbs of Wakefield; S.A. Leek of Birmingham; C.B. Dunne of Harlow; S. Foster and I.D. Drennam of Edinburgh; Nick Tuckett of Wick, near Bristol; J.R. Bennet of Rotherham; R.G.A. Rigg of Daventry; Nick Bottomley, Neil Coldrick and Digby Gould of Derby; S. Gerrard of Elstree; I.R. Sturgess of Portsmouth; John R.R. Clarke of Belfast; James Derbyshire of Billericay; D.C. Jordan and N.M. White of Orpington, and K.J. Delahoy of Edgware. Thank you all for taking part. #### ADVENTURE COMPETITION NO. 2 The format of the second competition we ran last year was that of a multiple choice question paper. The catch was that picking an answer to a question also picked which question you should answer next. One wrong answer and off you went on a totally incorrect route through the questions, maybe even answering some that you didn't have to. The number of replies for this competition was a bit healthier, but out of the 454 entries we received, only 20 had the correct number written on the back of the envelope and of those, only 10 had obtained that number by traversing the correct route through the Adventure. Obviously our readership's deviousness quotient is low on the scale. There were no trick questions, but we did plan a rather nasty twist at the end for the unwary, which means 434 of vou! The correct answers were as follows: Question 1. (B) Yes, most people thought that the phoenix lived in fire, but it is actually only born in flames. A trip to the nearest dictionary would have shown that the salamander is "a lizard-like animal supposed to live in fire". **Question 2.** (E) The Z80 is the only microprocessor in the list that meets the requirements. Not a very taxing question, but then it wasn't on the sequence anyway. Question 4. (B) The answer is 11, and shouldn't have caused any difficulty to readers since all the FORTH commands used in the question had been explained in the series Learning Forth **Question 5.** (A) Not a particuarly taxing problem, either. It's a simple number base conversion, with 7248551 base 9 (geddit?) being equal to 3870712 base 10. Question 6. (C) Another fairly easy one for mythology buffs. The modern version of the Greek information service is, of course, Oracle. Question 7. (3) Another question not on the correct route, so its simplicity wasn't really us being kind to you. The only 16-bit machine in the list is the Apricot. Question 9. (G) A bit of Boolean logic here. Working through the expression, 3 AND 5 is 011 AND 101 which is 001. Then 001 OR 110 (6) is 111, which is 7. Question 11. (B) Yes, backing up a disc is an awful pun, but if you'd answered all the other questions correctly you wouldn't have got here anyway! Question 12. (C) Well, the symbols on the wall are obviously examples of binary addition, so the correct reptile is the adder. Groan. **Question 14.** (A) The language developed for programming by the US Department of Defence is Ada, named after Charles Babbage's assistant. So if you managed to answer all the questions the route would have been through questions 1, 12, 4, 6, 14, 9, 5, 3 making the correct answer BCBCAGA. Room 3 contained the golden pentangle, and therein lay the Big Twist. With the artifacts being a triangle, square, pentangle and hexagon, most people thought "Ahh, 3,4,5,6" and put five sides on the back of the envelope. Wrong! Only 20 people took to heart the Adventure-writing articles published in the two previous issues, specifically the part about misdirecting the player. Go back to the trusty dictionary and look up pentangle. It's a five-pointed star. A five-pointed star has 10 sides. Before you start screaming 'Unfair!', remember there was a big prize at stake and some people worked it out (I feel particularly sorry for the person who actually drew a pentangle on the envelope - and then wrote five next to it! Disqualified, I'm afraid). So of the 10 people eligible to win, the lucky one drawn out of the sophisticated CT randomizing device (a cardboard box) was Nathan Sidwell of Bristol. Congratulations to him on winning hardware to the value of £1000. # "Leaves the Atari, Dra and Lynx Choosing a home computer is a bit like playing a video game. The more you play, the better you get. So you'd expect people who spend their working life choosing computers to be pretty good at the game. Quick to shoot down a fault. Pleased when they find an improvement. Recently Which Micro? and What Micro? tested the Spectravideo SV 318. Here's what they had to say: "Every home computer coming on the market tends to be hailed as revolutionary. For once this really has to be true with the Spectravideo SV 318." "The first cheap, high performance computer..." "Double precision numbers . . . are ideal for companies with turnovers under £999,999,999,999.99." **Spectravideo SV 318:** Memory - 32K ROM expandable to 96K, 32K RAM expandable to 144K: **Keyboard** - calculator type, 71 keys, 10 function keys, built in joy stick/cursor control: **Graphics** - 16 colours, 256 x 192 high resolution graphics, 32 sprites: **Sound** - 3 channels, 8 octaves per channel: **CP/M* compatibility** - over 3000 existing software packages: **Storage** - cassette drive, 256K disc drive capacity: **Suggested retail price** - £186. **Spectravideo SV 328:** Memory - 32K ROM expandable to 96K, 80K RAM expandable to 144K: **Keyboard** - full word processor type, 87 keys, 10 function keys, built in cursor control: **Graphics** - 16 colours, 256 x 192 high resolution graphics, 32 sprites: **Sound** - 3 channels, 8 octaves per channel: **CP/M* compatibility** - over 3000 existing software packages: **Storage** - cassette drive, 256K disc drive capacity: **Suggested retail price** - £262. # gon, Commodore 64 for dead." Which Micro? Dec 83.** "... a far better job with its keyboard than anybody else using soft keys." "... most people will notice how easy it is to produce graphics with the Basic." "This is a BBC class machine." "As a computer for the enthusiast it is well nigh perfect." "A good micro for tomorrow." Obviously, they had more to say. And we think you should have a look at the reports for yourself to prove that we haven't exaggerated their independent opinions. Fill in the coupon today and we'll mail you the reports as well as a full technical specification brochure in colour of this amazing new personal computer or see the Spectravideo for yourself at most leading computer stockists. ## SPECTRAVIDEO SV-318 SV-328 PERSONAL COMPUTERS Spectravideo Ltd, 165 Garth Road, Morden, Surrey SM4 4LM Telephone: O1-330 O101. Telex: 28704 MMH VANG | o: Spectravideo Ltd. 165 Garth Road, Morden, Surrey SM4 | 141 | 1 | | | d | á | d | á | ł | d | | | | ı | | | ı | ı | ĺ | ı | ı | ı | ı | ı | d | ı | L | l | l | 1 | 1 | 1 | 1 | l | l | l | l | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | |---|-----|---|--|--|---|---|---|---|---|---|--|--|--|---|--|--|---| |---|-----|---|--|--|---|---|---|---|---|---|--|--|--|---|--|--|---| I am interested in Spectravideo computers and peripherals. Please send me the latest reports together with a full technical specification brochure. Name: _____ Address:____ Tel. No.: _____STD Code: ____ CT/5/84 # COMPUTERS AND THE COMMONS Rex Malik Big Brother would be watching you — if only he could find his glasses. We look at the technology-poor mess that constitutes the Mother of Parliaments. e were this month going to be discussing politicians, the practice of politics, and all with particular reference to the use they make of microcomputers. Not whether
they approve of them or not, or what they are doing to support either the industry or usage, but what use they make of them in running their own affairs. Instead, we are going to be discussing computing and the practice of politics, a broader subject: what politicians could do with computers which could be in their and hopefully our interest if they had access to them in any realistic fashion. MPs using micros will, the editor willing, be discussed later in the year. The reason for the delay is called Christmas, 1983 Christmas, which for politicians this last time around had both a real and a symbolic appeal. #### STOCKING THE STOCKINGS It is the latter which is of interest. I could give you the story in full boring detail, but let us instead settle for the short version which is just as useful. MPs get a £13,000 or so secretarial allowance, which they were till recently allowed to spend on running expenses, and the wages of secretaries and research assistants. This meant that if they bought any capital equipment, they had to pay for it themselves out of income and go through the same process as other people in business, claiming a capital allowance against tax and so Last summer, it was decided as a result of complaints by MPs stretching back over a long period that they could make use of some or indeed all of that annual sum to buy office equipment, including computers. So when Christmas came around, a substantial number of them were behaving like many of the rest of us. One informed source in Westminster did a quick calculation for me and then said that he thought adding MPs who already had equipment of some kind and those intending to buy something, about 10% of them would have computer power within a reasonable time. Behaving like a lot of kids because it is Christmas? Even I have been buttonholed by one to discuss the merits of the PC over the Rainbow, or vice versa. Or should I be doing something else entirely? There are, of course, a small group of MPs who already have systems, everything from Wang to a BBC B machine. But they are in a minority. What is more, apeculiar situation exists: those used to computing in their pre-MP life, mostly the '79 intake and onwards, are the most junior MPS. And life in the Commons is so organised that they will be the ones in the main with the most difficulty in making use of computer power. We shall come to the reason for that in a minute. The reason then why I have chosen not to write about the handful of MPs who have computer power available is that they are as yet unrepresentative. However, possibly by the late summer enough should have experience for some operational conclusions to be #### IN-CONCLUSION I had better state straight away that I already doubt that the conclusions will tell us much about anything except the practice of politics: MPs believe that they are in a unique business, and everything one sees indicates that they are right. For it is not a question of how you run a small organisation for the Commons including all its staff is less than 2000 people, even if you think that 650 of them skew the normal organisational distribution by having massive egos — it is rather that the Common contains around 700 organisations, each fighting the others at least some of #### **PROBLEMS** There is first that organisation we call Parliament, the system commanded by the Speaker through the Sergeant at Arms. There are next the various ministries which, though supposedly elsewhere, are represented by MPs who are Ministers; departments/ministries which have their own interests to put forward or defend and for whom part of the time some MPs have to do so. And there are the 650 MPs acting as representatives of their constituents, each running their own business much of the time against the desires and wishes of the ministries. You will note that I have not written anything about that other house, a few yards away across the central lobby, the House of Lords. They behave similarly to MPs in many respects, though there is the critical difference that they do not have constituents to whom they are theoretically responsible. So when one writes about politicians using computers and associated information technology, we are really facing two separate problems. There is the problem which those 10% of MPs who are obtaining systems are concerned with, the representation of their constituents, usually against the executive, and there is the collective problem. As the second is by far the most interesting, let us get the other out of the way first. As an individual, an MP is really a 'small business'. Most will have support in the form of a secretary (did you know that a recent study showed that there is at least one MP who still writes most of his mail by hand?). Occasionally an MP will have a research assistant, sometimes the secretary will fill both roles. There are said to be MPs who have two secretaries plus a research assistant, one of those secretaries being in their constituency, but I have not met this mythological beast. However, the two-secretaries politician is not unusual, particularly when the constituency is, say, in the north, in Scotland, or in Wales. #### WORKING HABITS So what do they actually do, with or without secretarial assistance? We know much of that from studies mounted to try to work out what they are equivalent to, so that it could then be established what the going rate for the job was, and from a survey mounted by the Computer sub-committee of the Select Committee on House of Commons (Services). Summaries of material from a survey they had carried out of MPs and their work, habits, and thoughts were published just before Christ- "Each member adopts a different and individualistic approach to his work," stated the report. To which one can only say "You can say that again." The work they do is covered by the following broad categories. Constituencyrelated, much of which is fight- ing ministries on behalf of their constituents, Chamber-related such as the raising of Parliamentary questions or PQs as they are known in the trade, government work when a member of a government, work connected with the select and standing committees they are members of, party political work, parliamentary party work, work concerned with their own special interests which means anything from putting forward the views of a body such as a trade union or an association (that an MP is sponsored by a trade union or, say, is the Parliamentary consultant to a body like the Police Federation. or is the master of the local fox hounds, is all usually well known) and international work such as representing the Friends of Abu Dhabi, delving into the EEC and such like. An MP, states the study, receives on average 32 pieces of mail a day and sends out around 30: most of this is to or from constituents. You will also be pleased to hear that most MPs are not backward at being forward: nearly 60% of them send items to the press. They average about two hours a day on correspondence, and they generate speeches, articles and the like (though the survey points out that only 6% of members produce items of more than 50 sides of A4 a month, for which I suppose we all ought to be grateful). What we have here, then, seems to be a perfect case for some sort of word processing system. ### DISORGANISED ... However, now it gets complicated. Remember that I wrote a few paragraphs back that one should think of them as small businesses? Well, they are all as independent, as stroppy with each other, as a collection of small businesses are expected to be. So how are you to create systems to accommodate all that lot without complaint: how is it to be organ- ised? The answer to that is slowly and carefully. Which is precisely what is happening. Small scale experiments are being mounted, and the equivalent of multinational treaties are constantly being negotiated: for MPs can be a touchy lot. And this, of course, is one of the reasons why MPs are buying their own systems: most will have to if they are to get them before they retire or are evicted by the voters. That is problem one. Problem two, however, is more severe. I also wrote that the '79 onwards intake, those with expertise, have the most difficult time applying what they may know to their life as an MP. The reason is this: the average dog is probably better officially housed than the average MP, at least in working hours. True, there is some quite good office accommodation in the Commons, but there is not much of it. And what there is comes through seniority (one cynical MP friend maintains that the reason he wanted to become a Minister was that he would have somewhere private to put his feet up and have a cup of coffee). So the MPs most attuned to the 20th century are low men on the totem pole, as the phrase has it. Many MPs share offices with other MPs. Most, however, do not share them even with their secretaries: indeed many find that their secretaries are not even in the same building. And some, it seems, have given up altogether: their secretaries are in their constituencies. ### ... ORGANISATION You might well say that what MPs need is to get collectively organised. You would be right. Unfortunately the present government, in the shape of the Prime Minister amongst others, sat on that. There were moves to give MPs proper offices in the late seventies, but Mrs Thatcher put a stop to them in the name of saving public expenditure. We shall get to this area in a minute. We must for a paragraph or two more consider MPs as individual representatives. As organised, computing even in terms of word processing and nothing else is not high on their list of priorities. The study done for the committee showed that the office question loomed largest; solve that and then you would get MPs worrying about what to do next. And what to do next woold probably involve an improvement in the internal communications within Parliament. They are to have a new telephone
exchange which should help, but that is only a part of the problem. What sort of business is it that . . . Well, let the report (5.18) tell "In terms of face-to-face contact about 70% of those members whose secretaries are based in Westminster, see them at least once a day." Any comment from me would be superfluous. And just in case you should think that what we are faced with here is solely the result of the intransiaence of Ministers and Governments, it needs to be pointed out that much of the Palace of Westminster is old, and that supposing it were to be organised, that MPs all had offices, and that rationality prevailed (which I know is a large hope) there are also some other problems to be faced. You want to build a local area network? Then the dignity of the house will probably insist that the wiring be hidden. But what happens when you cannot lift up the flaastones? I did not make this up: the problem exists and has been cited as one of the difficulties faced. ### NO PROGRESS All this conspires to ensure that progress, whatever and whenever it occurs, will be slow. Meanwhile the report also notes a new problem arising. The Computer sub-committee recommend the field trial of a systembased on distributed microcomputers (and promptly got themselves into trouble by short-listing only DEC, IBM, and Wang, all American-owned companies) which at the end of the third year - so we are probably talking about 1987/88 should support between 15 and 25 members and their staff. It is doubtful, however, if MPs will all be prepared to wait for the results of that. That 10% of MPs who have or are about to take the plunge will do so probably independently. Which means that there is going to be a lack of compatibility. Indeed, that exists already. Some MPs told the sub-committee that whatever systems are implemented in the House, they should be compatible with the files that they have already built in their constituency offices. What the sub-committee were too tactful to write is that most of those few systems are incompatible with each other already. ### COLLECTIVE RESPONSIBILITY It is with relief that we must now consider MPs collectively. And that is a question of considerable public importance. It has been well noted that all MPs are in favour of a powerful Commons until they themselves become Ministers, when their enthusiasm becomes much muted. It would not be fair to castigate solely politicians in this country — this is a wellobserved phenomenon in democratic countries in which the executive are selected from members of parliament. Where they are not, as in the United States, they are prepared to do something about it. Thus the US Congress has long taken the view that members should be well served by whatever aids they require to enable them to tackle the executive. Literally hundreds of speeches have been made on this in Congress over the last 20 years, and then they have gone on to vote themselves the funds to enable something to be done (by contrast the vote for computing, both capital and running expenditure for both UK Houses of Parliament for the year 1983/84 is not much more than £1 million). Something has been done, and it is not simply to give members proper offices and staff allowances with support from the best that technology can offer, but also to give members superb research facilities based on the Library of Con-(And interestingly gress. enough, it was a senior figure in that library, Robert Chartrand, who did more to educate members of Congress about what the computer makes possible than probably anyone else anywhere.) The line taken by Congressmen is a simple one: they ### TABLE 1: COMNET SERVICES Committee coverage (closed-circuit feeds for recording of Proceedings — 100 discrete channels). Off-air/cable FM distribution. Intercom (point-to-point). ### Video House of Commons (HOC) Television (with Floor, English HOC internal TV services: - news, information, familiarization, training. Demand video/archive retrieval. Full cable TV 'menu'. ### Data HOC Electronic Mail. Internal information: - daily events schedule, bulletin board. Information retrieval: - from Library, HOC services via gateways, from external data bases - Telidon Connection to/from common carrier networks, constituency ### Other Provision for: - security/alarms - energy management face an executive which can call on a massive bureaucracy and literally tens of thousands of computer systems. They obviously cannot face like with like in volume, but they can in skills. Hence Congress has access to hosts of computer models. So people might retort to our MPs: they have access to the Treasury model. Unfortunately, our MPs do not have the large administrative and research staffs which are the norm in Congress, staff who can devote days if not weeks to operate the systems in depth. Our MPs have in the main to rely on the staff of the Commons Library, around 100 people in all, to handle both conventional library enquiries and to access whatever computerised services are available. ### OF SHARES AND SHEEP The problem they face is one common to politics, but uncommon elsewhere. Politics is a profession full of figurative language and so are its records. What the policy is as discussed by Parliament – well, consider the following. It was a question asked by Mr Alfred Morris MP of the Attorney General about the Lord Chief Justice.if he will introduce legislation to divest the Lord Chief Justice of his responsibilities under specific deeds of trust: and if he will make a statement. The Solicitor General: "No" What, you may well ask, was that all about: what does it contribute to anything? And where are you going to file it? How about under Lord Chief Justice with a cross reference to duties, powers, responsibilities. If you did that, you would be wrong. What was at issue was for some weeks a cause celebre, whether or not the Trustees of a particular organisation had to be consulted before its residual owners could get their hands on the best part of a billion pounds or more. In other words this has to do with the possible flotation on the stock market of Reuters. The problem with Parliament, and it is the same the world over, is that there is no vocabulary control. How can there be when the nature of the game is to make the point in the most telling way so that it will get as wide a coverage as possible and force the other side to do something even if only to respond in kind. How about this: you are interested in sheep? Then what will you make of an entry which under that heading would include the name "Sir Geoffrey Howe"? Is Sir Geoffrey a sheep? I could go on in this vein and probably get myself locked up. In fact the reference is to an intervention by Dennis Healey when he referred to Sir Geoffrey Howe as looking as if he had been savaged by a dead sheep. ### INDICES As you can see there are problems with the recording of the proceedings of Parliament: MPs can talk in a kind of shorthand without vocal reference to the real events that are bothering them, but simply implicit reference. Everybody knows what they are talking about, and the indexer had better know too. Nevertheless, almost everywhere people are putting up, or trying to put up, their version of Hansard. We do it here. It is called POLIS which stands for Parliamentary On Line Information System, and has been operational for just over three years. It is run by SCICON out of Milton Keynes where they have a computer centre with a large Univac system. It was originally an index service only, a somewhat complex one which the staff of the Library of the House of Commons are said to swear by: the tools are said to be so powerful that it does not matter what the reference is, they can find the subject matter, and that cover not just the proceed- ings in the Chamber, but also Acts of Parliament, EEC Legislation where it applies to this country, and most of the material as the result of the proceedings in the chamber. For most of this stuff it is still an index service only: once you have found the reference you have to find the text and read the paper copy. However, since early December what happens in the main chamber has been available as a full text-on-screen service. You approach the material via your key words, those key words generate an index, and then you select the text you want to see from that index ### THE WHOLE TRUTH What diligent seekers after truth really want, however, is coverage of those proceedings which usually take place upstairs - the reporting of committees - for that is where detailed cross examination takes place, where the executive comes into contact with the political skills of MPs. But everybody thinks that is a long way off. Yet it is the sort of material which might well show MPs at their best, trying to extract straight answers from the Civil Service, answers which will tell people something they might not otherwise be able to find out. And the other restriction is that, as matters stand, most of the computerised search facilities are in the hands of library staff. MPs by past habit have long relied on that staff to do their digging and devilling for them, and this has carried over into their use of computer systems. The notion that they might want to browse themselves has not yet occurred to more than a handful, and there is no pressure for it. The nature of the material too and the search methods, which are comprehensive, means that the skills could take some time to learn. What I have described might lead you to suppose that British politicians have not, as yet, grasped the nature of information technology, and you would be right. That it could be of considerable help in their fight against the executive if properly organised is understood by few. Put against members of Congress in the USA, it would not be unfair to write that most of them do not, in this sense, inhabit even the same century. ### COMNET However, it is not the same throughout the rest of
the world, particularly the English-speaking world. In Canada, which is a somewhat similar institution in terms of buildings, they may not be that old, but old they are. They are nevertheless setting out to create Comnet: but then their legislators have proper offices to enable them to access services. And what a range of services they are to be offered, as Table 1 opposite shows. There is almost a club of Parliamentary computerising officers, who meet at least annually and compare notes on how they are progressing or not as the case may be. What they are all said to be watching, I am told, is the case of Australia. They are building a new Parliament building in Canberra, a building scheduled to be open in 1988, the bicentennial of the founding of Australia. The last Speaker of the Australian Parliament, Billy Snedon, was determined that it should be as twentieth-century as could be possible. British consultants Logica were called in and reported, and the system started to grind on its way. A lot of work still has to be done on the design of the facilities, but it has already been agreed that the Parliament will have communications facilities on the Canadian model common to each department. As Australians are generally stroppy — it is part of the national character it seems — they will then be allowed to follow their own computing strategy. Not, however, all: they have already issued contracts to Honeywell to provide a pilot word processing system, which will in the end probably mean that there will not be a compatibility problem among MPs when it comes to intercommunication by the electronic word. Honeywell, too, will also print Hansard during the pilot phase. ICL is creating a pilot database on POLIS lines which will cover both the Houses: Representatives and the Senate. ### THE SHAME OF IT It is going to be some time in either case before one can tell whether or not these systems help MPs to question the executive more closely. However there are MPs, who prefer to be nameless, who believe that the developments in both countries whose Parliaments, after all, sprang from and are in large part modelled on our own, might shame the powers in our Parliament into moving more rapidly. Personally I have hopes of Australia, and not because of MPs fighting the executive, but because of an unexpected member of it. His name is Barry Jones, and the last expectation he had was to become a Minister. But he is, and what is more he is Minister of Science and Technology. But in his previous life, he is best known as the Alvin Toffler of Australia. He wrote that country's equivalent of **Future Shock**, and argues strongly in favour of the wide use of computing equipment and skills. You have then the unusual alliance of powerful people on both sides determined to do something. If, of course, they can extract the funds to do so: the Australian Treasury is as mean as our own, or at least that is what my Australian friends tell me. Meanwhile I am afraid that the executive is likely to continue to get away with it. The attitude of Parliamentarians generally seems to be similar to that of.... Well, to paraphrase St Augustine, "Oh Lord, please provide me with the help of computing, but not yet." ### BACKNUMBERS MARCH 1983 Colour Genie reviewed, Epson HX-20 review, PEEKing the Spectrum, Into Atari's BASIC, Terminology translated. Froglet on the BBC Micro, PC-1251 hand-held review, Valley Variations, Galaxy reviewed, Micro Database, Lower case UK101. MAY 1983 Spectrum Book Survey, Oric-1 Review, Going FORTH Again, Jupiter Ace review. Interrupt handling, Rubic simulation on the Spectrum, Beating the RS232 Blues, Lynx AUGUST 1983 Speeding up the Sharp, Premier Dragon disc drive, Sord M5 review, BBC String Store, SEPTEMBER 1983 FELIX knowledge shops, Software protection, Torch disc pack, ZX81 Backgammon, Dragon character generator, Three Tandy computers. OCTOBER 1983 Slingshot game, Sharp MZ-700 review, Sharp MZ-3541 review, Z80 Disassembler, A better TRSDOS, Improved VIC-20 editor. NOVEMBER 1983 BBC Word Processor, ZX LPRINT review, Laser 200 review, Writing Adventures, Learning DECEMBER 1983 MIKRO assembler review, Getting More from the 64 Part 1, Adventures part 2, Curve-fitting, BBC Touch Typing Tutor. JANUARY 1984 TRS-80 programmer's aid, Apple music, Electron review, TRS-80 screen editor, FEBRUARY 1984 Using MX-80 graphics, Colour Genie monitor, non-random random numbers, ZX81-FORTH, Program recovery on the Commodore 64. MARCH 1984 Easycode part 1, BBC poker, Spectrum SCOPE review, Genie utilities, Spectrum APRIL 1984 Memotech MTX500 review, Genie BASIC techniques, Recursion. If you've lost, lent or had stolen one of those precious back copies of Computing Today then now is your chance to fill the gap in your collection. The list of issues given here represents the few remaining copies that we have available to help complete your library of all that's good in features, programs and reviews. If you want one of these issues, it's going to cost you £1.40 (including postage and packing) but we think that's a small price to pay for the satisfaction you'll get. Ordering could hardly be made simpler — just fill in the form, cut it out (or send a photocopy) together with your money to: Backnumbers, Infonet Ltd, Times House, 179 The Marlowes, Hemel Hempstead, Herts HPl 1BB. If you wait until next month to do it, the chances are that we'll have run out of the very issue you wanted! | BACKNUM | IBERS | |---|--| | Please send me the following Backnumbers ISSUE | I enclose a cheque/PO for \pounds (Payable to ASP Ltd) I wish to pay by credit card | | | Access □ Barclaycard □ | | At£1.40 each. I enclose £ | PAIN II WITH Access | | NAME | Insert Card No. | | POSTCODE | If you wish to pay by Access or Barclaycard, just fill in your card number and sign the form, do not send your card. | | Signature | Please allow 21 days for delivery. CT May '84 | ### Outperforms any Spectrum interface The unique Turbo interface from Ram gives you all these features – and more – in one unit: - * A variety of interfaces including: Rom cartridges, two 9-way D plugs for standard joysticks, PLUS full expansion bus at rear. - Compatible with Kempston and Protek protocols. - Works with latest Quickshot Mk II auto rapid-fire joysticks! - Choice of Rom cartridge or tape cassette software. - Instant program loading with cartridge software. - Built-in power safety device unique to Ram Turbo. - * Full one year guarantee. - * Immediate availability orders will be despatched within 28 days of receipt of order. - * Incredible value only £22.95. So don't wait around – simply complete the coupon and send it to us today. Or call our credit card hot line on 02514 25252. (Access and Visa welcome). Ram Electronics (Fleet) Ltd, 106 Fleet Road, Fleet, Hampshire GU13 8PA. | Please send me: | CT/5 | the PCG Shov | |--|-----------------------|------------------------------| | Spectrum Turbo Interface(s
+ £1 p+p (overseas orders £3 p | s) at £22.95
(0+p) | Solihull from
April 20-22 | | Quickshot II Joystick(s) at £9 (Only when purchased with Turbo | | | | l enclose cheque/postal order or charge my | y Access/Visa f | or:£ | | NEXT. | | | | Name | | P1 1 | | Address | | | | | | 7 1 1 | | \\\\\\Tel_ | | | | To: Ram Electronics (Fleet) Ltd, 106 | Fleet Road, Fleet, H | lampshire GU13 8PA. | | | | | Trade and export enquiries welcome. # New-Sinclair QL There's no comparison chart, The Sinclair QL is a new computer. Not just a new Sinclair computer, but a totally new sort of computer – nothing like it exists anywhere. It's not just a bit better than this, or a bit cheaper than that – it's a computer that's very hard to compare with anything. Just check the features below – and if you don't agree, take up the challenge at the end of the advertisement. If you do agree, there's only one course of action you can take... get yourself a Sinclair QL at the earliest possible moment. ### The Sinclair QL has 128K RAM. Big deal? Several micros offer 128K RAM, or more, as standard. The 'What Micro?' table for December 1983 lists over 50 of them – but 40 of the 50 micros listed cost over £2,500! The Sinclair QL offers you 128K RAM for under £400, and an option to expand to 640K. That's a lot of bytes to the pound! ### The Sinclair QL has a 32-bit processor. Who else? Under £2,700, nobody. Even the new generation of business computers, such as the IBM PC, are only now beginning to use 16-bit processors. At prices like this, the Motorola 68000 family – widely regarded as the most powerful microprocessors available – will remain a luxury. Yet with the Sinclair QL, the 32-bit Motorola 68008 is available for less than £400. You can also be sure that the QL will not become outdated. 32-bit architecture is future-proof. 32-bit processor architecture, 128K RAM, and QDOS combine to give the QL the performance of a minicomputer for the price of a micro. ### Exclusive: new QDOS operating system No competition! QDOS sets a new standard in operating systems for the 68000 family of processors, and may well become the industry standard. QDOS is a single-user, multitasking, time-sliced system using Sinclair's new SuperBASIC as a command language. One of its most significant features is its very powerful multitasking capability – the ability to run several programs individually and simultaneously. It can also display the results simultaneously in different portions of the screen. These are features not normally available on computers costing less than £7,000. ### Eleven input/output ports QL ROM Cartridge slot ### New professional keyboard The QL keyboard is designed for fast input of data and programs. It is a full-size QWERTY keyboard, with 65 keys, including a space bar; left-and
right-hand shift keys; five function keys; and four separate cursor-control keys – key action is positive and precise A membrane beneath the keyboard protects the machine from dust (and coffee!), and for users who find an angled keyboard more comfortable, the computer can be raised slightly at the back by small detachable feet. # £399 # ecause there's no comparison! ### Advanced new friendly language – Sinclair SuperBASIC The new Sinclair SuperBASIC combines the familiarity of BASIC with a number of major developments which allow the QL's full power to be exploited. Unlike conventional BASIC, its procedure facility allows code to be written in clearly-defined blocks; extendability allows new procedures to be added which will work in exactly the same way as the command procedures built into the ROM; and its constant execution speed means that SuperBASIC does not get slower as programs get larger. Microdrive extension slot - ### Two 100K microdrives built in The Microdrives for the Sinclair QL are identical in principle to the popular and proven ZX Microdrives, but give increased capacity (at least 100K bytes each) and a faster data-transfer rate. Typical access speed is 3.5 seconds, and loading is at up to 15K bytes per second. The Sinclair QL has two built-in Microdrives. If required, a further six units can be connected. Four blank cartridges are supplied with the machine. are trade marks of Psion Ltd. Included – superb professional software The suite of four programs is written by Psion specially for the QL and incorporates many major developments. All programs use full colour, and data is transportable from one to another. (For example, figures can be transferred from spreadsheet to graphics for an instant visual presentation.) ### Word-processing Certain to set a new standard of excellence, QL Quill uses the power of the QL to show on the screen exactly what you key in, and to print out exactly what you see on the screen. A beginner can be using QL Quill for word-processing within QL Quill brings you all the facilities of a very advanced word-processing package. ### Spreadsheet QL Abacus makes simultaneous calculations and 'what if' model-construction easier than they've ever been. Sample applications are provided, including budget-planning and cash-flow analysis. QL Abacus allows you to refer to rows, columns and cells by names, not just letters and numbers. Function keys can be assigned to change a variable and carry out a complete 'what if' calculation with a single key-stroke. ### **Business graphics** QL Easel is a high-resolution colour program so easy to use you probably won't refer to the manual! It handles anything from lines, shaded curves or histograms to overlapping or stacked bars or pie charts. QL Easel does not require you to format your display before entering data; it handles design and scaling automatically or under your control. Text can be added and altered as simply as data. ### Database management QL Archive is a very powerful filing system which sets new standards, using a language even simpler than BASIC. It combines ease of use for simple applications – such as card indices – with huge power as a multi-file data processor. An easy-to-use labelling facility means that you don't have to ask for your file by its full name – a few letters are enough. ### New - the Sinclair QLUB The QLUB is the QL Users Bureau. Membership is open to all QL owners. For an annual subscription of £35, QLUB members receive one free update to each of the four programs supplied with the QL, and six bi-monthly newsletters. Sinclair has also made exclusive arrangements for QLUB members to obtain software assistance on QL Quill, Abacus, Archive or Easel by writing to Psion. ### The Sinclair QL challenge If you're seriously considering any other computer, post the coupon for a blow-by-blow comparison. We'll take a *published* comparison chart for the machine you're considering (not one we've created ourselves) and give you the Sinclair QL figures, detail by detail. ### Take action today! To order by mail complete the coupon and send it to the FREEPOST address below. For credit card holders it may be possible to extend your credit limit. Full details will be sent when we acknowledge your order. ### To order by telephone phone Camberley (0276) 685311; have your credit card (Access, Barclaycard, Trustcard) number ready. It may be possible to extend your existing credit limit. Please ask our telephone staff for more details. Please do not use this number for other enquiries. ### For more information Phone Camberley (0276) 686100, or use the coupon to get a QL brochure. Due to demand, delivery may take more than 28 days. Your order will be acknowledged immediately with an expected shipment date. Remember that Sinclair offers a 14-day moneyback undertaking. | Qty | Ite | m | | | | | | | | | | | | | | | | | (| ode | 9 | | | Iter | n P | rice | £ | | | Tota | al £ | | |---|-------------------|--------|-------|------|------|------|-----|------|------|-----|-----|-----|---|-----|------|------|---|---|-----|-----|---|---|---|------|------|------|---|----|---|------|------|---| | | Sir | ıclair | QL | Co | mp | ute | er | | | | | | | | | | | | 6 | 000 |) | | | 3 | 399. | 00 | | | | | | | | | QL | UB | men | nbe | ersh | ip (| one | e ye | ar) | | | | | | | | | | 6 | 100 |) | | | | 35. | 00 | | | | | | | | | Po | stage | e & p | oac | king | g (a | ny | ord | er c | ver | £39 | 90) | | | | | | | 6 | 999 |) | | | | 7. | 95 | | | | | H | | | Please ticl
□ I enclos
□ Please c | e a che | que | mac | de p | aya | able | | | | | | | | 10. | | ture | L | _ | | i | 1 | | | 1 | | | | £. | 1 | | | - | 31 | giia | tuit | | | 277 | | | | | | | | | | | | | | | Mr/Mrs/A | ∧iss | | | | | _ | 1 | 1 | 1 | | 1 | 1 | 1 | 31 | gna | | 1 | - | | 1 | 1 | _ | 1 | 1 | 1 | 1 | 1 | 1 | | | | | | Mr/Mrs/N
Address | ∧iss | 1 | | | | 1 | 1 | 1 | 1 | _ | _ | 1 | | | gria | | 1 | 1 | - | 1 | 1 | | 1 | | 1 | 1 | 1 | | | 1 | | _ | - Please serid file a Siriciair QL bro his month's books are all for the Commodore 64. There are half a dozen of them chosen from the absolute deluge that this computer has encouraged. The topics that they cover range from how to program the 64 and what it can do, to writing adventure games for it and doing mathematics with it The Commodore 64 is the cheapest of the currently available computers, with 64K of memory and it also has a reasonably priced disc drive. Since it can support a wide range of business and other substantial applications, there is a good deal of serious software being written for it, as well as all the games. For these, and other, reasons the computer is selling in large quantities. The imminent availability of the executive, and portable, version adds to the general Given that the 64 is a powerful and popular computer, it might be expected to have a decent manual, except that as soon as we recall that it is called the *Commodore* 64, this expectation immediately shrivels. But, in a sense, Commodore is a valuable asset to the publishers and authors of computer books, because, more than most computer manufacturers, every one of their computers sets off a new round of manual replacement. publishing. The 64 needs these substitutes for the manuals more than its predecessor, the PET, did. Although it is burdened with the PET's BASIC, the 64 is a much more powerful machine altogether. All those people dying to get at the sound and graphics chips to make them do their stuff not only have to find the addresses of the memory locations concerned but also have to discover exactly what it is that each location controls. The manual seems to think that this should be a big secret, but the books are disposed to It has to be said that none of the books examined here does for the 64 what **The PET Revealed** or Donahue and Enger's **PET Personal Computer Guide** did for the PET. Since the 64 is altogether more sophisticated than the PET, this is not surprising but, at the same time, it means that the need for it is more urgent. There are so many things of which the 64 is ### **BOOK PAGE** Garry Marshall Commodore won't write any decent literature about their machines, which makes it open season for everyone else. Here's a selection of the books on offer concerning the Commodore 64. capable that the unsuspecting owner of one may not realise. Quite unknowingly, the solutions to all his problems may be within the computer's range. To illustrate this, the computer has a genuine 64K of RAM, with all the ROMs shadowed by RAM, which is ready to be brought into action when a ROM is switched out. Also, the keyboard is 'soft', so that you can design and use your own letter font should you be so minded, or invent graphics characters to associate with every key so that you can type out pictures with the greatest of ease rather than paragraphs of text. But these facilities, and the ways to release them have to be dug out nugget by nugget. I have had a Commodore 64 at home for the last couple of months, and this has enabled me to test the books against the machine, and I can report that most of the programs that I have tried from the books actually work. (I wouldn't want to give the impression that I have typed in every program in every book, though!) But, more important than this, I have found that you can come to grips quite quickly with the graphics and sound once the necessary information is provided. I don't think that you need something like Simons' BASIC for this, although it is undoubtedly a considerable convenience. Programs written in the 64's own BASIC for generating graphics, sprites and sounds *are* just masses of PEEKs and POKEs, but there are certain patterns to the numbers that you have to remember. The bad news is that in obtaining this information, I found a bit in one
book and a bit in another, but very rarely a complete presentation and explanation in any one. As to the books themselves, Commodore 64 User's Handbook from Weber Systems Inc is the nearest to what a manual should be, and the least pretentious — it makes no bones at all about being written as a manual. It is a bit dry and dull, but then any manual would be, wouldn't it? It is a good source of reference, but is inclined to stop short just as you get to the stage of delving deeply into something. When dealing with sound generation, for example, it resorts to presenting programs (full of POKEs, of course), but the significance of some of the locations being POKEd is not explained. This can be very frustrating, since my ears cannot distinguish between the sounds of triangular and ramp waveforms when they have been filtered so as to pass only certain frequency components from the original signal. But the only way to deduce what is going on in the program is to listen to the sounds it produces. However, this book gives a good treatment of everything the computer can do up to and The Sensible 64 — Programming With The Commodore 64 by David Highmore and Liz Page is full of valuable information, program segments and, indeed, programs. As a book it is a very amateur affair. The authors do not seem to know that one paragraph should lead into the next, that chapters should have chapter headings, and that a book including the foothills of its more sophisticated features. should have an index. It is much more reminiscent of a rather poor student's report on a project than of a book in its presentation. However, if we take it as a collection of bits and pieces, some of the bits are very useful. There is illuminating information on sprites, bit mapping for high-resolution graphics and on producing music. But the book's poor layout and lack of an index make it inadequate as a source of reference. I found it a useful complement to other books, but if you want to buy just one book for the 64, I couldn't recommend this as the one. Commodore 64 — Getting The Most From It by Tim Onosko really is a proper book. It is well designed, well printed, and as readable as this kind of book can ever be, written in a light, racy style. It covers much the same ground as the previous two books, although again not giving a complete coverage. The body of the book gives a relatively low-level coverage of the main features, but the appendices give treatments at a much higher level of the inner workings of the 64 (by Jim Butterfield), graphics and sound. For my money, this is much the best of the three books. But none gives a complete coverage and, in fact, there are still gaps to be found when you take all three together. For those who know how to program their 64 and have a good idea of its capabilities, the other three books we are examining may help to provide programming ideas. Exploring Adventures On The Commodore 64 by Peter Gerrard is about creating and writing adventure games. It is good on explaining how to devise a game and then develop the program for it. It strikes me that following the ideas in the book would be an instructive, and also enjoyable, way to leam how to design and write long programs of any kind. The book is not a collection of adventure game listings, for it is much more valuable than that could be. It contains routines for particular purposes that can be put together to make programs. It also presents the ideas for putting them together. The routines incorporate programming techniques drawn from many application areas which can, similarly, be borrowed again for other purposes. Very good, and not just for adventure game enthusiasts. Mathematics On The Commodore 64 by Czes Kosniowski is just what its title suggests. It has chapters on topics such as trigonometry, number bases and matrices. Each chapter explains fairly briefly the mathematics of its topic and then presents a program to make the computer do the mathematics concerned. This might be a useful aid to the study of 'O'-level and 'A'-level maths. It also contains chapters on codes and prime numbers so, if the recent publicity over Amold Amold, Fermat's last Theorem and national security has captured your attention, this could be the place to follow up that interest. Finally, Sixty Programs For The Commodore 64 from Pan/PCN computer library is a mundane collection of program listings, mainly of some familiar and pretty tired games. This month's books were: Commodore 64 User's Handbook by WSI staff, Weber Systems Inc, 307 pages, \$14.95 The Sensible 64 — Programming The Commodore 64 by David Highmore and Liz Page, Micro Books, 117 pages, Commodore 64 — Getting The Most From It by Tim Onosko, Prentice-Hall International, 303 pages, £7.95 Exploring Adventures On The Commodore 64 by Peter Gerrard, Duckworth, 242 pages, £6.95 Mathematics On The Commodore 64 by Czes Kosniowski, Sunshine Books, 155 pages, £5.95 Sixty Programs For The Commodore 64 by R. Erskine and H. Walwyn, Pan/PCN computer library, 380 pages, £5.95 ### **COMPUTER ROBOTICS TRAINING** ### **FULL TIME COLLEGE COURSE** SUITABLE FOR APPLICANTS WHO WISH TO ENTER COMPUTER SERVICE OR RELATED INDUSTRIES - HIGH PERCENTAGE OF PRACTICAL COURSE WORK > 15 MONTHS B TEC Certificate in Computing Technology 9 MONTHS B TEC Higher Certificate in Computing Technology Foundation Electronics, Digital Subjects: Techniques, Microelectronics, Microprocessors, Microcomputer Based Systems, Industrial Robotics, Machine Code & High Level Programming. Shortened courses can be arranged for applicants with previous knowledge. Courses commence Jan, April and Sept (Higher Cert Sept only). Prospectus from: LONDON ELECTRONICS COLLEGE (Dept C5/6) 20 Penywern Road, Earls Court, London SW5 9SU. Tel: 01-373 8721 #### ORIC AND SINCLAIR COMPUTERS Oric 1 computer 48K £143 (£141) £151. Oric colour printer £134 (£123) £140. New Sinclair QL Computer £495 (£455) £475. Sinclair Spectrum 48K £131 (£131) £143. Spectrum 16K £101 (£105) £117. Microdrive £70 (£65) £75. RS232 interface £70 (£65) £75. Blank microdrive cartridges £8 (£8) £9 32K memory upgrade kit for 16K Spectrum (issue 2 and 3 only) £31 (£28) £30. Fuller Master Unit for the Spectrum including speech unit, sound synthesizer, amplifer and joystick port £56 including speech unit, sound synthe-sizer, amplifier and joystick port £56 (£56) £62. Fuller full sized FDS keyboard for the Spectrum with peoper space bar £52 (£52) £62. Spectrum printer interfaces with cables:-Centronics £57 (£53) £58, RS23 £35 (£33) £38. ZX printer £41 (£40) £50. 5 printer rolls £13 (£16) £21. ZX81 computer £45 (£44) £54). ZX81 16K ram packs £28 (£25) £30. ### COMMODORE COMPUTERS Commodore 64 £204 (£184) £204. Vic 20 £104 (£97) £117. Convertor to allow most ordinary mono cassette recorders to be used with the Vic 20 and Commodore 64 £10.95 (£11) £13. Bargain package:- cassette convertor + compatible cassette recorder £37 (£38) £44. Commodore cassette recorder £43 (£44) £50. Centronics printer interfaces for Vic 20 and Commodore 64 £45 (£44) £50. 1541 Disc drive £233 (£209) £234. 1525 Printer £235 (£220) £245. 1526 Printer £350 (£330) £360. ### ACORN COMPUTERS Electron £203 (£209) £229. BBC Model B £404 (378) £408. 14" Colour monitor £228 (£299) £319. Kenda double density disk interface system for beeb £139 (£125) £135. We stock the whole range of Cumana disc drives for the beeb eg. 100K single £230 (£220) £240, Double 2 x 400K £625 (£560) £580. ### PRINTERS PRINTERS Brother HR5 £185 (£171) £190. Epson RX80 £306 (£271) £302. Epson RX80 £106 (£361) £346. Shinwa CTI CP80 £225 (£218) £248. Epson FX80 £40 (£408) £438. Epson MX10073 £494 (£465) £495. Oki Microline 80 £213 (£197) £238. Oki Microline 80 £213 (£197) £238. Oki Microline 84 £831. The Ultra 21 combined daisy wheel and electric typewriter £438 (£415) £445. Combined matrix printer and electric typewriter: Brother EP22 £173 (£166) £186. Brother EP44 £258 (£235) £260. Juki 6100 proportional daisy wheel printer £423 (£404) £434. MCP40 colour printer £1423 £140. Start STX80 thermal printer £158 (£143) £165. Interfaces to run the above printers from Vic and the Commodore 4 £45 (£44) £50. We can supply interfaces to run the above printers 64 £45 (£44) £50. We can supply interfaces to run the above printers from Sharp computers £58 (£52) £55. SWANLEY ELECTRONICS Dept CT, 32 Goldsel Road, Swanley, Kent BR8 &EZ, England. TEL: Swanley (0322) 64851 Nothing extra to pay. All prices are inclusive. UK prices are shown first and include post and VAT. The second price in brackets is for export customers in Europe and includes insured air mail postage. The third price is for export customers outside Europe (include Australia etc) and includes insured airmail postage. Official orders welcome. # NO WAITING # Mon-Fri 9-am 5-30pm 48K £158.00 16K £125.56 EX.VAT # Keep your micro motoring with a printer buffer When you've invested some serious money in a micro system, why keep your system waiting while you print out your hard copy? If you think about it, you must spend 1-2 hours every working day just waiting around – unless you invest in a printer buffer from Interface Systems. Whatever micro you're using, our compact buffers simply plug into your system. So you can dump pages of text straight into the buffer, leaving your system free to carry on working for you – within seconds. Every Interface System printer buffer comes with a full 90 day warranty. Yet they're still better value, bit for bit, than any other comparable buffer on the market. We've made it simpler to get your hands on our buffer too – and our dealer network is still growing. Simply contact any of our dealers listed, or phone us direct for your nearest supplier, and start saving system time (and money) today. Interface House, 17 Eversley Road, Bexhill-on-Sea, Sussex TN40 1HA. Tel: 0424 225 683 Suitable for: Commodore · IBM · Digital Equipment Corp · Apple · Epson · Ricoh Diablo · Anadex · ACT Sirius · TeleVideo · Torch ·
Superbrain · N.E.C. · Sharp Corona · Morrow Designs · Osborne · Sage · Olivetti · Triumph Adler · Tandy and many more. ### GOING APE-FACE Martin Edwardes If connecting a Centronics printer to your Atari computer has been gibbon you problems, the Apeface provides a simple solution with no monkeying around. ne major problem with the Atari, an otherwise excellent machine, is the lack of standard ports to add extra peripherals on to the system. The only thing it has is the peculiar plughole at the side through which all the information passes for all the peripherals. There are also the joystick ports, but using these with any device more complex than a light pen becomes very difficult. It wouldn't be so bad if the side port looked like anything else on this planet. But, unfortunately, it is like the sound and graphics capabilities of the Atari: out of this Many Ataris in this country have been bought by people who are upgrading from another machine, and this appears to be true for the 600XL and 800XL as well. As a result many owners have an Atari, a standard Centronics parallel interface printer, and no way of allowing them to talk to each other. This is where Apeface steps, or pluas. in. It consists of a black box with two wires coming out of each end. At one end a round cable ends in a 'standard' Atari plug, at the other a ribbon cable ends in a standard Centronics printer interface. You just plug in each end and that's it! The output signal from the Atari is a serial data stream (the eight bits that define a character follow one after the other) while the input signal to the Centronics is parallel (the eight bits go down eight wires simultaneously). The Apeface does the necessary conversion and leaves you free to worry about what you are printing rather than how you are printing it. The device is a 'hard' device, so there is no additional software to load, and no extra memory is used up. ### APES 'N EPSON We tried the Apeface on the Epson FX80 printer, which is a good representative industrystandard printer, and we found no serious problems with its use. One noticeable advantage that it has over Atari's own 822 printer is in inverse characters: on the 822 inverse text looks just like ordinary text; on the FX80 it comes out as italics! Of course, the special characters in the Atari character set are not printable, but this is true for any computer attached to an industry-standard printer. The one problem we encountered with the Apeface is the fact that it is an 'end of line' device. The Atari system works by each device being daisy-chained to the computer. Any signals output by the computer are devicecoded, so they pass from one device to another until they Bottom left: The Atari Peripheral Expander Interface (Apeface geddit?) is simple to use. It comes with a cable at each end, one for the computer and one for the Centronics printer. And that's all! Bottom right: Inside the Apeface construction is neat and compact. The large chip on the left is actually a microprocessor, one of the Z8 range from Zilog, which explains why no additional software needs to be loaded into your computer. Effectively you're buying a second small computer dedicated to just one job. find the device they are coded for. This means that every device in the daisychain, other than the computer at one end and one other device at the other end, must have two connectors, one for the input signal and one to pass the signal onto the next device if needed. The Atari 410 tape recorder was defined as the end-of-line device in the original system, so to use the Apeface with this device you must unplug one device and plug in the other. You also have to press System Reset so that the Atari can recognise the new configuration. It is a small problem, and does not occur with the new 1010 tape deck, which has two ports. ### CONCLUSIONS The Apeface provides a simple and effective solution to the problem of attaching your non-standard Atari to a standard printer. For anyone who already has a printer and wants a good interface, or for anyone who wants to get a non-Atari printer but is unsure of interfacing, I can fully recommend this device. The Apeface Atari printer interface costs £105 including VAT and postage and packing from Westwood Distribution Ltd, 116/118 Tennant Street, Five Ways, Birmingham, B15 1EY. **FIND YOUR WAY** THROUGH THE DIGITAL **ELECTRONICS MAZE** This practical self-instruction kit has been developed to extend the original beginners' SUPERKIT. SUPERKIT II includes an instruction manual and many more components, enabling you to design and use adders, subtractors, counters (ripple, up/down, synchronous, decade and Gray code), registers, pattern recognisers and 7-segment displays. You need the board and components from SUPERKIT to enable you to build the circuits in SUPERKIT II. Together the two kits provide an excellent introduction to digital electronics - what really goes on inside a computer. SUPERKIT (SUP) £22.00 SUPERKIT II (SUP II) £16.00 Special price £35.00 for both (SUP + II) (inc. VAT and p & p) The SUPERKIT series is backed by our theory courses, DIGITAL COMPUTER LOGIC (beginners' course), which covers the design of logical circuits, and DIGITAL COMPUTER DESIGN (more advanced), which covers the design of digital computers. MICROPROCESSORS AND MICROELECTRONICS teaches you what a microprocessor is and what it can do. DIGITAL COMPUTER LOGIC (DCL) £7.00 DIGITAL COMPUTER DESIGN (DCD) £9.50 MICROPROCESSORS AND MICROELECTRONICS (MIC) £6.50 Please send for full information on these and our other courses. GUARANTEE If you are not completely satisfied, return the item to us within 28 days for a full refund. All prices include worldwide surface postage (ask for prepayment invoice for airmail). Allow 28 days for delivery in UK. Overseas payment by international credit card or by bank draft drawn on a London bank CAMBRIDGE LEARNING LTD, Unit 58 Rivermill Site, FREEPOST, St Ives, Cambs PE17 4BR, England. Tel: 0480-67446 VAT No 313026022 Transcash No 2789159 Reg No 1328762 Please send me (initial letters used):SUP @ £22.00 DCL @ £7.00SUPIIDCD @ £9.50 @ £16.00SUP + II @ £35.00 MIC @ £6.50 I enclose a cheque/PO payable to Cambridge Learning Ltd for£...... No Expiry date Telephone orders from credit card holders accepted on 0480 67446 (24 hrs) Signature..... ### CAMBRIDGE HEW IBM For home or business the IBM compatible Advance **Under £350*** Note the large return key and position of the numeric keyboard. Fast retrieval from storage and fast action on games is achieved by the use of the Intel 8086 16 bit micro-processor running at 4.77 MHz. The Advance 86A runs IBM PC software. ### Specification **CPU** Type 16-bit 8086 running at 4.77 MHz. 128K or 256K with parity plus 16K video RAM ROM **ROM Contents** Diagnostics, Basic, Cassette O/S Languages Included Basic Full 84 keys tactile Type of Keyboard 10 programmable keys 256 in ROM **Keyboard Facilities** Character Set TV, RGB, Comp/Sync colour or monochrome monitor Method of Display **Display Facilities** Full screen handling, 4 screen paged 80 x 25 or 40 x 25 Text 320 x 200 or 640 x 200 **Graphics Resolution** Colours Available 16 **Graphics Facilities** Scroll, reverse image Cassette Recorder Interfaces Included Cassette port, light pen, joystick, Centronics Built-in speaker Built-in ROM Operating System Printers Comments Built-in ROM Any using Centronics parallel interface Hardware and software compatible with IBM PC User-upgradeable to Model B Provision for 8087 Arithmetic Processor The business user can upgrade to Model B by adding the Advance Expansion box containing 2 x 5.25" disc drives providing 720K storage at £852.80.* The Advance 86 Model B offers the business micro-computer buyer an IBM compatible disk-based system with twin drives, with Word Star, Mailmerge and Calcstar software (MS/DOS) for only £1200 plus VAT & Delivery. *Ex VAT. Advance 86 Models A & B are designed and marketed by Advance Technology UK Ltd. Dealers are now being appointed. Advance Technology UK Ltd. 8A Hornsey Street, London N7 8HB 01-609 0061 | To Advance Technology UK Ltd., 8A Hornsey Street, London N7 8HB | | |---|---| | □ Please send Model 86A, Micro-Computer & Keyboard I enclose £ □ Please send Model 86B which includes Model 86A plus Expansic □ I enclose £1200 plus £180 VAT plus £10 Delivery | 2404.99 including VAT & Delivery.
In Box & Software.
Cheque/Barclaycard/Access No | | Name | Company | | Address | _ Address | | | | hen a large amount of text is stored in a microcomputer it is generally the case that the user is left wishing for more memory within his machine, and a speedy means of storing and retrieving that information. The popular and affordable micros are not particularly suited to text orientated applications their bit-mapped screens are ideal for graphics and game playing, but together with their large monitor ROMs, they take a generous slice from the 64K memory map, leaving less for the user. Add to this the fact that cheap disc storage systems are not quite with us (notwithstanding the efforts of Sir Clive), and the case for compacting text as tightly as possible into RAM becomes increasingly attractive, and worth the overhead of the encoding and decoding software. The micro is extremely efficient when handling large amounts of text, and in the business world this is perhaps the most common application of all not to mention many Adventure games); but the data really needs to be in internal RAM, and it is here that the user of a small, cassette-based system runs into problems. To be specific,
how do you get a library catalogue of 2000 titles into a 48K Spectrum? The key to the problem of compaction lies in the nature of the ASCII code ### THE ASCII CODE The ASCII code occupies a single byte of memory, and allows for 256 characters to be represented. It is the coding system used by most micros today, and although it professes a set standard (American Standard Code for Information Interchange) this only applies to 96 characters. These are the letters of the alphabet, the numerals, punctuation symbols, and a few extras such as dollar and percentage — in short, the characters and symbols required for textual work. ### BIT MANIPULATION One solution to packing text more densely is to reduce the character set used to 64. Since 64 different symbols can be represented by six bits in binary, then it follows that three bytes of memory can be made to hold four symbols (see Fig. 1). This will compact any data base 11111122 22223333 33444444 Fig. 1 Storing four characters in three bytes. down to 75% of its original size, but it causes a few problems, not so much in the unscrambling of the bits from the bytes, but in deciding how many screen and printer control codes will need to be altered. Their normal codes range from 0 to 31, but their new values must lie somewhere in the sixbit range from 32 to 127 and when that new value is adopted, an existing symbol will have to be sacrificed. Greater compaction is possible using this bit-shuffling system. A five-bit ASCII code would consist of 32 symbols, allowing just the upper case alphabet and a few punctuation symbols and control codes. However, although eight symbols would pack into five bytes, representing compaction to 62.5% of the original, the restricted size of the character set is likely to be unacceptable. Other compaction methods might produce better results. ### TABLES AND TOKENS Leaving the standard ASCII set severely alone, there are still 128 symbols available with codes from 128 to 255. These are not used by some computers, while in others they cause a whole range of exotic graphic symbols to be displayed on the screen. When a high-level language is being used, codes in this range are made to represent complete words. Thus in Sinclair BASIC the single byte F9 hex stands in for the word RANDOMIZE, and that's compaction to 11% of the original! The complete word is known as the reserved word and the byte representing it is known as the token. A dictionary of all the reserved words used is contained in a look-up # Z80 TEXT COMPACTOR Richard Sargent How do you get a quarter of a megabyte into a pint pot? Here are encoding and decoding machine-code routines which should prove suitable for any Z80-based micro. | ONE | OUT | PAT | IGHT | STAR | | |-----|-----|-----|------|------|--| | WAR | AND | ASS | THE | OF | | | SHO | TER | ING | BAR | COM | | | INS | KEN | MAD | ATE | EAR | | | DRA | DRI | NOW | DAY | DOG | | | FOR | ARY | PAR | BEA | BEL | | | BLE | MIS | TAN | TA | IS | | | AS | AR | CK | DA | AN | | | OR | BU | NO | PO | ST | | | ER | AL | IN | IT | LE | | | CH | BR | ON | ES | BO | | | WH | TR | BL | EX | VI | | | SH | SP | FR | ED | EN | | | TO | TI | TY | | | | Fig. 2 Useful short strings for any dictionary. table and this is used in the encoding and decoding process. ### BUILDING THE DICTIONARY In the case of the text compaction program it is necessary to construct your own dictionary and this is done by two tried and trusted methods - common sense and trial and error. Frequently-occurring words are sought out, with priority given to the longer words, since their reduction to tokens will help achieve a good overall compaction. Short groupings of letters are also considered - they are worth encoding if they occur frequently. Figure 2 shows some of the short strings that I found useful. The choice of the longer words will rather depend on the application of the program: if a file of computer magazine articles is being compiled, then words like microprocessor, program and joystick will certainly go into the dictionary. It is essential to encode the long reserved words first. For example, if all occurrences of the string *micro* are encoded first, the word *microprocessor* ``` 7D00 FSYM SYM2 :Before ENCODE is CALLed location FILE must ;be loaded with the address of the first ;character of the non-compacted file NCF :The NCF must be terminated with a unique ;symbol FSYM and the address of the location ;after FSYM must be loaded into ENDFIL :Location COUNT must be loaded with zero ;Upon exit from the ENCODE routine the address sheld in ENDFIL is valid not only as the end; of the Compacted File but also as the start; address of RAM released for further use PUSH IY 7D00 FDE5 7D02 DDE5 7D04 E5 7D05 D5 PUSH IX PUSH HL PUSH DE PUSH BC PUSH AF LD HL,TAB1 LD (POSTAB),HL LD A,ST_TOK-1 LD (TOK),A 7D08 CS 7D07 FS 7D08 21FC7D 7D08 22B57D 7D0E 3E7A 7D10 32BD7D ;Initialise position ;in reserved word table ;Initialise token ;counter LD (TOK),A ; counter :Next collect reserved word LD DE,(POSTAB) ; Start of main loop LD HL,SCRATCH ; A reserved word will LD BC,(TOK) ; be taken from TAB1 and LD A,(DE) ; put into SCRATCH memory CP FSYM+6 ; Unless all reserved words JR Z EXIT ; considered : If so exit LD (HL),A ; INC DE ; INC B 7D10 7D10 7D13 ED5BB57D LO 7D17 211A7E 7D1A ED4BBD7D 7D3C 2ABF7D 7D3F 22B77D 7D3F ;to POSFIL ;Now search file for reserved word LD IX, (POSFIL); IX is a marker PUSH IX ;but POP DE ;DE is used as file pointer LD A, (DE) ;A holds a file character CP FSYM ;and if it's the endfile JR LO ;character an exit is made LD HL,SCRATCH ;Is compared with a character JR 2 A7 ;from the reserved word INC IX ;If "no match" increment IX marker JR A4 ;and continue trying LD A, (HL) ;At this point a test is made CP SYM2 ;for the end of the reserved word JR Z A8 ;and if so jump forward LD A, (DE) ;Else continue CP (HL) ;testing INC DE ;but if "no match" a jump is JR NZ A6 ;made to A6, if successful JR A7 ;then a jump is made to A7 POP AF POP AF 7D3F 7D42 DD2AB77D A3 7D46 DDE5 7D48 D1 7D49 1A 7D4A FE2A 7DAC 18C5 7DAE 211A7E 7D31 BE 7D32 2804 7D53 BE 7D54 DD23 7D56 18EE 7D59 7E5F 7D59 2811 7D50 1A 7D50 13 7D60 13 7D60 13 7D60 13 7D60 17 7D63 E1 7D64 C1 7D68 E1 7D69 DDE1 7D69 DDE1 7D60 C9 7D60 7D60 7D60 7D60 JR A7 POP AF POP BC POP DE POP HL POP IX POP IY FYIT RET ;The exchange is now made; the reserved word being; replaced by the token EX DE,HL ;DE points to the end of the LD (POSFIL) ;HL will be used as pointer, ;Current value saved in POSFIL LD A,1 ;Test for single character CP B ;string, if so JR Z LS ;Jump past LDIR sequence !LDIR sequence 7D6E EB 7D6F 22B77D A8 7D6F LD A,1 CP B JR Z L3 ;LDIR sequence PUSH HL LD DE,(LEN) OR A SBC HL,DE PUSH HL POP IX INC HL PUSH HL POP DE SBC HL,DE PUSH BC LD B,H LD C,L EX DE,HL FUSH IY PUSH BC LD B,H LD C,L EX DE,HL FUSH IY POP DE LD IR FUSH IY POP DE LD IR FUSH IY FOR DE LD IR FUSH IY FOR DE LD IR FUSH IY FOR DE LD IR FUSH BC 7D6F 7D72 3E01 7D74 B8 7D75 2834 7D75 7D75 7D77 E5 7D78 ED5BBB7D 7D70 E7 7D70 E052 7D7F E5 7D80 DDE1 7D82 23 7D83 E5 7D84 FDE1 7D86 2AB97D ;Save the LDIR source ;Recover length of string Recover length of string and so form the target address and store it in IX Get destination for LDIR and save it in IY Get end-of-file Get start-of-file (source) and so calculate length to be moved Save Token Now use BC to hold length for the LDIR Source now in HL for the LDIR Now recover destination into DE so now ready to close up the file with LDIR Recover Token Form new e-o-f and save it Recover incorrect pointer and use length value the correct it 7,993 ES 7984 FDE1 7986 2A897D 7989 D1 7989 ED52 7980 ES 7980 44 7985 EB 7990 FDE5 7992 D1 7995 C1 7996 13 7997 ED53B97D 7098 ED58B87D 7098 ED58B87D 7048 ED52 LDIR POP INC DE LD (ENDFIL),DE LD HL,(FOSFIL) LD DE,(LEN) OR A to correct it SBC HL,DE LD (POSFIL),HL ; ;Get target address ;into HL so that ;Token can be placed PUSH IX 7DAA E1 7DAB 71 POP HL LD (HL),C 7DAB ;--- LD HL,(COUNT) ;Update the count of INC HL ;exchanges made This value 7DAC 2AC17D 7DAF 23 ``` ``` LD (COUNT), HL ; used by test routine 7DB0 22C17D 7DB0 7DB3 188D 7DB3 ;Now search for next occurance ;of the same string JR A3 POSTAB 7DB7 POSFIL ENDFIL 7DB9 DS 1 DS 1 DB 0 ;R4 must follow LEN DS 1 ; DB 0 ;R5 must follow TOK DS 2 DW 0 7DBB LEN 7DBC 00 R4 TOK 7DBD 7DBE 00 ;*** DECODE *** ;This short routine examines a ;byte picked from the file, and ;if it is a token, it is expanded ;into its true form and sent to ;the screen and/or the printer PUSH AF DECODE PUSH BC CP OFFH JR Z DEC1 CP ST_TOK JR C ORD CP OFFH ; ;First the testing ;Jump forward to ORD ;if not a token 7DC8 2808 7DCA FE7B 7DCC 3820 7DCE FEFF CP OFFH JR NC ORD LD HL, TAB1 SUB ST_TOK LD HL, TAB1 SUB ST_TOK INC HL JR Z DEC2 LD A, (HL) BIT 7, A JR NZ DEC4 CALL OUTFYTE INC HL JR DEC3 RES 7,A CALL OUTFYTE 7DD0 301C 7DD2 21FC7D 7DD5 D67B ; ;Point to reserved words ;Reduce token to range 0-127 ;and use the value to count ;into the reserved word table DEC1 7DD7 2808 47 7DD9 7DDA CB7E DEC2 ; ;Step along and continue ;if BIT 7 low Even if high ;continue until counted down ; If BIT 7 low ;put the byte out ;and go around again, but ;when BIT 7 high come to ;DEC4, reset BIT 7 ;and put the byte out RES 7,A CALL OUTBYTE POP BC POP HL POP AF RET ;Put here CALLs to ;a monitor routine to screen ;the output and/or ;print the output OUTBYTE RST 30H ; SAMPLE DICTIONARY EQU $ TAB1 DB "microprocesso", "r"+6 DB "byte"," "+G DB "bit"," "+G DB "the"," "+G DB "t","h"+G DB FSYM+G 7E0E A0 7E0F 626974A0 7E13 746865A0 7E17 74E8 7E19 AA ;SCRATCH needs to be as long as ;the longest reserved word ;plus one byte FIN1 SCRATCH FIN2 EQU $ 7E1A 7E5B ``` Listing 1. The text compaction routines. Note that OUTBYTE in the DECODE section needs to be tailored for your own operating system. will not be found, since part of it has been changed to a token. It is also well worth allowing trailing spaces to be part of the reserved word. You should therefore encode "the" before encoding "the". I found that
with a good mix of long and short reserved words (and parts of words), compaction down to 55% of the original is possible with long textual files, and this is after allowing for the fact that the reserved word table itself is likely to be 500 bytes long. ### HOW THE PROGRAM WORKS Many text encoders and decoders have been written in BASIC but they are naturally rather slow. Typically, the process of encoding is achieved when text is typed in and decoding is done at print time. Since typing and printing are themselves slow processes, the poor speed performance of BASIC encoders and decoders is often an unimportant matter. In machine code things move along at a much faster pace. Encoding time is measured in seconds even though the CPU is doing perhaps several thousand separate block moves of memory, and decoding time appears to be instantaneous. The program is presented as a Z80 source listing, and is suitable for any microcomputer with a Z80 CPU. There are just the two routines, ENCODE and DECODE, and these together are about 256 bytes long. The reserved word table should be constructed by the user. It can be as long or as short as you wish provided each word in the dictionary has bit 7 of its last character set, and that the list of words is terminated with a unique character (such as an asterisk) also with bit 7 set. Fig. 3 State-of-play in the memory just before the block-move in the encode routine. There is a counter within the program and it counts the number of occurrences of a reserved word within a piece of text and displays or prints out the results. It is useful if you need to determine whether to use, for example, *mis* or *miss* in your dictionary. You would use your own monitor or a direct command from BASIC to examine the counter contents (Label: COUNT). ### **ENCODE** Encode is a subroutine and you may use it more or less as you like, providing certain key values are correctly set beforehand. Part or all of the noncompacted file (NCF) must be placed in RAM (NCF-RAM) and on each CALL to the encoding subroutine the entire portion of the NCF is reduced to a small, compacted file occupying perhaps the first half of what was the NCF-RAM. A pointer indicates the new location into which subsequent NCF portions may be loaded and in this manner a large NCF may be read into memory and compacted down. The routine is extremely fast, and will encode a 16K file in about one minute. In the source listing DS stands for Define Space, DB stands for Define Byte and DW stands for Define Word. The origin has been set at 7D00 hex (32000 decimal) so that it can be loaded into most memory maps, but it will be a simple matter to relocate it at a different address. It can then be used by a controlling program which can be either machine code or BASIC. Since this method of compaction never interferes with screen and printer control codes, it is easy to experiment with the program and to list, for example, a compacted file without first decoding it. As you read through the comments on the source listing it is worth looking at Fig. 3 which shows the state of various registers and pointers prior to the block-move which occurs shortly after label A8. ### DECODE The decode routine is very simple, and very fast. Assuming that a routine already exists to extract a byte from the main file, this little subroutine examines the byte (it is assumed to be in the A register), and expands it if necessary. The expanded word is passed through OUT-BYTE and the code at OUT-BYTE should be capable of printing the contents of the A register to the screen and/or the printer. The code is RST 30H for a Nascom, RST 10H for the Spectrum. ### PROBLEMS WITH NUMBERS It is not possible to tokenise numbers and this leaves us with a problem if the file we wish to compact contains rather a lot of them. Stock numbers, telephone numbers, serial numbers — there could be a few thousand bytes tied up in this way. A method of dealing with them immediately comes to mind, since we know that in its binary form a number will generally take up less space than it does in its decimal/ASCII form. If there are sufficient large numbers (value 1000 and over) in the text, it is probably worth doing providing there are only a few single digit numbers. It's rather a case of all or nothing: if a number like 64000 become compacted into two bytes (binary) that represents a good saving on memory space, but at the same time single digit numbers will be expanded into two bytes. Extra software would need to be written to allow one and two digit numbers to skip the encoding process. There is a further problem which would present itself at decoding time. With binary numbers present in the compacted file natural boundary markers would be obliterated: the decoding software would need to distinguish between "fullstop, carriage return" (2E,OD) and the number 11789 (2E,OD) — in fact the binary ``` 7027 7027 7027 7E5B ORG 7E5BH LOAD 7E5BH 7E5B 7E5B 7E5B ; ENCODE 7E5B 7E5B ;Upon entry HL should point ;to the first (ASCII) character ;of the decimal number ;The decimal number should be ;terminated with a byte in the ;range 0-2FH 7E5B 7E5B 7E5B 7E5B 7E5B 7E5B ;Upon exit DE = BC = binary ;value The carry is set ;if the number is invalid ;HL points to byte after the ;decimal number LD BC,0 LD A,(HL) SUB 30H RET C CP 10 JR C DH2 SUB 11H RET C CP 6 CCF RET C EX DE,HL LD L,A LD H,O ADD HL,BC RET C INC DE LD A,9 ADD HL,BC CP 30H LD B,H LD LD A,9 ADD HL,BC RET C JR CD B,H LD C,L D,H LD C,L LD B,H LD C,L LD D,H C,D 7E7D 09 DH3 7E7E D8 7E7F 3D 7E80 20FB 7E82 44 7E83 4D DH4 7E84 EB 7E85 18D7 7E85 7E85 7E85 ; DECODE 7E85 7E85 7E85 ;Upon entering this routine ;HL holds the binary value 7E85 7E85 ;Upon exit the decimal value ;(as ASCII characters) is ;held in RAM5 to RAM1 with ;the least significant digit ;in RAM1 Binary in HL 7E85 7E85 7E85 7E85 7E85 7E85 7E87 E5 NDECODE PUSH HL 7EBB D5 7EBP C5 7EBA DDEC7 7EBA DDEC7 7EBF DD21C07E 7E95 DD4E00 7E98 DD4E00 7E98 DD4E01 7E99 C601 7E90 ED42 7E97 30FA 7EA1 09 7EA2 12 7EA3 DD23 7EA7 13 7EA8 DD23 7EA7 13 7EA8 0D 7EA8 0C 7EB8 0C 7EB8 0C 7EB8 0C 7EB8 0C 7E88 D5 PUSH DE PUSH BC PUSH IX PUSH BC PUSH BC PUSH IX LD DE,RAMS LD IX,DATA LD A,2FH LD C,(IX+0) LD B,(IX+1) ADD A,1 SBC HL,BC JR NC, HD2 ADD HL,BC LD (DC),A INC IX INC IX INC IX INC E DEC C JR NZ HD1 LD B,5 LD HL,RAM5-1 INC HL LD A,(HL); Dutput RST 30H ; five DB 0,0 ; ASCIII HD3 7EB1 7E 7EB2 F7 7EB1 RST 30H DB 0,0 DB 0,0,0 DJNZ HD3 POP IX POP BC POP DE POP HL RET 7EB3 0000 7EB5 000000 7EB8 10F6 7EBA DDE1 7EBD D1 7EBE E1 7EBF C9 7EBF DW 10000 DW 1000 DW 100 DW 10 DW 1 7ECO 1027 DATA 7EC2 E803 7EC4 6400 7EC6 0A00 7EC8 0100 RAM5 RAM4 RAM3 RAM2 RAM1 DS 1 DS 1 7ECB 7ECC 7ECD ``` Listing 2. Two subroutines for encoding and decoding numbers. byte could be mistaken for anything including printer control codes and the tokens themselves. In short, number compaction of this type can only be attempted within tiles which have a tight structure or fields and where the software can tell the difference between a carriage return and the number 13. The starting point of such software will be the basic number encoding and decoding routines, and these are provided as two short subroutines. #### COMPUTER IDC 25-WAY D CONN **IDC AMPHENOL PLUGS** D CONNECTORS DIL-PLUG (Headers)IDC RIBBON CABLE (Price per ft) IDC JUMPERS 36" Single-Ended FOR USE WITH Trans PCB £1.45 Edge £1.95 ANY **ATARI TYPE** JOYSTICK **ONLY £11.25** PRINTER LEADS DIL PLUG HEADERS 2 x 23-way (ZX81) 2 x 28-way (Spectrum 2 x 6-way (Vic20/64) £1.85 £10.40 16 Pin £1.55 24 Pin £2.30 £1.20 DRAGON OR ORIC 1 £10.40 £11.75 Double Sided Plug Boards £2 00 £2 10 £2 25 £2 45 £2 90 £3 10 £3 40 £3 65 ZX81 23-way Spectrum 28-way COMPUTER LEADS **CUSTOM ASSEMBLIES** £2.25 ANY COMBINATION OF IDC & RIBBON CABLE LEADS MADE TO ORDER JOYSTICKS LIGHT PEN Light Pen for SPECTRUM or BBC RUGGED, HIGH-SPEED PERFORMANCE TWO FAST ACTION FIRE BUTTONS, ATARI TYPE JOYSTICK WITH SUCTION CAPS. COMPUTER CASSETTES enables you to produce high resolution drawings High Grade C12, 46p. C15, 47p QTY PRICE 00 off ONLY 39p EAC on your own TV £1.95 ONLY £24.95 ONLY £8.25 PLEASE ADD 15% VAT FREE p&p C.W.O. COMPUTER LINK, Dept CT5, PO Box 1, Ware, Herts. Telephone: 0902 5285 ### **ORIC SOFTWARE** Dept CT 118 Worcester Rd, Malvern, Worcs, WR14 1SS SPECIALIST SUPPLIERS OF ORIC SOFTWARE THE SINGLE SOURCE SUPPLY FOR ALL YOUR ORIC SOFTWARE PERIPHERALS AND BOOKS CATALOGUE WITH EVERY PURCHASE OR SEND £1.00 WHICH WILL BE DEDUCTED FROM YOUR FIRST ORDER ### SOME OF THE TITLES WE HAVE AVAILABLE | AIRLINE | 48K | 7.95 | MULTIGAMES
OPERATION | 16/48K | 7.95 | |-----------------------|----------------|--------------|-------------------------|------------|--------------| | BIORYTHMS
BREAKOUT | 16/48K | 5.95 | GREMLIN | 48K | 6.95 | | +30 MAZE | 48K | 7.50 | ORIC TREK | 48K | 9.95 | | CANDY FLOSS | 401/ | 7.50 | ORISCOPE | 48K | 17.95 | | + HANGMAN
CHESS | 48K
16K/48K | 7.50
9.95 | REVERSE
SYNTHESISER | 48K
48K | 6.50
7.95 | | CUBE CRAZY | 48K | 7.95 | WORD | 7010 | 7.30 | | DALLAS | 48K | 7.95 | PROCESSOR | 48K | 17.95 | | DIGGER | 48K | 6.95 | XENON-1
ZODIAC | 48K | 8.50 | | DINKY KONG
FANTASY | 48K | 6.95 | ADVENTURE | 48K | 9.95 | | QUEST | 48K | 6.50 | ZORGONS REVENGE | | 8.50 | | FLIGHT | 48K | 7.95 | воок | • | | | FORTH
FRANKLINS | 48K | 17.95 | THE ORIC PROGR | _ | CC OF | | TOMB | 48K | 9.95 | THE ORIC-I AND HO | | | | GRAIL | 48K | 6.95 | MOST FROM IT | | 5.95 | | HARRIER | 401/401/ | | THE ORIC-I COMPAN | | 6.95 | | ATTACK
HOBBIT | 16K/48K
48K | 6.95 | PROGRAMMING TH | | 1.95 | | INVADERS | 16/48K | 7.50 | Postage: Books 50 | | | | JOGGER | 48K | 6.95 | per book thereafter. | Cassette | es 50p | | MORIA | 48K | 6.95 | for 1 to 7. FREE IF | 8 OH O | /EK. | ### ORIC SOFTWARE 118 Worcester Road Malvern Worcs. WR14 1SS Tel: Malvern (06845) 63343 ### LUCAS ### MICRO ### LUCAS LX MEMORY LANGUAGE CASSETTE 64K RAM expandable to 256K Microsoft BASIC 300 or 1200 baud DISC Single or twin
5¹/₄ floppy disc drives DOS CP/M 2.2 (supplied) or NAS-DOS QWERTY CURSOR CNUMERIC FUNCT TV MONITOR SUPPLIED CONTROL BLOCK V USER V LINE C RES 392 by 256 KEYBOARD DISPLAY INTERFACE GRAPHICS COLOUR 8 TEXT 80 by 25 Notes. The Lucas LX is a Z80A microcomputer aimed more at the professional and business user. Hence 5Mb Winchester the professional and business user. Hence 3Mb Winchester disc interfacing is provided. Popular printers may be used with the RS232 serial interface, and a Centronics interface is also provided. There is an additional parallel interface connector for providing up to 16 on/off signals. The monitor supplied as standard is a 12" monochrome version: a colour monitor is also available. The high res colour graphics may be 392 by 256 in eight colours, or 784 by 256 in two colours. A wide range of amplications software is available via the CP/M wide range of applications software is available via the CP/M operating system, including Wordstar, Supercalc, and Calcstar. ### NASCOM 3 MEMORY LANGUAGE CASSETTE 48K RAM 14K ROM Microsoft BASIC 300 or 1200 DISC KEYBOARD DISPLAY GRAPHICS SOUND baud INTERFACE extra DOS CP/M or NAS-DOS OWERTY CURSOR DNUMERIC DFUNCT D TV MONITOR SUPPLIED D PARA D SERIAL D BUS D LINE D BES 704 by 056 (4) LINE RES 784 by 256 (two colours) 392 by 256 (four colours) COLOUR 8 TEXT 25 by 80 optional ### DEALER CBM MICRODEALER #### DEVON PLYMOUTH'S NO/COM S & R BREWSTER LIMITED 86-88 Union Street, Plymouth PL1 3HG Tel: 0752 665011 Open: 6 days ### DORSET PARKSTONE COMPUTER SYSTEMS Main Nascom Dealer & Service Centre Also Dealers for Gemini, Transtec. Genie 18 Station Road, Lower Parkstone, Poole, Dorset BH14 8UB. Tel: PARKSTONE (0202) 746555 ### ZIPPY ELECTRONICS West Dorsets Nascom Dealer Business and Personal Computer Systems, Printers, Software. Tel: Bridport (0308) 56539 Mail Order Service operated. Access/Barclaycard accepted ### SUFFOLK M. D. W. ELECTRONICS 47 Woodbridge Rd. East, Ipswich IP4 5QN. Tel: (0473) 78295 Nascom, Nasbus, Gemini, Multiboard Stockists. ### WALES ### RYTE-RITE Llandaff R & TV Ltd, 24-26 High St., Llandaff, Cardiff. Tel: 0222 563760 Gemini, Lucas Logic, C.A.D Networks, Dragon, Peripherals. ### WARWICKSHIRE BUSINESS & LEISURE MICROCOMPUTERS 16 The Square, Kenilworth, Warwickshire CV8 1EB Tel: 0926 512127 We are the largest Lucas Nascom dealer in the UK and carry the greatest variety of products for this range of ### CHESHIRE Automated Business Equipment Ltd — Stockport — 061-432 0708 CBM specialist for industrial accounts, management graphics and planned maintenance #### HERTFORDSHIRE Alpha Business Systems Ltd Church Street, Industrial Area, Ware, Herts. Tel: 0920 68926 Specialists in recommending and supplying complete systems for small businesses. #### **LANCASHIRE** #### COMMODORE BUSINESS SYSTEMS Commodore Home Computers Software and Hardware 01 - 228 1637 2/4 Oxford Road, Manchester M1 5QA (Opposite BBC) ### LONDON ### **MAYFAIR MICROS** for a full range of Commodore equipment at competitive prices. 5th Floor, 65 Duke Street, London W1. Tel: 01-629 2487 The store with everything for the en-thusiast. Official Commodore Dealer and service and information centre. 24 The Parade, Silverdale, Newcastle, Staffs. Tel: 0782 636911. ### **TYNE & WEAR** #### KEY COMPUTER SERVICES LIMITED Micro Computer solutions to everyday business problems. Osborne House, 28 Osborne Road, Newcastle upon Tyne NE2 2/ Telephone: (0632) 815157 Directors: J. Sowerby, V. Shepernson. ### WALES ### SIGMA SYSTEMS LTD 266 North Road, CARDIFF Tel: 621414 Also authorised dealer for CBM Digital, IBM, ACT, Sirius & Apricot. ### **WEST MIDLANDS** MICRO BUSINESS CENTRE LTD Wolverhampton Computer Centre, 17-19 Lichfield Street, Wolverhampton, West Midlands WV1 1EA. Tel: (0902) 29907 or 29021 Complete range of Commodore pro-ducts always available. ### WORCESTERSHIRE ### MINSTER MICROCOMPUTERS LTD Pegasus Integrated Accounts, Word-pro Word Processing, DMS Manage-ment Information Systems, Contact Mike Page, Sales Manager on 0562 68277, Burgale Lodge, Franche, Kidderminster, Worcs. ### **COMMODORE 720** MEMORY LANGUAGE CASSETTE DISPLAY GRAPHICS 256K 20K ROM Commodore BASIC 300 baud DISC Twin in-built floppy drives KEYBOARD INTERFACE QWERTY ☑ CURSOR ☑ NUMERIC ☑ FUNCT ☑ TV ☐ MONITOR SUPPLIED ☑ PARA ☑ SERIAL ☑ BUS ☐ BLOCK ☑ USER ☐ LINE RES 80 by 25 COLOUR 16 TEXT 80 by 25 SOUND Three channels **Notes.** The Commodore 720 is the top model in the 700 range of business machines. It is built round the 6509 processor, but there is a dual processor (Z80 or 8088) option. The machine has been designed to meet the IEC specifications. The blackand-white monitor screen is integral and features tilt and swivel. The keyboard may be detached. The dual disc drives are built-in to the main housing and use DMA transfer, increasing speed. ### COMMODORE 64 MEMORY LANGUAGE CASSETTE DISC KEYBOARD 64K RAM 26K ROM PET BASIC 300 baud extra DOS QWERTY⊠CURSOR☑NUMERIC □FUNCT ☑ TV ☑ MONITOR SUPPLIED□ PARA ☑ SERIAL ☑ BUS ☑ BLOCK ☑ USER ☑ LINE □ RES 80 by 25 COLOUR 16 TEXT 40 by 25 DISPLAY INTERFACE GRAPHICS SOUND Three channels Notes. The Commodore 64 is a 6510 based micro that can also use Pascal, COMAL, LOGO, FORTH and PILOT. Programs can be loaded from cassette recorder or disc drives, both extra, or cartridges. The various peripherals include printer, joysticks and games paddles. ### SHARP ### **MICRODEALER** ### SHARP MZ-80A MEMORY LANGUAGE CASSETTE KEYBOARD 48K RAM Microsoft BASIC 1200 baud (built-in) TV D PARA Z/ BLOCK Z/ LINE OWERTY OURSOR OF NUMERIC FUNCTOR OWERTY OURSOR OF NUMERIC FUNCTOR OF NUMERIC OF SUPPLIED OF PARA OF SERIAL BUS OF SERIAL SE USERL RES 80 by 50 COLOUR TEXT 25 by 40 Single channel SOUND DISPLAY INTERFACE GRAPHICS Notes: The Sharp MZ-80A is a Z80 based micro. An expansion unit, Notes: The Sharp MZ-80A is a Z80 based micro. An expansion unit, printer, floppy disc unit and other peripherals are available. Other languages can also be used such as Pascal merely by replacing the tape. With the floppy disc option the machine can respond to higher level software such as Disc BASIC and FDOS (including BASIC compiler). A small range of business and educational software is available. The supplier is **Sharp Electronics (UK) Ltd.** Thorp Road, Newton Heath, Manchester M10 9BE. ### SHARP MZ-80B MEMORY LANGUAGE CASSETTE 64K RAM 2K BASIC (on tape) 2K ROM 1800 baud built-in DISC KEYBOARD DISPLAY INTERFACE GRAPHICS extra OWERTY ✓ TV □ PARA D BLOCK V LINE V CURSOR NUMERIC FUNCT MONITOR SUPPLIED SERIAL BUS SERIAL COLOUR 3 channels USER□ RES 320 by 200 TEXT 25 by 80 SOUND Notes: The Sharp MZ-80B is a Z80A based micro. Various other languages can be loaded as the machine is "soft", no language being fitted in ROM. Expansion unit, the MZ-80P5 printer and the MZ-80PB floppy disc drive are also available. The supplier is **Sharp** Electronics (UK) Ltd. Thorp Road, Newton Heath, Manchester ### **BERKSHIRE** ### Kuma Computers Fully support with software and hardware. Sharp 700, Sharp MZ80A, and MZ80B. 11 York Road, Maldenhead, Berks. Phone for details — 0628 71778 ### **COMPUTER 100** 181 Oxford House, Reading, Berks RG1 7UZ TEL: 0734 591616 One of the UKs largest stockists MS CONSULTANTS (CAMBRIDGE) LTD 152 High Street, Huntingdon, **CAMBRIDGESHIRE** PE18 6TF. Tel: 0480 51721 Specialists in Sharp Hardware & Software ### **LANCASHIRE** Sumita 12-14 Avenham St. Preston (0772) 51686 Sharp MZ-3541 Based Software, Bake-house Orders System, Barstock System Orders System, Barstock S SALES — SERVICE SOFTWARE ### **LINCOLNSHIRE** SHARP CENTRE 16 Melville Street, Lincoln. Tel: Lincoln 32379 All Sharp Microcomputers. Specialists in Industrial Process Control Systems. Customers include British Telecom, M.O.D. CRA & CTA Members ### LONDON #### SHARPSOFT LTD. With the Sharp user in mind. For the keenest prices on hardware or full range of software contact the Sharp Computer Specialists: Sharpsoft Ltd, Crisallen House, 86-90 Paul Street, London EC2. Tel: 01 - 729 5588. #### MICROS FOR MANAGERS MICROS FOR MANAGERS Pocket Computer Software Specialists Sharp. PC5000, PC1500, PC1251, PC1245, PC1211. New Sharp PC5000 in stock. Bubble Memory MSDOS— marvellous! Decision Makers, Finance Calculator, Agenda Expense Account, Time Manager, Developer, (pricas from £9.95 to £999.95). Write/Pricne for Business Software Catalogues 149 Gloucester Rd., London SW7 4TH. Tel: 01-370 5125 ### **MIDLANDS** JAXREST LTD Linton House, Catherine Street, Aston, Birmingham. Tel: 021 328 0543 Sharp Service and Support ### NORFOLK GRASSROOT COMPUTERS 25 Wellington Rd., Dereham. TEL: 0362 4640 Specialist in small business co Send for details of stockbox — 1 plete and thorough stock system with 2.500 items per disc. Other modules to ### SCOTLAND ### micro change Itd 5 Annfield Place, Glasgow C31 2XN Tel: 041 - 554 7623 SHARP ALTOS SUPERBRAIN Call us for your software and hardware requirements — We will tailor our data base to meet these. ### LOWDATA SYSTEMS A division of Lowdon Bros. & Co. (Engin-eers Ltd). PO Box 53, Blackness Road Dunder, DD1 94G Tel: (0382) 22314 Full range of Sharp Equipment stocked ### **STAFFORDSHIRE** DISCOS LTD. East Cannock Road, Hednesford, Staffs WS11 5LT, Tel: Hednesford (05438) 2021-3 MX 3541 Business Computers, Peachtree Business Software, Financial Director Accounts Package, MZ 700 Wholesalers ### WALES STEVE'S COMPUTER COMPANY LTD CASTLE ARCADE, CARDIFF. Tel: 0222 - 371578 **OPEN:** Mon — Sat. 9 - 5.30 For Components to Computers ### **WEST SUSSEX** ### MICROCENTRE LTD. SYSTEMS, SOFTWARE SERVICE, SUPPORT 28-30 Station Road, Bognor Regis, Sussex. TEL: 0243 827779 ### YORKSHIRE ### PROGRAM For Business Software 35 Albion Street, Hull. TEL: 0482 20022 ### WORD-WRAPPING Peter Green Formatting text output on a micro can be a very tedious business if you are relying on the PRINT statement alone. This routine for the Electron and OS 1.2 BBC machines will prevent words from breaking. f any of you have used a word processor, either on your own
system or in your office, you will know that one of the nice features is that, unlike a typewriter, you aren't required to hit the carriage return key at the end of every line. You can just continue typing words and the software itself worries about the line ends, automatically shifting a word onto the start of the following line if it would otherwise be broken across the right margin. Really sophisticated software, such as that used in our typesetting machines, will know all the legitimate places that a word can be hypenated to improve the spacing on short lines, but we aren't going to get that ambitious. On a microcomputer (that isn't running a word-processing package, of course) such luxury is unknown. The PRINT command is very clever in some ways: it knows where on the screen to put the next character, how to set the necessary bits in screen memory to display the correct character if the screen is bit-mapped like the BBC/ Electron; how and when to scroll the screen. What it doesn't know is how to prevent words being broken in half, which is evident whenever you list a program with long lines or write a program that has to deal with lots of text output. Imagine the fun that the editors of our tape-based magazines have in trying to get every screenful reading sensibly! The procedure presented in this article was originally written to enable a number of strings to be output consecutively to the screen of the Electron in a text adventure being converted for ASP Software. I wanted to run the location description, list of possible exits and visible objects together into one block of text for neatness, but since each of the strings could be of indeterminate length (you might or might not have picked up some objects or found secret exits) it would have meant that words would certainly be broken indiscriminately, resulting in an unacceptable display. This routine solves the problem by outputting strings as normal until it detects a broken word, then 'backing up' the string, erasing the screen characters as it does so, until it finds a space, whereupon it continues printing as normal from the start of the next line. It will work on the Electron and on BBC Micros fitted with the OS 1.2 operating system. ### **OBJECTIVES** When developing this routine I wanted to keep it as generalpurpose as possible, so that it would be a useful tool in other BBC BASIC programs and also so that it would make a decent article for the magazine! This meant that the routine should be able to handle any string literal or string variable that you might use, so it was necessary to pass the string to be printed as a parameter. I also wanted the routine to be able to deal automatically with any window that might have been set up by the program, and to be independent of mode. This meant looking at the page 3 location that the operating system uses to store the right margin. Finally, the program had to conform to one of my personal foibles — I don't like printing on the first and last columns, ie I like one one-column margins around my text. This is because most of my work in the Electron uses a coloured background, and there is no facility in the BBC operating system to change the border colour, as you can on virtually every other colour computer on the market (Acom take note!). Printing looks very cramped if it goes right up to this black border, hence the margins. As it turns out, this makes the wrapping algorithm very easy to implement. The first version I wrote was in pure BASIC — nobody writes in machine code unless they really have to! I had to. The BASIC version worked fine, but was unacceptably slow on even a few lines of text compared to the speed of the unadulterated PRINT command. The machine code version is not noticeably slower than the standard PRINT. ### HOW IT WORKS The three possibilities that can occur at the end of the line when trying to print a string are shown in Fig. 1. At the end of the first line, the space between words has coincidentally fallen on the last column of the current window. In this case the routine has to do nothing: the next character will be printed automatically at the first position in the next row by the operating system, thus leaving the required minimum margin of one space on the right and starting the next word against the left margin. (This assumes that there is one and only one space between each word in your string. A lot of people don't seem to realise it, but in English there should also be a space after every piece of punctuation. If you start a new word right after a comma, fullstop or so on, the program will treat the first and second words, plus the punctuation, as one word and wrap the whole thing. It is the programmer's responsibility to make sure there are spaces in the correct positions in all the strings to be In the second case the last character of a word has fallen | T | 0 | D | A | Y | | | 0 | N | | T | H | E | | |---|---|---|---|---|---|---|---|---|---|---|---|---|---| | | 1 | | A | M | | S | U | R | E | | Y | 0 | U | | _ | | В | E | C | 0 | M | E | S | | N | E | C | E | Fig. 1 The various situations possible when printing to the screen. on the last column of the window. If printing carried on normally here, you can see that the word wouldn't be broken but we have lost the right margin space and there is a one-space indentation at the start of the next line. For tidyness, though not sense, we need to wrap in this case. Finally we see the case where a word breaks across the right margin boundary. Here, too, it is obvious that we must carry the whole word over to the next line. If you consider the possibilities in this way, a very simple algorithm suggests itself. Print the characters of the string one at a time, moving a pointer up the string to keep track of your position, until you come to the last column. If the character to be printed is a space, do nothing; the formatting is automatically correct. If any other character is being printed on the last column, move the pointer back down the string, erasing characters on the screen as you go, until you come to a space. Now print a carriage return and carry on printing the string from the current pointer position. ### THE PROGRAM Turning now to Listing 1, the section of assembly language from lines 1080 to 1480 generates the machine code which will follow the above algorithm. The beginning of the program defines the variables for the assembler to use, and the last few lines are a small demonstration of the way the routine works. The listing is heavily commented and should be fairly self-explanatory. The labels oswrch, osnewl and par (for parameter block) are straight from the manual: they are the subroutine addresses for 'print a character' and 'print a carriage return', plus the starting location of the parameter block concerning the string we are printing. When the machine code is CALLed using parameter R\$, the location of the parameter block for the string R\$ is placed in &601 and &602 (low byte, high byte). We transfer these to zero-page memory (at 'block') and use indirect addressing to get at the information we really need, which is the starting location in memory for the string R\$. This is stored at 'string' (once again, low byte, high byte). Finally we get the length of the Listing 1. The word-wrapping source code, for assembly into a REM statement on line 1 (not listed — see text). string and store it at 'length' (wouldn't do to zap off through the entire memory of the machine printing everything as we go!) Next we check for an empty string and exit if we find one. Otherwise the first character to be printed is loaded into the accumulator and the checkline test starting at .chckln made. This puts the right hand text window column value, which is stored in &30A in OS 1.2, into the X register, which is spare, and compares it to the current text cursor column position stored in &318. We skip the next section and print the character if the test fails, looping round for another character. If the test succeeds, we must be on the last column and a space is tested for. If we find one we can print it and carry on as normal, otherwise we have to load the accumulator with 127, the ASCII code for backspace/ erase, and print it. This continues until we find a space (which we also erase), at which point we print a carriage return, increment Y so that we are pointing the next printing character (the one after the space we have just detected), print it, and jump back to chckln if we haven't come to the end of the string. The code is positionindependent and may be assembled anywhere in memory that you like. In Listing 1 it is assembled at &E05, and in this case you need to insert an extra line that isn't shown in Listing 1. This is a line consisting of a REM followed by exactly 76 characters (A is as good as anything). There must be no space between the line number and the REM, and the line number must be the lowest in the program. The first line in a BASIC program is stored at PAGE (&E00) as follows: an &OD byte, the line number as a two-byte pair, the pointer to the start of the next line, and the token for the REM. Hence when you assemble the machine code, the bytes are written into memory following the REM and are stored in the first BASIC line because they overwrite the existing 'A' characters that reserved the space. The reason for using this peculiar method when BBC BASIC allows space to reserved for machine code anyway is that the whole section of the program that does the assembly can be deleted from memory, leaving the machine code ready to run by calling &E05. Thus this BASIC line can have any other program that uses it merged onto it (see the manual for information on how to do this), with no wasted memory for the assembler source code which is only needed once, anyway. Remember that this method requires the REMed line to be the first in the program so that the absolute start address is always the same. If you are moving
PAGE around (disc users on the BBC take note), it might be a better idea to CALL PAGE+5,R\$ to avoid any problems. Using the routine in a BASIC program can be done simply by having a line: ### XXXX DEFPROCprint(R\$): CALL PAGE+5, R\$: ENDPROC You can then concatenate as many strings as you like by calling PROC print repeatedly with either string variables or string constants as the parameter. The procedure leaves the text cursor at the next printing position following the last character of the previous string. This latter point brings us to the first word of warning: all the strings after the first one must begin with a space. For one thing, you need one to separate the current string from the previous one, but more importantly, the printing position for the first character of the next string might lie on the last column. If the first character wasn't a space, the routine would try to point to the previous character, and since there isn't one all sorts of problems could occur. It's easy enough to add a space to the start of any string after the The second word of warning is, make sure that the window width is wider than the longest word you have in your text. Otherwise the program will go into an endless loop as it repeatedly tries to print a word on a line that is too short for it. The routine could, of course, be modified to check for this possibility — this is left as an exercise for the reader! BBC owners with operating systems prior to 1.2 can use the routine by changing &30A in line 1280 to &329, and changing &318 in line 1290 to &32C. ### **COMPUTING TODAY** Lineage: 40p per word. Semi display: £9.00 per single column centimetre Ring for information on series bookings/discounts. All advertisements in this section must be prepaid. Advertisements are accepted subject to the terms and conditions printed on the advertisement rate card (available on request). 01-437 0699 Send your requirements to: MARK BECAREVIC ASP LTD, 1 GOLDEN SQUARE. **LONDON W1** ### **ACCESSORIES** ### **BLANK CASSETTES!** TOP QUALITY PROFESSIONAL BRAND COMPUTER/AUDIO CASSETTES AT BUDGET PRICES Packed in boxes of 10 cassettes complete with labels, inlay cards and library cases. Prices include VAT post & packing | Length | Box
Price | Qty | Amount | |--------|---------------|-----------|-------------| | 5 min | (10)
£4.35 | | | | 10 min | £4.90 | | | | 12 min | £4.95 | | | | 15 min | £5.00 | | | | 30 min | £5.20 | | | | 60 min | £5.80 | | | | 90 min | £7.50 | | | | Cheque | Postal C | order enc | losed for £ | | NAME | | | | | ADDRES | SS | | | PROFESSIONAL MAGNETICS LTD Dept PCT, Cassette House, 329 Hunslet Rd., Leeds, Tel: (0532) 706066 ### MRL PRINTERS Chinwa CP80 195 (224 inc VAT). Star Gemini 10X (120 cps 80 col) 215 (247 inc VAT). Star Gemini 15X (120 cps 132 col) 335 (385 inc VAT). Star Delta 10 (160 cps 80 col) 359 (413 inc VAT). Juki Daisywheel (18 cps) 369 (424 inc VAT). Plus paper, ribbons & refills etc. Free delivery by Securicor. #### RING 0506 31605 FOR DETAILS **MRL Printer Interfaces** Available to fit most micros: Electron, Spectrum, Atari, Commodore 64 incl free cable, free delivery. From £39.95 inc VAT. ### RING 0506 31605 FOR DETAILS Selection of Disc Drives at bargain prices from £135 (inc VAT) to fit BBC, Tandy, Nascom etc. MICRO RESEARCH LTD (Freepost) Industrial Unit 6, Knightsridge East, Livingstone EH54 5BR, West Lothian. ### **FERRANTI** I.Te.C. ### **BBC MICRO** CASSETTE LEADS - (a) 7 pin din to 7 pin din (b) 7 pin din to 2 x 3.5 mm & 1 x 2.5 mm Jacks - (c) 7 pin din to 3 pin din & 1 x 2.5 mm Jack ONLY £2.25 ea inc p&p/VAT Ferranti Oldham ITeC Department 102, Orme Mill, Crimbles Street, Waterhead, Oldham OL4 3JA ### Quality Cassettes/Disks/Paper | 5 x C15 Cassettes | |--| | 10 x C15 Cassettes | | 5 x C20 Cassettes | | 10 x C20 Cassettes | | 5 x 51/4 Floppy Disks £7.50. Listing | | Paper (11" x 9.5") 500 Sheets only £5.00 | | Labels, Cases & Postage Inclusive. | | Cheques BO's to | C & S COMPUTER SERVICES, 144 Sutcliffe Avenue, Grimsby, South Humberside DN33 1AP. ### ADD-ONS #### NIMATION GRAPHICS BOARD FOR NASBUS/Z80 BUS SYSTEMS " x 8" PCB WITH NASBUS EDGE CONNECTOR CONTAINING: CONNECTOR CONTAINING: Video Display Processor TMS 9928A/29A • 16K screen RAM driven by the VDP chip • 256 x 192 pixal resolution in 16 colours • Backdrop, pattern plane and 32 'Sprite' planes • 32 'Sprites' 8 x 8. 16 x 16 or 32 x 32 pixal objects • Sprites magnified by bit in VDP registers • X.Y co-ordinates set by two bytes/sprite • 3D 'Eclipse' effect of sprite super-imposition • coincidence flag detects sprite collisions • 8 channel 8 bit A-D on board (joysticks etc.) • Twin sound generators for stereo sound • 2K Bytes C-Mos battery backed up RAM for non volatile storage • Choice of 2 real time clocks + calendar • CTC for sound generator programming and timing functions • Kit Comprises Kit Comprises Kit Comprises All functions mapped as i/o ports PCB. I/o decode prom, construction manual, 60 page software manual, tape with test and demonstration software all for £33.80 + £1.75 post and package. Colour difference Matrix Board for linear and TTL monitors PCB £8.80 + 50p post and package. TANELORN SYSTEMS Bank End, Micklethwaite, Bingley, West Yorkshire BD16 3JR 0274 568380 #### VIC20 CBM 64 OWNERS!!! Buy direct from the manufacturers and save pounds!!! 3 Slot Swichable Motherb VIC20 £1 £18.95*** 4 Slot Switchable Motherboards VIC20 £21.50*** NEW NEW NEW ROBOT DRIVE INTERFACE: Plugs into Vics or 64S user port and gives complete computer control of DC motors. Contains all the circuitry for stop start and reverse Comes complete with software cassette giving full instructions and control program £21.50 L. W.Staines & Co., Unit 2, Roding Trading Estate, London Road, Barking, Essex IG11 8BU Tel: 01-591 2900 ### CORTEX - FORTH Full fig-forth with extensions for power tran cortex computer. Supports Disc and cassette, 40 page manual, 16K supplied in two 2564 Eproms. Replaces 1st two Basic Eproms. £35 inclusive. LOMBARD SYSTEMS 18 Lombard Street, Lidlington, Bedford MK43 0RP. ### BOOKS AND PUBLICATIONS ### Money From Your Micro A book that gives you pienty ideas for making spare-time income with the help of your equipment and expertise Sections on products, services, equipment needed etc., and a general section giving advice on starting a small business at home rice £3.40 from Scorby Soft, Main Street, Flixton, Scarborough YO11 3UB. PARAPHYSICS Journal (Russian Translations); Psychotronics, Kirlianography, Heliphonic Music, Telekinetics, Computer Software, SAE 4 x 9". Paralab, Downton, Wiltshire. ### HARDWARE #### SHARP MZ-711 ### 64K Personal Computer AVE OVER £39.00 WITH MZI DATA RECORDER PLUS 10 FREE GAMES Our special price £247.00 ### Also Available MZIPOI 4 colour printer £127. All prices include VAT FREE DELIVERY Mail Order. Send Cheque/PO or quote Access no. Send SAE for software lists HIGNETT'S Computers. Dept PCT, 71/73 Rocky Lane, Anfield, Liverpool L6 4BB ORIC-1 EPROM Programmer -Full hardware and software plans of a low-cost unit which programs. simulates and duplicates EPROMs on your 48K Oric. Price £2.50 from Howell and Collins, 43 Crossways, Crawley RH10 1QT. ### **NEWBRAIN &** SANYO Professional Micro Computers for the price of hobby machines. #### Newbrain on Special Offer SANYO 550/555 COMPUTERS Micropro Wordstar no extra cost! **Printers:** Epson KDC, Juki, Shinwa, Daisystep 2000 Sanyo Monitors & Recorders. Call STEVENAGE (0438) 812439 Mail Order and Access facilities. ANGELA ENTERPRISES 4 Ninnings Lane, Rabeley Heath, Welwyn, Herts AL6 9TD. ### SERVICES ### ELIMINATE **FAULTY** CASSETTES DataClone is the first company in the UK established specifically for the duplication of data cassettes. All other duplicating houses are audio orientated - only DataClone has a duplicating system designed from scratch purely to handle computer information. The resuit? Greatly improved reliability in data transfer rates from 300 to beyond 2400 baud - previously unattainable. All formats catered for. Quantities from 100 to infinity. Contact us now for brochure DataClone - the first specialist service for computer cassettes. ### DATACLONE Unit 1, Roslin Square, Roslin Rd., Acton, London W3. Tel: 01-993 2134 Telex: 21879 LISTINGS printed by enthusiast with MZ-80K and Epson. Also. letters/information sheets. Neat, cheap and quick. Send SAE to: 168. Queen Alexandra Mansions Bidborough Street. London WC1H 9DJ ### **ALARMS** BURGLAR ALARM equipment Please visit our 2,000 sq. ft. show-rooms or write or phone for your free catalogue. C.W.A.S. Ltd., 100 Rooley Avenue, Bradford BD6 1DR. Telephone: 0274 731531 ### SOFTWARE GAMES ### SHARP dcs SAE for free catalogue of Games, Education, Utility & Business Programs. ### DAVID COMPUTER SOFTWARE 38 South Parade, Bramhall, Stockport SK7 3BJ. DEALER ENQUIRIES WELCOME **RACE** Aliens to Vega. Captain's View: Controls/hyperspace. graphics, sound. Spectrum 48K £3.90. Recorded delivery. Kinory. Clairville Gardens, London W7 ### WANTED SCANDINAVIA agencies required for the Extensive Scandinavia market. marketing facilities in Denmark and Norway. Sweden Vision A/S Software Publisher Oslo Nordstrandveien Norway. Phone (02) 297238. COLOUR GENIE software wanted. Good royalties paid. Apex Software (CT), Hastings Road, St. Leonards-on-Sea TN38 Hastings 53283. ### SOFTWARE **APPLICATIONS** TRS-80 V. GENIE LII. Add fifteen new program commands to your Basic. with our extender utility program. Machine Code. £10.50 Send to: Olympic Software, 15 Arnhem Close, Aldershot, Hants GH11 1RJ. **EPSON HX-20** Portable computer integral printer. cassette, display transit case, basic manuals and mains adaptor virtually new, only £350. Phone 02-774 53534 NASCOM 2, NAS-SYS 3, ZEAP (EPROM), 48K-RAMB. Tanelorn Board, Games etc. £350 ono. Tel: (0203) 447765 eves/weekends. APPLE II Europlus with Apple II Discdrive and monochrome Monitor £900 ono. 10 months old. Tel: 041 942 6743.
CENTRONICS P-1 Microprinter plus electrostatic paper (2 rolls) complete with Centronics interface and cooling fan. New cost £180.00+. Bargain at £95 ono. Tel: 01-644 4535 ### REPAIRS #### COMMODORE REPAIRS by CMB approved service engineers: for all out of guarantee units. Eg, Vic 20, CBM 64, C2N Datasette, units etc. For more details tel or SAE G. C. Bunce & Son 36 Burlington Road, Burnham, Bucks SL1 7BQ. TEL: (06286) 6196 ### SOFTWARE **EDUCATIONAL** 400/800 owners French or German and save money! £10 off Atari language Send only £29.99. course. credit cards accepted. Callers welcome open 7 days a week Warehouse 10, Dept. PCT, 210 Tower Bridge Road, London SE1 or phone 01 407 8793. #### CLASSIFIED ADVERTIS ORDER | 1. | 2. | 3. | When plac cation requ | |-----|-----|-----|-----------------------| | 4. | 5. | 6. | Send to: A | | 7. | 8. | 9. | London W | | 10. | 11. | 12. | Tel: 01 - 437 | | 13. | 14. | 15. | Address | | | | | Tel.No.(Day) | ng your ad, please state classifiuired. 40p per word. SP Classified, 1 Golden Square, 1. 0699 Please place my advert in COMPUTING TODAY for issues commencing as soon as possible ### **COMPUTING TODAY CLASSIFIED ADVERTISEMENT — ORDER FORM** If you have something to sell now's your chance! Don't turn the page — turn to us! Rates of charge: 35p per word per issue (minimum of 15 words). Please state classification > and post to: COMPUTING TODAY, CLASSIFIED DEPARTMENT 1 GOLDEN SQUARE, LONDON W1. | | | £5.25 | |--|--|--------| | | | £7.00 | | | | £8.75 | | | | £10.50 | | | | £12.25 | | | | £14.00 | | | | £15.75 | | | | £17.50 | Please place my advert in COMPUTING TODAY for issues commencing as soon as possible. I am enclosing my Cheque/Postal Order/International Money Order for: (delete as necessary) £. . . . (Made payable to A.S.P. Ltd) VISA OR Debit my Access/Barclaycard (Delete as necessary) All classified advertisements must be paid for in advance. | Please use BLOCK CAPITALS and include post codes. | |---| | Name (Mr/Mrs/Miss/Ms)(delete secondingly) | | Address | | Signature | Date | |-----------|------| | | | | | | Daytime Tel. No. AT A GLANCE...AT A GLANCE...AT A GLANCE...AT A GLANCE...AT A GLANCE...AT A GLANCE... #### **BERKSHIRE** ### Micro General #### PRINTER **SPECIALISTS** for advice on prin 6 THE BIRCHWOODS, TILEHURST, READING TEL: 0734 25226 ### CHESHIRE ### northern computers Churchfield Ra., Frodsham. Tel: (0928) 35110 **Open:** 6 days 9-6. Retail and Wholesale. Apple II & III, Atom. BBC, VIC20/64, Newbrain, Dragon 32, Electron. Spectrum. All accessories. Easy parking off M56. ### Computer Junk Shop We Buy, Sell, Break Computers & Peripherals. 10 Waterloo Rd, Widnes, Halton. Tel: 051 420 4590. #### CORNWALL/DEVON ### A. B. & C. COMPUTERS (CT) Duchy House, 6 Lower Aylmer Sq., St. Austell. Tel: 0726 64463/67337 Wide range of popular Micros, Printers, books and accessories. We stock all U need — try us first for service and competitive prices ### **COMPUTING TODAY** PRESENTS YOUR OWN **'WHERE TO BUY IT"** GUIDE ### **HERTFORDSHIRE** ### **NEWBRAIN & SANYO** HARDWARE & SOFTWARE Printers, Epson, Shinwa, Juki etc. Monitors, Tape Recorders, Books, Expansions, CP/M. Sanyo 550/ 555 Computers. Access/Mail Order. Ask for details. ANGELA ENTERPRISES Tel: Stevenage (0438) 812439 anytime LOOKING FOR MICRO-COMPUTER HARDWARE OR SOFTWARE? THEN LOOK NO FURTHER THAN COMPUTAMART ### **NORTH KENT** ### MEDWAY COMPUTERS 141 NEW ROAD, CHATHAM. Tel: 0634 826080 ### **LANCASHIRE** ### LANCASHIAE 51 QUEEN STREET, MORECAMBE. Tel: 411435. Also open Sundays. Authorised dealer for Bug-Byte, Imagine, Quicksilva Artic, Melbourne House, Silversoft etc. LEIGH COLOUR LABORATORY LTD 87 Chapel St., LEIGH, Tel: 0942 607661 Open: 9 - 5.30. ### NSC COMPUTER 29 Hanging Ditch, Manchester. Tei: 061 832 2269 Open: Mon-Fri 9.30am-5.30pm Sat 10-5. Retail and Wholesale ### LINCOLNSHIRE SHARP CENTRE 16 Melville Street, Lincoln. Tel: Lincoln 32379. Open: 9am-5.30pm closed Wed. ### LONDON COMPUTER SHOP 404-406 Edgware Road, London W2 1ED. Tel: 01-402 6822 **Open:** 6 days a week. Order by phone or call in and see for yourself. ### A. J. Duchesne (Computer Consultants) Limited Specialists in Small Business Computing 10-12 Creechurch Lane, London EC3A 5AY Telephone: 01-621 0433 ### COMPUTING + 264 Earls Court Road, London SW5. Tel: 01 373 4508 or 01 373 5000 Ext 240. Supplier use, together with supporting software. Leading manufacturers' products supplied. ### SOUTH LONDON ### **CROYDON COMPUTER CENTRE** Authorised Acorn Service Centre 29a Brigstock Rd., Thornton Heath, Surrey. Tel: 01 - 689 1280 BBC, Acorn, Electron, Genie, Oric, Kaga Microvitek Zenith Monitors. OKI 80, 82A + 84 Printers, Paper. Ribbons. Software etc. BUY-HIRE. #### **MIDDLESEX** L.B. ELECTRONICS 11 Hercies Rd, Hillingdon. Tel: Uxbridge 55399 (24hr ans. service) Open: 6 days, 9.30am-6pm, (lunch 1-2.15 except Sat) Surplus equipment, memory, EPROMs etc. Also established mail order service. ### **NORFOLK** ### ANGLIA COMPUTER CENTRE 88 St Benedicts Street, Norwich. Tel: (0603) 29652/26002. Open: 6 days 9am-5.30pm. ### NORTHAMPTONSHIRE ### NORTHAMPTON HOME COMPUTER CENTRE 58A Wellingborough Road, Northampton. Tel: (0604) 22539 Open: 6 days a week from 10 - 6 ### **NORTHERN IRELAND** ### NEWBURN Ballycorry Co. Antrim 6 Days until 8pm. Gemini, Galaxy, Nascom, Acorn Computers, Discs, monitors, printers. ire. Industrial Control. Accounts. Word Processors etc. servicing, hire. WHITEHEAD 78330 ### SCOTLAND ### VICTOR MORRIS GLASGOW TANDY TRS 80, VIC 20, VIDEO GENIE, APPLE PANASONIC, CUMANA, EPSOM ETC 340 Argyle Street, Glasgow G2: 041 221 8958 ### SUSSEX 24 Gloucester Road, Brighton. Tel: 0273-698424. Open: Mon-Fri 10am-5.30pm, Sat 9am-5.30pm ### **TYNE AND WEAR** HCCS ASSOCIATES 533 Durham Rd., Low Fell, Gateshead. Tel. Newcastle 821924. Open: 6 days 9am-5.30pm (Sat 10am-5.30pm). Specialists in: Acorn, BBC, Video Genie, VIC 20. ### WALES STEVE'S COMPUTER COMPANY LTD CASTLE ARCADE, CARDIFF Tel: 0222 - 371578 **OPEN:** Mon — Sat. 9 — 5.30 FOR COMPONENTS TO COMPUTERS AT A GLANCE...AT A GLANCE...AT A GLANCE...AT A GLANCE...AT A GLANCE...AT A GLANCE... ### WALES ### SIR Computers Ltd. 91 Whitchurch Road, Cardiff. Tel: 0222 - 21341 BBG LOOKING FOR MICROCOMPUTER HARDWARE OF SOFTWARE? THEN LOOK NO FURTHER THAN COMPUTAMART ### WARWICKSHIRE ### DITTO ### **OEM COMPUTER SYSTEMS** 9-11 Regent Street, Rugby CV21 2PE, Tel: (0788) 70522/3/4 THE FINEST COMPUTER SHOWROOMS IN THE MIDLANDS ### CARVELLS OF RUGBY LTD 3/7 Bank Street, Rugby CV21 2QE The Acorn/BBC Specialists __ Tel: Rugby 65275/6_ ### WARWICKSHIRE BUSINESS & LEISURE MICROCOMPUTERS 16 The Square, Kenilworth. Tel: Kenilworth 512127. Open: Mon-Fri 9am-5pm. 1/2 day Thur (lunch 1-2). Retail and Wholesale ### **YORKSHIRE** #### **BRADFORD'S COMPUTER** SHOP at Thomas Wright (Bradford) Ltd., Thorite House, Laisterdyke. Tel: Bradford 668890. Open: Mon-Fri 8.45-5.30. (Sat 12am) | Please include my business details in the next available issue of Co | | |--|-------| | Business Name: | | | Address: | | | | ON | | ••••• | 5 60! | | al No | | | el No : | | | el. No.: | | | pen Hrs: | | | Contact (Office Use Only): | | | AUDIOGENIC32 | |------------------------------| | AKHTER INSTRUMENTS44 | | ANIROG | | BRITISH MICROIFC | | CASCADE4 | | COMMODORE | | CROWN BUSINESS CENTRE31 | | COMPUTER INTERFACE DESIGNS41 | | CERAN SOFTWARE41 | | CAMBRIDGE LEARNING | | CHARTSEARCH | | COMPUTER LINK90 | | CALCO62 | | DATA GENERAL | | DAVID HUSBAND | | DISCOUNT COMPUTER SUPPLIES24 | | ELECTRONEQUIP42 | | HANDIC | | ITL KATHMILL62 | | INTERFACE | | | | IKON | 5 | |---|----| | LINCO DATA4 | 7 | | LEVEL 95 | 3 | | LONDON ELECTRONICS COLLEGE8 | 2 | | MOLIMERX | 7 | | MICRO PERIPHERALS OB | C | | MICROVALUE | 1 | | MICROTANIC | 4 | | N'E'C'6 | 2 | | ORIC22.2 | | | ORIC SOFTWARE9 | 0 | | PICTURESQUE · · · · · · · · · · · · · · · · · · · | 80 | | PEGASUS | 86 | | SWANLEY ELECTRONICS | 32 | | STEMMOS8 | 36 | | SOLO SOFTWAREIB | | | SINCLAIR RESEARCH | 19 | | SPECTRA VIDEO | 11 | | WILLIAM STUART SYSTEMS | 20 | | | | # A SUPERB RANGE OF GAMES SOFTWARE FOR ### FROGGER -£6.95 This most popular of arcade games has been totally recreated for the Sharp computer. Superb graphics and as fast as you like from beginner's level up to 'Superhuman'. Get each of four frogs over the busy motorway, then hop from boat to raft to log to crocodile until safely home sitting on a lily pad. Terrific fun. ### BACKGAMMON - £7.95 Now available for the MZ-700, this traditional board game can now be played against the computer. Simple to follow instructions for the beginner — higher levels available for the more experienced player. ### CHESS -£9.95 Suitable for the rank beginner through to the more experienced player, this Chess program may be used in three different ways. 1. As a referee between two players, checking for valid moves, CHECK and CHECKMATE situations. 2. As a respect to the beginning the program of - As an opponent with 14 levels of intelligence to match your skills. - As a teaching aid when asked to play against itself or show you the best move if you get into difficulties. Long games may be saved on cassette for completion at a later time and a print-out of all moves made is ### SPACE PANIC -£7.95 How long can you survive in the multi-storey building filled with alien bugs. This machine-code programme accurately simulates the arcade game where you climb ladders and dig holes to catch the aliens then fill them in again once they are caught. The red ones must fall through one floor, the green ones, two floors and white ones, three floors. Red aliens who have time to dig themselves out get rather cross and become green. PANIC!! Joy stick or keyboard control. ### NIGHTMARE PARK - £6.95 If you have never played this type of game before, you're in for a treat. As you make your way
along the intricate pathways to the exit, you are constantly given tasks to perform or games to play. Each of these must be ### XANAGRAMS - £9.95 Not only a terrific spelling test but also a great game. You are asked to guess up to five words, represented by blocks on the screen in a crossword format. All the letters that you need are shown on the right of the screen in alphabetical order and the computer will give you the first letter if you ask it nicely. Suits almost any age with 3 skill levels and from 1 to 5 words to be guessed. Really habit-forming!!! ### GALAXIANS - £7.95 A high-speed machine-code version of the popular areade game where the massed space invaders must be cleared from the skies. After a few seconds they will begin to swoop and dive at you, showering you with scatter bombs as they go. The game becomes progressively more demanding as you kill more and more of the marauding aliens. Very entertaining — hours of fun!!! Joy stick or keyboard control. ### FIGHTER COMMAND - £6.95 A mission flown completely on instruments where you are pursuing a fleet of ten enemy aircraft fleeing from you. They will show on your long range radar screen and you must manoeuvre your craft to get them within range of your missiles. If you get too near, they will fire at you and warp away to safety. You only have one chance to destroy incoming missiles with your lasers. ### LIGHTNING PATROL - £3.95 Choose your rank in the RAF and you are immediately sent on a mission to catch and shoot down ten enemy Mirage jets that are fleeing after their attack on your airbase. You must manoeuvre your plane to get them in your gun-sights whilst they are weaving about the sky to avoid being hit. Limited ammunition and fuel available so efficiency and accuracy are all important to your completion of the mission. Promotion for the successful but poor performances can mean you are asked to leave ### PLUS AN EXTENSIVE RANGE OF OVER 100 GAMES. BUSINESS AND EDUCATIONAL SOFTWARE FOR THE SHARP MZ 700 SERIES-FREE COLOUR CATALOGUE AVAILABLE SOLO SOFTWARE O PLAIN - GLOBAL WAR III - FIGHTER COMMAND - FROGGER PLAIN - GLOBAL WAR III - FIGHTER COMMAND - FINA JEER ANIC - BACKGAMMON - MOON FLITE - CHESS - ADANACED DINS CAFE - LIGHTNING PATROL - COMPUT-ASLOT - SUPE E!!! - POLARIS - MIDAS - DOMINATION - INCA GOLD - UP ATHS - TYPE TRAINER - MATHS TANK - COUNTER BLAST ARN MATHS - MIGHTY WRITER - BIKER - GET LOST - MUSIC AL - DATABASE FILER - SPREAD-SHEET - WORD PROCESSOR - 95B Blackpole Trading Estate West, Worcester Telephone (0905) 58351 (24 hrs) 'THE POWER BEHIND THE PRINTED WORD' 69 The Street, Basing, Basingstoke, Hampshire RG24 0BY Telephone: 0256 3232 (12 lines) Telex: 859669 MICROP G Tel. No....